Constraint Programming Cheat Sheet

	Constraint Logic Programming	Concurrent Constraint Logic Programming	Constraint Handling Rules
Syntax	Atom: $A, B ::= p(t_1, \ldots, t_n), n \ge 0$ Constraint: $C, D ::= c(t_1, \ldots, t_n) C \land D, n \ge 0$ Goal: $G, H ::= \top \bot A C G \land H$ CL Clause: $K ::= A \leftarrow G$ CL Program: $P ::= K_1 \ldots K_m, m \ge 0$	Atom: $A, B ::= p(t_1, \ldots, t_n), n \ge 0$ Constraint: $C, D ::= c(t_1, \ldots, t_n) C \land D, n \ge 0$ Goal: $G, H ::= \top \bot A C G \land H$ CCL Clause: $K ::= A \leftarrow C \mid G$ CCL Program: $P ::= K_1 \ldots K_m, m \ge 0$	$\begin{array}{c} CHR \ Constraint: \ E, F ::= e(t_1, \dots, t_n) \mid E \land F, n \geq 0\\ Built-in \ Constraint: \ C, D ::= c(t_1, \dots, t_n) \mid C \land D, n \geq 0\\ Goal: \ G, H ::= \top \mid \bot \mid C \mid E \mid G \land H\\ CHR \ Rule: \ R ::= E \Leftrightarrow C \mid G \mid E \Rightarrow C \mid G\\ CHR \ Program: \ P ::= R_1 \dots R_m, m \geq 0 \end{array}$
Operational Semantics	Unfold If $(B \leftarrow H)$ is a fresh variant of a clause in P and $CT \models \exists ((B \doteq A) \land C)$ then $\langle A \land G, C \rangle \mapsto \langle H \land G, (B \doteq A) \land C \rangle$ Failure If there is no clause $(B \leftarrow H)$ in P with $CT \models \exists ((B \doteq A) \land C)$ then $\langle A \land G, C \rangle \mapsto \langle \bot, false \rangle$ Solve If $CT \models \forall ((C \land D_1) \leftrightarrow D_2)$ then $\langle C \land G, D_1 \rangle \mapsto \langle G, D_2 \rangle$	Unfold If $(B \leftarrow D + H)$ is a fresh variant of a clause in P with variables \bar{X} and $CT \models \forall (C \rightarrow \exists \bar{X}((B \doteq A) \land D))$ then $\langle A \land G, C \rangle \mapsto$ $\langle H \land G, (B \doteq A) \land D \land C \rangle$ Solve If $CT \models \forall ((C \land D_1) \leftrightarrow D_2)$ then $\langle C \land G, D_1 \rangle \mapsto \langle G, D_2 \rangle$	Simplify If $(F \Leftrightarrow D \mid H)$ is a fresh variant of a rule in P with variables \bar{X} and $\mathcal{CT} \models \forall (C \rightarrow \exists \bar{X}(F \doteq E \land D))$ then $\langle E \land G, C \rangle \mapsto$ $\langle H \land G, (F \doteq E) \land D \land C \rangle$ Propagate If $(F \Rightarrow D \mid H)$ is a fresh variant of a rule in P with variables \bar{X} and $\mathcal{CT} \models \forall (C \rightarrow \exists \bar{X}(F \doteq E \land D))$ then $\langle E \land G, C \rangle \mapsto \langle E \land H \land G, (F \doteq E) \land D \land C \rangle$ Solve If $\mathcal{CT} \models (C \land D_1) \leftrightarrow D_2$ then $\langle C \land G, D_1 \rangle \mapsto \langle G, D_2 \rangle$
Declarative Semantics	*Main definition $P^{\leftrightarrow} \cup CT$ (1) Completion P^{\leftrightarrow} For each p/n in P add to P^{\leftrightarrow} the formula $p(\bar{t}_{1}) \leftarrow G_{1} \forall \bar{X}(p(\bar{X}) \leftrightarrow \exists \bar{Y}_{1}(\bar{t}_{1} \doteq \bar{X} \land G_{1}) \lor \qquad $		CHR-Rule Logical Reading Simplify $E \Leftrightarrow C \mid G$ $\forall \bar{X} (C \to (E \leftrightarrow \exists \bar{Y} G))$ Propagate $E \Rightarrow C \mid G$ $\forall \bar{X} (C \to (E \to \exists \bar{Y} G))$
Soundness	If a goal G has successful derivation with answer constraint C, then $P^{\leftrightarrow} \cup \mathcal{CT} \models \forall (C \rightarrow G).$	If a goal G has successful derivation with answer constraint C, then $P^{\leftrightarrow} \cup \mathcal{CT} \models \forall (C \rightarrow G)$.	If a goal G has a derivation with answer constraint C then $\mathcal{P} \cup \mathcal{CT} \models \forall \ (C \leftrightarrow G).$
Completeness	If $P^{\leftrightarrow} \cup \mathcal{CT} \models \forall (C \rightarrow G)$ and C is satisfiable in \mathcal{CT} , then there are successful derivations for G with answer con- straints C_1, \ldots, C_n s.t. $\mathcal{CT} \models \forall (C \rightarrow (C_1 \lor \ldots \lor C_n)).$	If P is a deterministic CCL program, G is a goal with at least one fair derivation, $P^{\leftrightarrow} \cup C\mathcal{T} \models \forall (C \to G)$ and C is consistent in $C\mathcal{T}$ then each successful derivation of G has an answer constraint C' s.t. $C\mathcal{T} \models \forall (C \to C')$.	If G with at least one finite derivation $\mathcal{P} \cup \mathcal{CT} \models \forall (C \leftrightarrow G)$ then G has a derivation with answer constraint C' s.t. $\mathcal{P} \cup \mathcal{CT} \models \forall (C \leftrightarrow C').$
Soundness and Completeness of Failed Derivations	Let P be a CL program and G a goal. $P^{\leftrightarrow} \cup C\mathcal{T} \models \neg \exists G$ if and only if each fair derivation starting with $\langle G, true \rangle$ fails finitely.	Let P be a deterministic CCL program and G a goal with at least one fair derivation, then the following statements are equivalent: $P \leftrightarrow \cup C\mathcal{T} \models \neg \exists G$; G has a finitely failed derivation; and each fair derivation of G fails finitely.	If P is terminating and confluent CHR program, and G is a goal with at least one answer constraint consisting of only built-in constraints then $P \cup CT \models \neg \exists G$ if and only if each finite derivation starting with $\langle G, true \rangle$ fails.