
Constraint Programming

Global Constraints

Amira Zaki
Prof. Dr. Thom Frühwirth

University of Ulm

WS 2012/2013

Amira Zaki & Thom Frühwirth – University of Ulm Page 1 – WS 2012/2013

Constraint Programming

Overview

Classes of Constraints

Global Constraints

Case Study 1: all different

Global Constraint as Graph Problem

Case Study 2: cumulative

Amira Zaki & Thom Frühwirth – University of Ulm Page 2 – WS 2012/2013

Constraint Programming

Combinatorial Problem Representation

• Many possible models for a given problem

• Represent the entities of the problem

– Variables and domains
– Constraints that apply to these variables

• Test the model and try to improve its solving efficiency, try:

– Global constraints
– Redundant constraints
– Dual models

Amira Zaki & Thom Frühwirth – University of Ulm Page 3 – WS 2012/2013

Constraint Programming

Expressing the Constraints
• Different ways can lead to different algorithm behavior

• Example of two programs having the same solutions but
consistency propagators produce different results

P1:

X in 1..5,

Y in 0..7,

Z in 1..9,

X = Y,

X + Y = Z

=⇒ X,Y in 1..5, Z in 2..9

P2:

X in 1..5,

Y in 0..7,

Z in 1..9,

X = Y,

2*X = Z

=⇒ X,Y in 1..4, Z in 2..8

Amira Zaki & Thom Frühwirth – University of Ulm Page 4 – WS 2012/2013

Constraint Programming

Expressing the Constraints

• Bring different viewpoints of the problem

• A “good” viewpoint

– Problem is easily expressed
– Few constraints with efficient propagators

• The inequality constraint is rarely a good choice 6=
– Knowing the different types of constraints offered by the solver

• Global constraints tend to be more effective
• Capture more semantics of the problem structure

– Implied or redundant constraints

Amira Zaki & Thom Frühwirth – University of Ulm Page 5 – WS 2012/2013

Constraint Programming

Classes of Constraints

1. Basic constraints

– For which the solver is complete
– Stored in the constraint store
– x ∈ D, x = v

2. Primitive constraints

– Cannot be meaningfully decomposed
– Implemented as propagators
– x < y , x = y , x + y = z , . . .

3. Global Constraints

Amira Zaki & Thom Frühwirth – University of Ulm Page 6 – WS 2012/2013

Constraint Programming

Global Constraints

• Global Constraints is one of the main trends in todays
CP-research and practice

• Algorithms that can be implemented as incremental filtering
mechanisms integrate well in to the general CP framework

• Many such algorithms from matching theory, flow optimization
and graph algorithms have proved to be most effective as
specialized modeling components in such frameworks

Amira Zaki & Thom Frühwirth – University of Ulm Page 7 – WS 2012/2013

Constraint Programming

Global Constraints

• Captures a relation between a non-fixed number of variables

• Subsumes a set of basic and or primitive constraints, thus less
constraints needed

• Encode complex or high level modeling concepts

• May give (significantly) stronger propagation than
corresponding set of primitive constraints

• Case studies

– all_different

– cumulative

Amira Zaki & Thom Frühwirth – University of Ulm Page 8 – WS 2012/2013

Constraint Programming

Global Constraint: all different

all_different(+Variables)

where Variables is a list of domain variables with bounded
domains or integers. Each variable is constrained to take a value
that is unique among the variables, hence the variables are pairwise
distinct
Or formally,

all different([x1, . . . , xn]) = {[d1, . . . , dn] | ∀idi ∈ D(xi), ∀i=j di 6= dj}.

Amira Zaki & Thom Frühwirth – University of Ulm Page 9 – WS 2012/2013

Constraint Programming

all different

It is a filtering constraint; all values that do not belong to any
solution of the constraint are filtered from its domain

Example

all different([X ,Y ,Z]),X in [1, 2],Y in [1, 2],Z in [1, 2, 3]

The two variables X and Y take the values 1 and 2, while z
cannot take these values. Thus by filtering, Z = 3

Amira Zaki & Thom Frühwirth – University of Ulm Page 10 – WS 2012/2013

Constraint Programming

Sudoku

Fill a 9 ∗ 9 grid with digits
from 1 to 9 so that each
column, each row, and each of
the nine 3× 3 sub-grids that
compose the grid contains
each digit exactly once

Sample Sudoku puzzle (Wikipedia)

Amira Zaki & Thom Frühwirth – University of Ulm Page 11 – WS 2012/2013

Constraint Programming

Modeling of Sudoku

• Variables

– One for each cell
– A 9× 9 matrix of variables for the Sudoku grid

• Domains

– Each variable has a domain from 1 to 9

• Constraints

– Pairwise inequality constraints 6= among cells of the same row,
column and 3× 3 block

– Too many!

Amira Zaki & Thom Frühwirth – University of Ulm Page 12 – WS 2012/2013

Constraint Programming

Better Modeling of Sudoku

• One global constraint for each row, column and 3× 3 block
all different(Rows), all different(Columns),

all different(Blocks)

• Seek sets of values that must be matched to some variables;
they can not be assigned to other variables

• Reformulate the constraints using a bipartite graph

Amira Zaki & Thom Frühwirth – University of Ulm Page 13 – WS 2012/2013

Constraint Programming

Bipartite Graph Definition

A graph G consists of a finite non-empty set of elements V called
nodes and a set of unordered pairs of nodes E called edges. If the
node set V can be partitioned into two disjoint non-empty sets X
and Y such that all edges in E join a node from X to a node in Y ,
we call G bipartite with bipartition (X ,Y)

G = (X ,Y ,E)

For Global Constraints,

• X = Variables

• Y = Values

Amira Zaki & Thom Frühwirth – University of Ulm Page 14 – WS 2012/2013

Constraint Programming

all different as Graph Problem

X

Y

Z

1

2

3

graph :-

X in 1..2,

Y in 1..2,

Z in 1..3,

all_different([X,Y,Z]).

Amira Zaki & Thom Frühwirth – University of Ulm Page 15 – WS 2012/2013

Constraint Programming

Matching

• Definitions

– Matching: a subset of edges in a graph G where no two edges
have a node in common

– Maximum matching: a matching of maximum cardinality i.e.
has largest set of edges in a graph that form a matching

• Every solution to the all different corresponds to a
maximal matching

• If a link does not belong to a maximum matching, it can be
removed (domain reduction)

Amira Zaki & Thom Frühwirth – University of Ulm Page 16 – WS 2012/2013

Constraint Programming

Example

X in [1, 2],Y in [1, 2],Z in [1, 2, 3]

X

Y

Z

1

2

3

Bipartite Graph

X

Y

Z

1

2

3

Matching

X

Y

Z

1

2

3

Maximum Matching

Amira Zaki & Thom Frühwirth – University of Ulm Page 17 – WS 2012/2013

Constraint Programming

Hall’s Theorem

Hall’s marriage Theorem (Hall, 1935)

If a group of men and women marry only if they have
been introduced to each other previously, then a
complete set of marriages is possible if and only if every
subset of men has collectively been introduced to at least
as many women, and vice versa

Meaning:
all different([x1, . . . , xn]) has a solution if and only if:

|K | ≤ |D(K)| for all K ⊆ {x1, . . . , xn}

Amira Zaki & Thom Frühwirth – University of Ulm Page 18 – WS 2012/2013

Constraint Programming

Step 1: Maximum Matching Computation

• Largest number of edges such
that no two edges share an
endpoint

• Take a bipartite graph produce
maximum cardinality matching

• Increase the size of partial
matching by finding
alternating paths that starts
from and ends on free
(unmatched) nodes

X

Y

Z

1

2

3

Amira Zaki & Thom Frühwirth – University of Ulm Page 19 – WS 2012/2013

Constraint Programming

Step 1: Maximum Matching Computation

• Largest number of edges such
that no two edges share an
endpoint

• Take a bipartite graph produce
maximum cardinality matching

• Increase the size of partial
matching by finding
alternating paths that starts
from and ends on free
(unmatched) nodes

X

Y

Z

1

2

3

X

Y

Z

1

2

3

Amira Zaki & Thom Frühwirth – University of Ulm Page 20 – WS 2012/2013

Constraint Programming

Step 2: Strongly Connected Components

1. Orient the edges (Matching
edges from variables to
values, other from values to
variables)

X

Y

Z

1

2

3

Amira Zaki & Thom Frühwirth – University of Ulm Page 21 – WS 2012/2013

Constraint Programming

Step 2: Strongly Connected Components

1. Orient the edges (Matching
edges from variables to
values, other from values to
variables)

2. Compute maximal subgraph
of a directed graph in which
every vertex is reachable
from every other vertex:
aka strongly connected
components

X

Y

Z

1

2

3

X

Y

Z

1

2

3

Amira Zaki & Thom Frühwirth – University of Ulm Page 22 – WS 2012/2013

Constraint Programming

Step 3: Mark More Edges

1. Find unmatched value
nodes (here none)

2. Mark alternative paths for
these nodes, regardless if
these edges belonged or not
to matching

X

Y

Z

1

2

3

4

Amira Zaki & Thom Frühwirth – University of Ulm Page 23 – WS 2012/2013

Constraint Programming

Step 4: Pruning

• Remove all unmarked edges (i.e. dotted)

X

Y

Z

1

2

3

X

Y

Z

1

2

3

• Corresponds to pruning stronger than binary constraints:

X in [1, 2],Y in [1, 2],Z = 3

Amira Zaki & Thom Frühwirth – University of Ulm Page 24 – WS 2012/2013

Constraint Programming

Resource Scheduling
• Planning of temporal order of tasks (jobs) in presence of

limited resources

– task, e.g., production step or lecture
– resource e.g., a machine, electrical energy, or lecture room
– tasks compete for limited resources
– dependencies between tasks
– find a schedule with an optimal value for a given objective

function (measuring time or use of other resources)

• job shop scheduling problem

– tasks have fixed duration and cannot be interrupted
– resources are machines for at most one task at a time
– objective is to minimize the overall production time that is

needed to accomplish all the tasks

Amira Zaki & Thom Frühwirth – University of Ulm Page 25 – WS 2012/2013

Constraint Programming

Global Constraint: cumulative

cumulative(+Tasks,?Limit)

• Tasks is a list of tasks, each of form task(Si ,Di ,Ei ,Ri ,Ti).
Si denotes start time, Di positive duration, Ei end time, Ri

non-negative resource consumption, Ti task identifier

• Each of these arguments must be a finite domain variable
with bounded domain or an integer

• The constraint holds if at any time during the start and end of
each task, the total resource consumption of all tasks running
at that time does not exceed the global resource limit stated

Amira Zaki & Thom Frühwirth – University of Ulm Page 26 – WS 2012/2013

Constraint Programming

Global Constraint: cumulative
Given positive Durations, Resources and Limit, let:

a = min(S1, ...,Sn)
b = max(S1 + D1, ...,Sn + Dn)

and

Rij =

{
Rj if Sj ≤ i < Sj + Dj

0 otherwise

The constraint is True iff:

(∀a ≤ i < b)

(
n∑

j=1
Rij

)
≤ Limit

Amira Zaki & Thom Frühwirth – University of Ulm Page 27 – WS 2012/2013

Constraint Programming

Moving Furniture Example

• We would like to move the following items:

Item Movers Time/minutes

Piano 3 30
Bed 3 15
Chair 1 10
Table 2 15

• We want to finish moving in one hour

• Only 4 people are available to move

Amira Zaki & Thom Frühwirth – University of Ulm Page 28 – WS 2012/2013

Constraint Programming

Moving Furniture Example

Solution requires one cumulative constraint:

• Starts: [SP,SB,SC,ST]

• Ends: [EP,EB,EC,ET]

• Durations: [30,15,10,15]

• Resources: [3,3,1,2]

• TaskIds: [p,b,c,t]

• Limit: 4

Amira Zaki & Thom Frühwirth – University of Ulm Page 29 – WS 2012/2013

Constraint Programming

:- use_module(library(clpfd)). % with SWI-Prolog 6.3.8

move(Tasks):-

Tasks = [task(SP,DP,EP,RP,TP), task(SB,DB,EB,RB,TB),

task(SC,DC,EC,RC,TC), task(ST,DT,ET,RT,TT)],

Starts = [SP,SB,SC,ST], Ends = [EP,EB,EC,ET],

Durations = [DP,DB,DC,DT], Durations = [30,15,10,15],

Resources = [RP,RB,RC,RT], Resources = [3,3,1,2],

TaskIds = [TP,TB,TC,TT], TaskIds = [p,b,c,t],

Limit = 4,

Starts ins 0..60,

Ends ins 0..60,

cumulative(Tasks, [limit(Limit)]),

label([SP,SB,SC,ST]).

% a solution: [task(0,30,30,3,p), task(30,15,45,3,b),

task(0,10,10,1,c), task(45,15,60,2,t)]

Amira Zaki & Thom Frühwirth – University of Ulm Page 30 – WS 2012/2013

	Classes of Constraints
	Global Constraints
	Case Study 1: all_different
	Global Constraint as Graph Problem
	Case Study 2: cumulative

