
Constraint Programming

Constraint Programming

Prof. Dr. Thom Frühwirth

SoSe 2019

Based on:

Essentials of Constraint Programming,

Thom Frühwirth and Slim Abdennadher,

Textbook, Springer Verlag, 2003.

c©Thom Frühwirth – University of Ulm Page 1 – SoSe 2019

Constraint Programming

The Holy Grail

Constraint Programming represents one of the closest

approaches computer science has yet made to the Holy

Grail of programming: the user states the problem, the

computer solves it.

Eugene C. Freuder, Inaugural issue of the Constraints Journal, 1997.

c©Thom Frühwirth – University of Ulm Page 2 – SoSe 2019

Constraint Programming

Constraint Reasoning

The Idea

• Example – Combination Lock:

0 1 2 3 4 5 6 7 8 9

Greater or equal 5.

Prime number.

• Declarative problem representation by variables and constraints:

x ∈ {0, 1, . . . , 9} ∧ x ≥ 5 ∧ prime(x)

• Constraint propagation and simplification reduce search space:

x ∈ {0, 1, . . . , 9} ∧ x ≥ 5 → x ∈ {5, 6, 7, 8, 9}

c©Thom Frühwirth – University of Ulm Page 3 – SoSe 2019

Constraint Programming

Constraint Programming

Robust, flexible, maintainable software faster.

• Declarative modeling by constraints:

Description of properties and relationships between partially

known objects.

Correct handling of precise and imprecise, finite and infinite,

partial and full information.

• Automatic constraint reasoning:

Propagation of the effects of new information (as constraints).

Simplification makes implicit information explicit.

• Solving combinatorial problems efficiently:

Easy Combination of constraint solving with search and

optimization.

c©Thom Frühwirth – University of Ulm Page 4 – SoSe 2019

Constraint Programming

Terminology

Language is first-order logic with equality.

• Constraint:

Conjunction of atomic constraints (predicates)

E.g., 4X + 3Y = 10 ∧ 2X − Y = 0

• Constraint Problem (Query):

A given, initial constraint

• Constraint Solution (Answer):

A valuation for the variables in a given constraint problem that

satisfies all constraints of the problem. E.g., X = 1 ∧ Y = 2

c©Thom Frühwirth – University of Ulm Page 5 – SoSe 2019

Constraint Programming

Constraint Programming – Mortgage

% D: Amount of Loan, Debt, Principal

% T: Duration of loan in months

% I: Interest rate per month

% R: Rate of payments per month

% S: Balance of debt after T months

mortgage(D, T, I, R, S) <=>

T = 0,

D = S

;

T > 0,

T1 = T - 1,

D1 = D + D*I - R,

mortgage(D1, T1, I, R, S).

c©Thom Frühwirth – University of Ulm Page 6 – SoSe 2019

Constraint Programming

Constraint Programming – Mortgage (cont)

• mortgage(100000,360,0.01,1025,S) yields S=12625.90.

• mortgage(D,360,0.01,1025,0) yields D=99648.79.

• S=<0, mortgage(100000,T,0.01,1025,S)

yields T=374, S=-807.96.

• mortgage(D,360,0.01,R,0) yields R=0.0102861198*D.

• If the interest rate I is unknown, the equation D1 = D + D*I

- R will be non-linear after one recursion step, since D1, the

new D, is not determined either.

c©Thom Frühwirth – University of Ulm Page 7 – SoSe 2019

Constraint Programming

Aspects of Constraint Logic Programming

Theoretical

Logical Foundation – First-Order Logic

Conceptual

Sound Modeling

Practical

Efficient Algorithms/Implementations

Combination of different Solvers

c©Thom Frühwirth – University of Ulm Page 8 – SoSe 2019

Constraint Programming

Constraint Reasoning and Constraint

Programming

A generic framework for

• Modeling

– with partial information

– with infinite information

• Reasoning

– with new information

• Solving

– combinatorial problems

c©Thom Frühwirth – University of Ulm Page 9 – SoSe 2019

Constraint Programming

Constraint Solving

Adaption and combination of existing efficient algorithms from

• Mathematics

– Operations research

– Graph theory

– Algebra

• Computer science

– Finite automata

– Automatic proving

• Economics

• Linguistics

c©Thom Frühwirth – University of Ulm Page 10 – SoSe 2019

Constraint Programming

Early History of Constraint Programming

60s, 70s Constraint networks in artificial intelligence.

70s Logic programming (Prolog).

80s Constraint logic programming.

80s Concurrent logic programming.

90s Concurrent constraint programming.

90s Commercial applications.

c©Thom Frühwirth – University of Ulm Page 11 – SoSe 2019

Constraint Programming

Application Domains

• Modeling

• Executable Specifications

• Solving combinatorial problems

– Scheduling, Planning, Timetabling

– Configuration, Layout, Placement, Design

– Analysis: Simulation, Verification, Diagnosis

of software, hardware and industrial processes.

c©Thom Frühwirth – University of Ulm Page 12 – SoSe 2019

Constraint Programming

Application Domains (cont)

• Artificial Intelligence

– Machine Vision

– Natural Language Understanding

– Temporal and Spatial Reasoning

– Theorem Proving

– Qualitative Reasoning

– Robotics

– Agents

– Bio-informatics

c©Thom Frühwirth – University of Ulm Page 13 – SoSe 2019

Constraint Programming

Applications in Research

• Computer Science: Program Analysis, Robotics, Agents

• Molecular Biology, Biochemistry, Bio-informatics:

Protein Folding, Genomic Sequencing

• Economics: Scheduling

• Linguistics: Parsing

• Medicine: Diagnosis Support

• Physics: System Modeling

• Geography: Geo-Information-Systems

c©Thom Frühwirth – University of Ulm Page 14 – SoSe 2019

Constraint Programming

Early Commercial Applications

In the late 80s, early 90s:

• Lufthansa: Short-term staff planning.

• Hong Kong Container Harbor: Resource planning.

• Renault: Short-term production planning.

• Nokia: Software configuration for mobile phones.

• Airbus: Cabin layout.

• Siemens: Circuit verification.

• Caisse d’epargne: Portfolio management.

In Decision Support Systems for Planning, Configuration, for

Design, Analysis.

c©Thom Frühwirth – University of Ulm Page 15 – SoSe 2019

Constraint Programming

Application – n-Queens Problem

Place n queens q1, . . . , qn on an n×n chess board, such that they do

not attack each other.

1
2
3
4

q1 q2 q3 q4

q1, . . . , qn ∈ {1, . . . , n}

∀ i 6=j. qi 6=qj ∧ |qi − qj |6=|i− j|

• no two queens on same row, column or diagonal

– each row and each column with exactly one queen

– each diagonal at most one queen

• qi: row position of the queen in the i-th column

c©Thom Frühwirth – University of Ulm Page 16 – SoSe 2019

Constraint Programming

Application – n-Queens Problem (cont)

Place n queens q1, . . . , qn on an n×n chess board, such that they do

not attack each other.

1
2
3
4

q1 q2 q3 q4

q1, . . . , qn ∈ {1, . . . , n}

∀ i 6=j. qi 6=qj ∧ |qi − qj |6=|i− j|

solve(N,Qs) <=> make_domains(N,Qs), queens(Qs), enum(Qs).

queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).

safe(X,[Y|Qs],N) <=> no_attack(X,Y,N), safe(X,Qs,N+1).

no_attack(X,Y,N) <=> X ne Y, X+N ne Y, Y+N ne X.

c©Thom Frühwirth – University of Ulm Page 17 – SoSe 2019

Constraint Programming

Application – n-Queens Problem (cont 2)

solve(4,[Q1,Q2,Q3,Q4])

• make_domains produces

Q1 in [1,2,3,4], Q2 in [1,2,3,4]

Q3 in [1,2,3,4], Q4 in [1,2,3,4]

• safe adds noattack producing ne constraints

• enum called for labeling

• [Q1,Q2,Q3,Q4] = [2,4,1,3], [Q1,Q2,Q3,Q4] = [3,1,4,2]

1
2
3
4

•
•

•
•

q1 q2 q3 q4

1
2
3
4

•
•

•
•

q1 q2 q3 q4

c©Thom Frühwirth – University of Ulm Page 18 – SoSe 2019

Constraint Programming

References

• Essentials of Constraint Programming

Series: Cognitive Technologies

Thom Frühwirth, Slim Abdennadher

2003, Springer

• Constraint-Programmierung

Lehrbuch

Thom Frühwirth, Slim Abdennadher

1997, Springer

• Constraint Handling Rules

Lehrbuch

Thom Frühwirth

2009, Cambridge University Press

c©Thom Frühwirth – University of Ulm Page 19 – SoSe 2019

Constraint Programming

Foundations from Logic

Good, too, Logic, of course; in itself, but not in fine

weather.

Arthur Hugh Clough, 1819-1861

Die Logik muß für sich selber sorgen.

Ludwig Wittgenstein, 1889-1951

c©Thom Frühwirth – University of Ulm Page 20 – SoSe 2019

Constraint Programming

First-Order Logic

Syntax – Language

• Alphabet

• Well-formed Expressions

Semantics – Meaning

• Interpretation

• Logical Consequence

Calculi – Derivation

• Inference Rules

• Transition Systems

c©Thom Frühwirth – University of Ulm Page 21 – SoSe 2019

Constraint Programming

Syntax of First-Order Logic

Alphabet

• P: predicate symbols: p, q, r, . . .

• F : function symbols: a, b, c, . . . , f, g, h, . . .

• V: countably infinite set of variables: X,Y, Z, . . .

• logic symbols:

– truth symbols: ⊥ (false), > (true)

– logical connectives: ¬, ∧, ∨, →
– quantors: ∀, ∃
– syntactic symbols: “(”,“)”, “,”

c©Thom Frühwirth – University of Ulm Page 22 – SoSe 2019

Constraint Programming

Signature Σ = (P,F) of a first-order language

• P: finite set of predicate symbols, each with arity n ∈ N

• F : finite set of function symbols, each with arity n ∈ N

Naming conventions:

• nullary, unary, binary, ternary for arities 0, 1, 2, 3

• constants: nullary function symbols

• propositions: nullary predicate symbols

c©Thom Frühwirth – University of Ulm Page 23 – SoSe 2019

Constraint Programming

Well-Formed Expressions

Term

Set of terms T (Σ,V):

• a variable from V, or

• a function term f(t1, . . . , tn), where f is an n-ary function

symbol from Σ and the arguments t1, . . . , tn are terms (n ≥ 0).

Examples (a/0, f/1, g/2):

• X

• a

• f(X)

• g(f(X), g(Y, f(a)))

c©Thom Frühwirth – University of Ulm Page 24 – SoSe 2019

Constraint Programming

Well-Formed Formula

Set of (well-formed) formulae F(Σ,V) = {A,B,C, . . . , F,G, . . .}:

• atomic formula (atom) p(t1, . . . , tn), where p is an n-ary

predicate symbol from Σ and the arguments t1, . . . , tn are

terms, or ⊥, or >, or

• negation ¬F of a formula F , or

• conjunction (F ∧ F ′), disjunction (F ∨ F ′), or implication

(F → F ′) between formulae F and F ′, or

• universally quantified formula ∀XF , or existentially quantified

formula ∃XF (X variable, F formula).

c©Thom Frühwirth – University of Ulm Page 25 – SoSe 2019

Constraint Programming

Example – Terms and Formulae

P = {mortal/1}, F = {socrates/0, father/1}, V = {X, . . . }

• Terms:

X, socrates, father(socrates), father(father(socrates)),

but not: father(X, socrates)

• Atomic Formulae:

mortal(X), mortal(socrates), mortal(father(socrates))

but not: mortal(mortal(socrates))

• Non-Atomic Formulae:

mortal(socrates) ∧ mortal(father(socrates))

∀Xmortal(X)→ mortal(father(X))

c©Thom Frühwirth – University of Ulm Page 26 – SoSe 2019

Constraint Programming

Free Variables

• quantified formula ∀XF or ∃XF binds variable X within scope

F

• variables not bound are called free

c©Thom Frühwirth – University of Ulm Page 27 – SoSe 2019

Constraint Programming

Example – Free Variables

Give the set of free variables for each braced part.

p(X) ∧
︷ ︸︸ ︷
∃Xp(X)︸ ︷︷ ︸

︷ ︸︸ ︷(
∀X p(X,Y)︸ ︷︷ ︸)
︸ ︷︷ ︸

∨ q(X)︸ ︷︷ ︸

c©Thom Frühwirth – University of Ulm Page 28 – SoSe 2019

Constraint Programming

Universal and Existential Closure of F

• universal closure ∀F of F :

∀X1∀X2 . . . ∀XnF

• existential closure ∃F of F :

∃X1∃X2 . . . ∃XnF

where X1, X2, . . . , Xn are all free variables of F

Naming Conventions:

• closed formula or sentence: does not contain free variables

• theory : set of sentences

• ground term or formula: does not contain any variables

c©Thom Frühwirth – University of Ulm Page 29 – SoSe 2019

Constraint Programming

Semantics of First-Order Logic

Interpretation I of Σ

• universe U : a non-empty set

• I(f) : Un → U : function for every n-ary function symbol f of Σ

• I(p) ⊆ Un: relation for every n-ary predicate symbol p of Σ

Variable Valuation for V w.r.t. I

• η : V → U : for every variable X of V into the universe U of I

(Σ signature of a first-order language, V set of variables)

c©Thom Frühwirth – University of Ulm Page 30 – SoSe 2019

Constraint Programming

Interpretation of Terms

ηI : T (Σ, V)→ U : for every term

ηI(X) := η(X) for a variable X

ηI(f(t1, . . . , tn)) := I(f)(ηI(t1), . . . , ηI(tn))

for an n-ary function symbol f and terms t1, . . . , tn

(Σ signature, I interpretation with universe U , η : V → U variable

valuation)

c©Thom Frühwirth – University of Ulm Page 31 – SoSe 2019

Constraint Programming

Interpretation of Formulae – Preliminaries

Given a variable valuation η : V → U . The function η[Y 7→ u] is

η[Y 7→ u](X) :=

η(X) if X 6= Y,

u if X = Y.

(V set of variables, X and Y variables in V, U universe, u in U)

c©Thom Frühwirth – University of Ulm Page 32 – SoSe 2019

Constraint Programming

Interpretation of Formulae

I interpretation of Σ, η variable valuation satisfy F written

I, η |= F :

• I, η |= > and I, η 6|= ⊥

• I, η |= p(t1, . . . , tn) iff (ηI(t1), . . . , ηI(tn)) ∈ I(p)

• I, η |= ¬F iff I, η 6|= F

• I, η |= F ∧ F ′ iff I, η |= F and I, η |= F ′

• I, η |= F ∨ F ′ iff I, η |= F or I, η |= F ′

• I, η |= F → F ′ iff I, η 6|= F or I, η |= F ′

• I, η |= ∀XF iff I, η[X 7→ u] |= F for all u ∈ U

• I, η |= ∃XF iff I, η[X 7→ u] |= F for some u ∈ U

c©Thom Frühwirth – University of Ulm Page 33 – SoSe 2019

Constraint Programming

Example – Interpretation

∀X(p(X, a, b)→ q(b,X))

. I1(.) I2(.)

U real things natural numbers

a ”food” 5

b ”Fritz the cat” 10

p ” gives to ” + >

q ” loves ” <

I1: ”Fritz the cat loves everybody who gives food to him.”

I2: ”10 is less than any X if X + 5 > 10.”

(counterexample: X = 6)

c©Thom Frühwirth – University of Ulm Page 34 – SoSe 2019

Constraint Programming

Model of F , Validity

• I model of F or I satisfies F , written I |= F :

I, η |= F for every variable valuation η

• I model of theory T : I model of each formula in T

Sentence S is

• valid : satisfied by every interpretation, i.e., I |= S for every I

• satisfiable: satisfied by some interpretation, i.e., I |= S for some

I

• unsatisfiable: not satisfied by any interpretation, i.e., I 6|= S for

every I

• falsifiable: not satisfied by some interpretation, i.e., I 6|= S for

some I

(Σ signature, I interpretation)

c©Thom Frühwirth – University of Ulm Page 35 – SoSe 2019

Constraint Programming

Example – Validity, Satisfiability, Falsifiable,

Unsatisfiability (1)

valid satisfiable falsifiable unsatisfiable

A ∨ ¬A

A ∧ ¬A

A→ ¬A

A→ (B → A)

A→ (A→ B)

A↔ ¬A

(A,B formulae)

c©Thom Frühwirth – University of Ulm Page 36 – SoSe 2019

Constraint Programming

Logical Consequence

• A sentence/theory T1 is a logical consequence of a

sentence/theory T2, written T2 |= T1, if every model of T2 is

also a model of T1, i.e. I |= T2 implies I |= T1.

• Two sentences or theories are equivalent (|=|) if they are logical

consequences of each other.

• |= is undecidable [Church]

Example:

¬(A ∧B) |=| ¬A ∨ ¬B (de Morgan)

c©Thom Frühwirth – University of Ulm Page 37 – SoSe 2019

Constraint Programming

Example – Tautology Laws (1)

Dual laws hold for ∧ and ∨ exchanged.

• A |=| ¬¬A (double negation)

• ¬(A ∧B) |=| ¬A ∨ ¬B (de Morgan)

• A ∧A |=|A (idempotence)

• A ∧ (A ∨B) |=|A (absorption)

• A ∧B |=|B ∧A (commutativity)

• A ∧ (B ∧ C) |=| (A ∧B) ∧ C (associativity)

• A ∧ (B ∨ C) |=| (A ∧B) ∨ (A ∧ C) (distributivity)

c©Thom Frühwirth – University of Ulm Page 38 – SoSe 2019

Constraint Programming

Example – Tautology Laws (2)

• A→ B |=| ¬A ∨B (implication)

• A→ B |=| ¬B → ¬A (contraposition)

• (A→ (B → C)) |=| (A ∧B)→ C

• ¬∀XA |=| ∃X¬A

• ¬∃XA |=| ∀X¬A

• ∀X(A ∧B) |=| ∀XA ∧ ∀XB

• ∃X(A ∨B) |=| ∃XA ∨ ∃XB

• ∀XB |=|B |=| ∃XB (with X not free in B)

c©Thom Frühwirth – University of Ulm Page 39 – SoSe 2019

Constraint Programming

Example – Logical Consequence

F G F |= G or F 6|= G

A A ∨B

A A ∧B

A,B A ∨B

A,B A ∧B

A ∧B A

A ∨B A

A, (A→ B) B

Note: I is a model of {A,B}, iff I |= A and I |= B.

c©Thom Frühwirth – University of Ulm Page 40 – SoSe 2019

Constraint Programming

Example – Logical Consequence, Validity, Unsatisfiability

The following statements are equivalent:

1. F1, . . . , Fk |= G

(G is a logical consequence of F1, . . . , Fk)

2.
(∧k

i=1 Fi

)
→ G is valid.

3.
(∧k

i=1 Fi

)
∧ ¬G is unsatisfiable.

Note: F 6|= G does not imply F |= ¬G.

c©Thom Frühwirth – University of Ulm Page 41 – SoSe 2019

Constraint Programming

Logic and Calculus

logic: formal language for expressions

• syntax : ”spelling rules” for expressions

• semantics: meaning of expressions (logical consequence |=)

• calculus: set of given formulae and syntactic rules for

manipulation of formulae to perform proofs that can be

mechanized

c©Thom Frühwirth – University of Ulm Page 42 – SoSe 2019

Constraint Programming

Resolution Calculus

[Robinson 1965]

• calculus that can be easily implemented

• based on Herbrand interpretation

• uses clausal normal form and unification

• used as execution mechanism of (constraint) logic programming

c©Thom Frühwirth – University of Ulm Page 43 – SoSe 2019

Constraint Programming

Clausal Normal Form

• literal : atom (positive literal) or negation of atom (negative

literal)

• complementary literals: positive literal L and its negation ¬L

• clause (in disjunctive normal form): formula of the form∨n
i=1 Li where Li are literals.

– empty clause (empty disjunction): n = 0: ⊥

c©Thom Frühwirth – University of Ulm Page 44 – SoSe 2019

Constraint Programming

Clauses and Literals (cont)

• implication form of the clause:

F =
n∧

j=1

Bj︸ ︷︷ ︸
body

→
m∨

k=1

Hk︸ ︷︷ ︸
head

for

F =
n+m∨
i=1

Li with Li =

¬Bi for i = 1, . . . , n

Hi−n for i = n+ 1, . . . , n+m

for atoms Bj and Hk

• closed clause: sentence ∀x1, . . . , xnC with C clause

• clausal form of theory: consists of closed clauses

c©Thom Frühwirth – University of Ulm Page 45 – SoSe 2019

Constraint Programming

Normalization steps

Any theory can be transformed into clausal form as follows

• Convert every formula into an equivalent formula in negation

normal form using tautology laws that move negation inwards.

• Perform Skolemization in order to eliminate all existential

quantifiers by replacing existentially quantified variables with

function terms.

• Move conjunctions and universal quantifiers outwards by

applying the distributive tautology laws.

c©Thom Frühwirth – University of Ulm Page 46 – SoSe 2019

Constraint Programming

Herbrand Theorem

Recall: The formula A is valid if I, η |= A for every interpretation I

and every valuation η.

Jacques Herbrand (1908-1931) discovered that there is a universal

domain together with a universal interpretation, s.t. that any

universally valid formula (in clausal normal form) is valid in any

interpretation. Therefore, only interpretations in the Herbrand

universe need to be checked (provided the Herbrand universe is

infinite).

c©Thom Frühwirth – University of Ulm Page 47 – SoSe 2019

Constraint Programming

Herbrand Interpretation

• Herbrand universe: set T (Σ, ∅) of ground terms

• for every n-ary function symbol f of Σ, the assigned function

I(f) maps a tuple (t1, . . . , tn) of ground terms to the ground

term “f(t1, . . . , tn)”.

Herbrand model of sentence/theory: Herbrand interpretation

satisfying sentence/theory.

Herbrand base for signature Σ: set of ground atoms in F(Σ, ∅), i.e.,

{p(t1, . . . , tn) | p is an n-ary predicate symbol of Σ and t1, . . . , tn ∈
T (Σ, ∅)}.

c©Thom Frühwirth – University of Ulm Page 48 – SoSe 2019

Constraint Programming

Example – Herbrand Interpretation

For the formula ∀X∀Y.p(X, a) ∧ q(X, f(Y)) the (infinite, as there is

a constant and a function symbol) Herbrand domain is

{a, f(a), f(f(a)), f(f(f(a))), . . . }.

For the formula F ≡ ∃X∃Y.p(X, a) ∧ ¬p(Y, a) the Herbrand

universe is {a} and F is unsatisfiable in the Herbrand universe as

p(a, a) ∧ ¬p(a, a) is false, i.e., there is no Herbrand model.

However, if we add another element b we have p(a, a) ∧ ¬p(b, a).

So F is satisfiable for any interpretation whose universe has

cardinality greater than 1.

c©Thom Frühwirth – University of Ulm Page 49 – SoSe 2019

Constraint Programming

Unification

Substitution to a Term

• function σ : V → T (Σ,V ′)

• finite: V finite, written as {X1 7→ t1, . . . , Xn 7→ tn} with

distinct variables Xi and terms ti

• identity substitution ε = ∅

• written as postfix operator, application from left to right in

composition

• σ : T (Σ,V)→ T (Σ,V ′)
implicit homomorphic extension, i.e.,

f(t1, . . . , tn)σ := f(t1σ, . . . , tnσ).

Example:

σ = {X 7→ 2, Y 7→ 5}: (X ∗ (Y + 1))σ = 2 ∗ (5 + 1)

c©Thom Frühwirth – University of Ulm Page 50 – SoSe 2019

Constraint Programming

Examples – Substitution to a Formula

• σ = {X 7→ Y,Z 7→ 5}: (X ∗ (Z + 1))σ = Y ∗ (5 + 1)

• σ = {X 7→ Y, Y 7→ Z} (no idempotence)

p(X)σ = p(Y) 6= p(X)σσ = p(Z)

• σ = {X 7→ Y }, τ = {Y 7→ 2} (no commutativity)

(X ∗ (Y + 1))στ = (Y ∗ (Y + 1))τ = (2 ∗ (2 + 1))

(X ∗ (Y + 1))τσ = (X ∗ (2 + 1))σ = (Y ∗ (2 + 1))

Dealing with Quantifiers:

• σ = {X 7→ Y }: (∀Xp(3))σ = ∀X ′p(3)

• σ = {X 7→ Y }: (∀Xp(X))σ = ∀X ′p(X ′),
(∀Xp(Y))σ = ∀X ′p(Y)

• σ = {Y 7→ X}: (∀Xp(X))σ = ∀X ′p(X ′),
(∀Xp(Y))σ = ∀X ′p(X)

c©Thom Frühwirth – University of Ulm Page 51 – SoSe 2019

Constraint Programming

Instance, Variable Renaming, Variants

Logical expressions are terms, formulae, substitutions or tuples

thereof.

• e instance of e′: e = e′σ

• e′ more general than e: e is instance of e′

• e and e′ variants (identical modulo variable renaming):

e = e′σ and e′ = eτ (instances of each other)

σ and τ are called variable renamings

(e, e′ logical expressions, σ, τ substitutions)

c©Thom Frühwirth – University of Ulm Page 52 – SoSe 2019

Constraint Programming

Unification

• unifier for e1, e2: e1σ = e2σ

• e1, e2 unifiable: unifier exists

• most general unifier (mgu) σ for e1, e2: every unifier τ for e1, e2

is instance of σ, i.e., τ = σρ for some ρ

(e1, e2 expressions, σ, τ , ρ substitutions)

c©Thom Frühwirth – University of Ulm Page 53 – SoSe 2019

Constraint Programming

Most General Unifier by Hand

Given two logical expressions to unify. Return mgu or failure.

• Start with empty subsitution ε. Scan expressions

simultaneously from left to right according to their structure.

• Check the syntactic equivalence of the symbols encountered:

Repeat until no more expression to process

– identical function/predicate symbols with the same arity :

continue with arguments

– different symbols: halt with failure

– identical variables: continue

– one expression is a variable:

∗ variable occurs in other expression: halt with failure

∗ add corresponding substitution

∗ apply the new substitution to the logical expressions

c©Thom Frühwirth – University of Ulm Page 54 – SoSe 2019

Constraint Programming

Example – Most General Unifier (mgu)

to unify current substitution, remarks

p(X, f(a)) vs. p(a, f(X)) ε, start

p/2 vs. p/2 identical symbols, continue w. arguments

X vs. a {X 7→ a}, substitution added

f(X){X 7→ a} = f(a) apply new subsitution

f(a) vs. f(a) identical symbols, continue w. arguments

a vs. a identical symbols, no more expressions

So mgu is {X 7→ a}.

What about p(X, f(a), Y) = p(a, f(X))?

What about p(X, f(b)) = p(a, f(X))?

c©Thom Frühwirth – University of Ulm Page 55 – SoSe 2019

Constraint Programming

Examples – Most General Unifier

s t

f g failure

a a ε

X a {X 7→ a}
X Y {X 7→ Y }, but also {Y 7→ X}
f(a,X) f(Y, b) {Y 7→ a,X 7→ b}
f(g(a,X), Y) f(c,X) failure

f(g(a,X), h(c)) f(g(a, b), Y) {X 7→ b, Y 7→ h(c)}
f(g(a,X), h(Y)) f(g(a, b), Y) failure

c©Thom Frühwirth – University of Ulm Page 56 – SoSe 2019

Constraint Programming

Inference Rules

• Given a set of formulae

F1, . . . , Fn

F

– premises F1, . . . , Fn with conclusion F

– if premises are given, conclusion is added to the formulae

– this is called a derivation step

– derivation: sequence of derivation steps with conclusion

taken as premises for next step

• rule application usually nondeterministic

c©Thom Frühwirth – University of Ulm Page 57 – SoSe 2019

Constraint Programming

Resolution Calculus – Inference Rules

Works by contradiction: Theory united with negated consequence

must be unsatisfiable (“derive empty clause”).

Axiom

⊥ empty clause (i.e. the elementary contradiction)

Resolution Step

R ∨A R′ ∨ ¬A′

(R ∨R′)σ
σ is a most general unifier

for the atoms A and A′

Factoring

R ∨ L ∨ L′

(R ∨ L)σ
σ is a most general unifier for the literals L and L′

R ∨A and R′ ∨ ¬A′ have different variables (otherwise rename

them apart)

c©Thom Frühwirth – University of Ulm Page 58 – SoSe 2019

Constraint Programming

Resolution – Remarks

• resolution rule:

– two clauses C and C ′ instantiated s.t. literal from C and

literal from C ′ complementary

– two instantiated clauses are combined into a new clause

– resolvent added

• factoring rule:

– clause C instantiated, s.t. two literals become equal

– remove one literal

– factor added

c©Thom Frühwirth – University of Ulm Page 59 – SoSe 2019

Constraint Programming

Example – Resolution Calculus

Resolution:
p(a,X) ∨ q(X) ¬p(a, b) ∨ r(X)

(q(X) ∨ r(X)){X 7→ b}

Factoring:
p(X) ∨ p(b)
p(X){X 7→ b}

c©Thom Frühwirth – University of Ulm Page 60 – SoSe 2019

Constraint Programming

Refined Calculus

To define Operational (Procedural) Semantics of programming

languages.

Triple (Σ,≡, T)

• Σ: signature for a first-order logic language

• ≡: congruence (equivalence relation) on states

• T = (S, 7→): simple state transition system

states S represent logical expressions over the signature Σ

c©Thom Frühwirth – University of Ulm Page 61 – SoSe 2019

Constraint Programming

Simple State Transition System

• (S, 7→)

– S set of states

– 7→ binary relation over states: transition relation

– (state) transition from S1 to S2 possible if (some give)

condition holds, written S1 7→ S2

• distinguished subsets of S: initial and final states

• S1 7→ S2 7→ . . . 7→ Sn derivation (computation)

• S 7→∗ S′ reflexive-transitive closure of 7→

Reduction is synonym for transition

c©Thom Frühwirth – University of Ulm Page 62 – SoSe 2019

Constraint Programming

Transition Rules

IF Condition

THEN S 7→ S′.

• (state) transition (reduction, derivation step, computation)

from S to S′ possible if the condition Condition holds

• straightforward to concretize a calculus (“`”) into a state

transition system (“ 7→”)

c©Thom Frühwirth – University of Ulm Page 63 – SoSe 2019

Constraint Programming

Congruence

• states which are considered equivalent for purpose of

computation

• congruence instead of modeling with additional transition rules

• formally congruence is equivalence relation:

(Reflexivity) A ≡ A
(Symmetry) If A ≡ B then B ≡ A
(Transitivity) If A ≡ B and B ≡ C then A ≡ C

Example:

(X = 3) ≡ (3 = X)

c©Thom Frühwirth – University of Ulm Page 64 – SoSe 2019

Constraint Programming

Congruence

Commutativity: G1 ∧G2 ≡ G2 ∧G1

Associativity: G1 ∧ (G2 ∧G3) ≡ (G1 ∧G2) ∧G3

Identity: G ∧ > ≡ G

Absorption: G ∧ ⊥ ≡ ⊥

derived from tautology laws of predicate logic

c©Thom Frühwirth – University of Ulm Page 65 – SoSe 2019

Constraint Programming

Constraint Programming Languages

Preliminaries – Syntax and Semantics

Syntax

• extended Backus-Naur form (EBNF) grammar

Name: G,H ::= A B, Condition

– capital letters: syntactical entities

– symbols G and H defined : with name Name.

– Condition holds: G and H can be of the form A or B

c©Thom Frühwirth – University of Ulm Page 66 – SoSe 2019

Constraint Programming

Semantics

Operational (Procedural) Semantics

State transition system (refined calculus)

Declarative Semantics

Logical reading (meaning) of program as theory (set of formulae of

first-order logic)

Operational vs. Declarative Semantics

• Soundness

• Completeness

c©Thom Frühwirth – University of Ulm Page 67 – SoSe 2019

Constraint Programming

Logic Programming

A logic program is a set of axioms, or rules, defining

relationships between objects. A computation of a logic

program is a deduction of consequences of the program. A

program defines a set of consequences, which is its

meaning. The art of logic programming is constructing

concise and elegant programs that have desired meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.

c©Thom Frühwirth – University of Ulm Page 68 – SoSe 2019

Constraint Programming

LP Syntax

Only clauses with at most one positive literal (Horn clauses).

• goal : G

– empty goal > (top) or ⊥ (bottom), or

– atom, or

– conjunction of goals

• (definite) clause: A← G

– head A: atom

– body G: goal

• Naming conventions

– query : clause of form ⊥ ← G, abbreviated to G

– fact : clause of form A← >, abbreviated to A

– rule: otherwise

• (logic) program: finite set of definite clauses

c©Thom Frühwirth – University of Ulm Page 69 – SoSe 2019

Constraint Programming

LP Calculus – Syntax Summary EBNF Grammar

Atom: A,B ::= p(t1, . . . , tn), ti terms, n ≥ 0

Goal : G,H ::= > ⊥ A G ∧H
Clause: K ::= A← G

Program: P ::= K1 . . .Km, m ≥ 0

c©Thom Frühwirth – University of Ulm Page 70 – SoSe 2019

Constraint Programming

LP Calculus – State Transition System

• state <G, θ>

– G: goal

– θ: substitution

• initial state <G, ε>

• successful final state <>, θ>

• failed final state <⊥, ε>

c©Thom Frühwirth – University of Ulm Page 71 – SoSe 2019

Constraint Programming

Derivations, Goals

Derivation

• successful : its final state is successful

• failed : its final state is failed

• infinite: if there are an infinite sequence of states and

transitions S1 7→ S2 7→ S3 7→ . . .

Goal G

• successful : has a successful derivation starting with <G, ε>

• finitely failed : has only failed derivations starting with <G, ε>

c©Thom Frühwirth – University of Ulm Page 72 – SoSe 2019

Constraint Programming

Logical Reading, Answer

• logical reading of <H, θ>: ∃X̄(Hθ)

– where<G, ε> 7→∗ <H, θ>
– X̄: variables which occur in Hθ but not in G

• (computed) answer of a goal G:

substitution θ with successful derivation <G, ε> 7→∗ <>, θ>

G is also called initial goal or query

c©Thom Frühwirth – University of Ulm Page 73 – SoSe 2019

Constraint Programming

Operational Semantics

LP Transition Rules

Unfold

If (B ← H) is a fresh variant of a clause in P

and β is the most general unifier of B and Aθ

then <A ∧G, θ> 7→ <H ∧G, θβ>

Failure

If there is no clause (B ← H) in P

with a unifier of B and Aθ

then <A ∧G, θ> 7→ <⊥, ε>

c©Thom Frühwirth – University of Ulm Page 74 – SoSe 2019

Constraint Programming

Non-determinism

The Unfold transition exhibits two kinds of non-determinism.

• don’t-care non-determinism:

– any atom in A ∧G can be chosen as the atom A according

to the congruence defined on states

– affects length of derivation (infinite in the worst case)

• don’t-know non-determinism:

– any clause (B ← H) in P for which B and Aθ are unifiable

can be chosen

– determines the computed answer of derivation

c©Thom Frühwirth – University of Ulm Page 75 – SoSe 2019

Constraint Programming

SLD Resolution

(Selective Linear Definite Clause Resolution)

• selection strategy : use textual order of clauses and atoms in a

program

• (chronological) backtracking (backtrack search)

• left-to-right, depth-first exploration of the search tree

• efficient implementation using a stack-based approach

• can get trapped in infinite derivations

(but breadth-first search too inefficient)

c©Thom Frühwirth – University of Ulm Page 76 – SoSe 2019

Constraint Programming

Example - Accessibility in Directed Acyclic Graph

a

��

// c

��
b // d // e

edge(a,b) ← > (e1)

edge(a,c) ← > (e2)

edge(b,d) ← > (e3)

edge(c,d) ← > (e4)

edge(d,e) ← > (e5)

path(Start,End) ← edge(Start,End) (p1)

path(Start,End) ← edge(Start,Node) ∧ path(Node,End) (p2)

c©Thom Frühwirth – University of Ulm Page 77 – SoSe 2019

Constraint Programming

Example - Accessibility in DAG (cont)

path(Start,End) ← edge(Start,End) (p1)

path(Start,End) ← edge(Start,Node) ∧ path(Node,End) (p2)

a

��

// c

��
b // d // e

With first rule p1 for path selected:

<path(b, Y), ε>

7→Unfold (p1) <edge(S, E), {S← b, E← Y}>
7→Unfold (e3) <>, {S← b, E← d, Y← d}>

Answer is {S← b, E← d, Y← d}.

c©Thom Frühwirth – University of Ulm Page 78 – SoSe 2019

Constraint Programming

Example - Accessibility in DAG (cont)

path(Start,End) ← edge(Start,End) (p1)

path(Start,End) ← edge(Start,Node) ∧ path(Node,End) (p2)

a

��

// c

��
b // d // e

With second rule p2 for path selected:

<path(b, Y), ε>

7→Unfold (p2) <edge(S, N) ∧ path(N, E), {S← b, E← Y}>
7→Unfold (e3) <path(N, E), {S← b, E← Y, N← d}>
7→Unfold (p1) <edge(N, E), {S← b, E← Y, N← d}>
7→Unfold (e5) <>, {S← b, E← e, N← d, Y← e}>

c©Thom Frühwirth – University of Ulm Page 79 – SoSe 2019

Constraint Programming

Example - Accessibility in DAG (cont)

path(Start,End) ← edge(Start,End) (p1)

path(Start,End) ← edge(Start,Node) ∧ path(Node,End) (p2)

Partial search tree:

<path(b, Y), ε>

p1

yy

p2

((
<edge(S, E), {S← b, E← Y}>

e3

��

<edge(S, N) ∧ path(N, E), {S← b, E← Y}>

... ...

��<>, {S← b, E← d, Y← d}> . . .

c©Thom Frühwirth – University of Ulm Page 80 – SoSe 2019

Constraint Programming

Example - Accessibility in DAG (cont)

a

��

// c

��
b // d // e

With the first rule:

<path(f, g), ε>

7→Unfold (p1) <edge(S, E), {S← f, E← g}>
7→Failure <⊥, ε>

With the second rule:

<path(f, g), ε>

7→Unfold (p2) <edge(S, N) ∧ path(N, E), {S← f, E← g}>
7→Failure <⊥, ε>

c©Thom Frühwirth – University of Ulm Page 81 – SoSe 2019

Constraint Programming

Declarative Semantics

• implication (G→ A): Horn clause

• logical reading of a program P : universal closure of the

conjunction of the clauses of P , written P→

• only positive information can be derived

• “complete” P→:

– keep necessary conditions (implications)

– add corresponding sufficient conditions (implications in the

other direction)

Example:

In DAG with nodes a, b, c, d, e:

P→ 6|= path(f,g), P→ 6|= ¬path(f,g)
In completed logical reading, ¬path(f,g) is a logical consequence.

c©Thom Frühwirth – University of Ulm Page 82 – SoSe 2019

Constraint Programming

Completion of P : P↔

For each p/n in P add to P↔ the formula

p(t̄1) ← G1

...
...

p(t̄m) ← Gm,

∀X̄ (p(X̄) ↔ ∃Ȳ1 (t̄1
.
= X̄ ∧G1) ∨

... ∨
∃Ȳm (t̄m

.
= X̄ ∧Gm)),

• X̄: pairwise distinct fresh variables

• t̄i: terms

• Ȳi: variables occurring in Gi and ti

Clark’s completion of P : P↔ ∪ CET

c©Thom Frühwirth – University of Ulm Page 83 – SoSe 2019

Constraint Programming

Example – Logical Reading

a

��

// c

��
b // d // e

For the edge/2 predicates add to P↔ the formula

edge(a,b) ← >
...

edge(d,e) ← >

∀X1X2 (edge(X1, X2)↔
(a=̇X1, b=̇X2) ∨
... ∨
(d=̇X1, e=̇X2))

c©Thom Frühwirth – University of Ulm Page 84 – SoSe 2019

Constraint Programming

Example – Logical Reading (2)

For the path/2 predicates add to P↔ the formula

path(Start,End) ←
edge(Start,End)

path(Start,End) ←
edge(Start,Node) ∧
path(Node,End)

∀X1X2(path(X1, X2)↔
∃Y11Y12 (Y11=̇X1, Y12=̇X2

∧ edge(Y11, Y12))

∨
∃Y21Y22Y23 (Y21=̇X1, Y22=̇X2

∧ edge(Y21, Y23)

∧ path(Y23, Y22))

c©Thom Frühwirth – University of Ulm Page 85 – SoSe 2019

Constraint Programming

Clark’s Equality Theory (CET)

Universal closure of the formulae (axiom scheme)

Reflexivity (> → X=̇X)

Symmetry (X=̇Y → Y =̇X)

Transitivity (X=̇Y ∧ Y =̇Z → X=̇Z)

Compatibility (X1=̇Y1∧. . .∧Xn=̇Yn → f(X1, . . . , Xn)=̇f(Y1, . . . , Yn))

Decomposition (f(X1, . . . , Xn)=̇f(Y1, . . . , Yn)→ X1=̇Y1∧. . .∧Xn=̇Yn)

Contradiction

(Clash)
(f(X1, . . . , Xn)=̇g(Y1, . . . , Ym)→ ⊥) if f 6=g or n 6=m

Acyclicity (X=̇t→ ⊥) if t is function term and X appears in t

(Σ: signature with infinitely many function symbols, including at

least one constant)

c©Thom Frühwirth – University of Ulm Page 86 – SoSe 2019

Constraint Programming

Acyclicity Examples

X=̇X is unifiable but not :

• X=̇f(X)

• X=̇p(A, f(X, a))

• X=̇Y ∧X=̇f(Y)

Unifiable in CET

Terms s and t are unifiable if and only if

CET |= ∃(t=̇s).

c©Thom Frühwirth – University of Ulm Page 87 – SoSe 2019

Constraint Programming

Soundness and Completeness

Successful derivations

• Soundness:

If θ is a computed answer of G, then P↔ ∪ CET |= ∀Gθ.

• Completeness:

If P↔ ∪ CET |= ∀Gθ, then a computed answer σ of G exists,

such that θ = σβ.

(There may also be failed or infinite derivations.)

(P logic program, P↔ ∪ CET Clark’s completion, G goal, θ

substitution)

c©Thom Frühwirth – University of Ulm Page 88 – SoSe 2019

Constraint Programming

Failed Derivations

• Fair Derivation:

Either fails or each atom appearing in the derivation is selected

after finitely many reductions.

• Soundness and Completeness:

Any fair derivation starting with <G, ε> fails finitely if and

only if

P↔ ∪ CET |= ¬∃G.

Remark: SLD resolution not fair. Derivation may be infinite.

(P logic program, G goal)

c©Thom Frühwirth – University of Ulm Page 89 – SoSe 2019

Constraint Programming

Constraint Logic Programming (CLP)

• Constraint Satisfaction Problems (CSP)

– artificial intelligence (1970s)

– e.g. X∈{1, 2} ∧ Y ∈{1, 2} ∧ Z∈{1, 2} ∧X=Y ∧X 6=Z ∧ Y >Z

• Constraint Logic Programming (CLP)

– developed in the mid-1980s

– combination of two declarative paradigms:

constraint solving and logic programming

– together more expressive, flexible, efficient

– LP languages: arbitrary predicates, non-deterministic

(search)

– constraint solvers: special predicates, deterministic

(efficient)

c©Thom Frühwirth – University of Ulm Page 90 – SoSe 2019

Constraint Programming

Early history of constraint-based and logic programming

1963 I. Sutherland, Sketchpad, graphic system for geometric drawing

1970 U. Montanari, Pisa, Constraint networks

1970 R.E. Fikes, REF-ARF, language for integer linear equations

1972 A. Colmerauer, U. Marseille, and R. Kowalski, IC London, Prolog

1977 A.K. Mackworth, Constraint networks algorithms

1978 J.-L. Lauriere, Alice, language for combinatorial problems

1979 A. Borning, Thinglab, interactive graphics

1980 G.L. Steele, Constraints, first constraint-based language, in LISP

1982 A. Colmerauer, Prolog II, U. Marseille, equality constraints

1984 Eclipse Prolog, ECRC Munich, later IC-PARC London

1985 SICStus Prolog, Swedish Institute of Computer Science (SICS)

1987 SWI Prolog, J. Wielemaker, U. Amsterdam

c©Thom Frühwirth – University of Ulm Page 91 – SoSe 2019

Constraint Programming

Early history of constraint-based programming

(1987/1988)

1987 H. Ait-Kaci, U. Austin, Life, equality constraints

1987 J. Jaffar and J.L. Lassez, CLP(X) - Scheme, Monash U. Melbourne

1987 J. Jaffar, CLP(<), Monash U. Melbourne, linear polynomials

1988 P. v. Hentenryck, CHIP, ECRC Munich, finite domains, Booleans

1988 P. Voda, Trilogy, Vancouver, integer arithmetics

1988 W. Older, BNR-Prolog, Bell-Northern Research Ottawa, intervals

1988 A. Aiba, CAL, ICOT Tokyo, non-linear equation systems

1988 W. Leler, Bertrand, term rewriting for defining constraints

1988 A. Colmerauer, Prolog III, U. Marseille, list constraints and more

c©Thom Frühwirth – University of Ulm Page 92 – SoSe 2019

Constraint Programming

Constraints

Constraints are special predicates of general interest (e.g.

arithmetic).

• signature augmented with constraint symbols

• consistent first-order constraint theory (CT) describes

constraints

• constraints include true and false as well as syntactic equality

=̇ (by including CET into CT)

• constraints handled by predefined, given built-in constraint

solver

c©Thom Frühwirth – University of Ulm Page 93 – SoSe 2019

Constraint Programming

CLP Syntax

• atom: p(t1, . . . , tn), with n-ary predicate symbol p/n

• atomic constraint : c(t1, . . . , tn), with n-ary constraint symbol

c/n

• constraint :

– atomic constraint, or conjunction of constraints

• goal :

– > (top), or ⊥ (bottom), or

– atom, or an atomic constraint, or

– conjunction of goals

• (CL) clause: A← G, with atom A (head) and goal G (body)

• CL program: finite set of CL clauses

c©Thom Frühwirth – University of Ulm Page 94 – SoSe 2019

Constraint Programming

CLP Syntax Summary – EBNF Grammar

Atom: A,B ::= p(t1, . . . , tn), n ≥ 0

Constraint : C,D ::= c(t1, . . . , tn) C ∧D, n ≥ 0

Goal : G,H ::= > ⊥ A C G ∧H
CL Clause: K ::= A← G

CL Program: P ::= K1 . . .Km, m ≥ 0

c©Thom Frühwirth – University of Ulm Page 95 – SoSe 2019

Constraint Programming

CLP Example – Min

The minimum of X and Y is Z.

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

Constraints with usual meaning

• ≤ total order

• .
= syntactic equality

c©Thom Frühwirth – University of Ulm Page 96 – SoSe 2019

Constraint Programming

CLP State Transition System

• state <G,C>: G goal (store), C constraint (store)

• initial state: <G, true>

• successful final state: <>, C> and C is different from false

• failed final state: <G, false>

• successful and failed derivations and goals: as in LP calculus

c©Thom Frühwirth – University of Ulm Page 97 – SoSe 2019

Constraint Programming

CLP Derivations, Goals

Derivation is

• successful : its final state is successful

• failed : its final state is failed

• infinite: if there are an infinite sequence of states and

transitions S1 7→ S2 7→ S3 7→ . . .

Goal G is

• successful : it has a successful derivation starting with

<G, true>

• finitely failed : it has only failed derivations starting with

<G, true>

c©Thom Frühwirth – University of Ulm Page 98 – SoSe 2019

Constraint Programming

CLP Operational Semantics

Unfold

If (B ← H) is a fresh variant of a clause in P

and CT |= ∃ ((B
.
=A) ∧ C)

then <A ∧G,C> 7→ <H ∧G, (B .
=A) ∧ C>

Failure

If there is no clause (B ← H) in P

with CT |= ∃ ((B
.
=A) ∧ C)

then <A ∧G,C> 7→ <⊥, false>

Solve

If CT |= ∀ ((C ∧D1)↔ D2)

then <C ∧G,D1> 7→ <G,D2>

c©Thom Frühwirth – University of Ulm Page 99 – SoSe 2019

Constraint Programming

CLP Unfold – Comparison with LP

Unfold

If (B ← H) is a fresh variant of a clause in P

and CT |= ∃ ((B
.
=A) ∧ C)

then <A ∧G,C> 7→ <H ∧G, (B .
=A) ∧ C>

Generalization of logic programming (LP)

• most general unifier (mgu substitution) in LP replaced in CLP

by equality constraint between B and A in context of

constraint store C, add equality constraint to store C

((B=̇A): shorthand for equating arguments of B and A pairwise)

c©Thom Frühwirth – University of Ulm Page 100 – SoSe 2019

Constraint Programming

CLP Solve

Solve

If CT |= ∀ ((C ∧D1)↔ D2)

then <C ∧G,D1> 7→ <G,D2>

• form of simplification depends on constraint system and its

constraint solver

• try to simplify inconsistent constraints to false

• failed final state can be reached via Solve

c©Thom Frühwirth – University of Ulm Page 101 – SoSe 2019

Constraint Programming

CLP State Transition System (vs. LP)

• LP : accumulate and compose substitutions

CLP : accumulate and simplify constraints

• like substitutions, constraints never removed from constraint

store (information increases monotonically during derivations)

• like in LP, two degrees of non-determinism in the calculus

(selecting the goal and selecting the clause)

• like in LP, search trees (mostly SLD resolution)

c©Thom Frühwirth – University of Ulm Page 102 – SoSe 2019

Constraint Programming

CLP as Extension to LP

• derivation in LP can be expressed as CLP derivations:

– LP : substitution {X1 7→t1, . . . , Xn 7→tn}
– CLP : equality constraints: X1

.
=t1 ∧ . . . ∧Xn

.
=tn

• CLP generalizes form of answers.

– LP answer : substitution

– CLP answer : constraint

c©Thom Frühwirth – University of Ulm Page 103 – SoSe 2019

Constraint Programming

CLP Example – Min

The minimum of X and Y is Z.

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

Constraints with usual meaning

• ≤ total order

• .
= syntactic equality

c©Thom Frühwirth – University of Ulm Page 104 – SoSe 2019

Constraint Programming

CLP Example – Goal min(1,2,C)

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

<min(1, 2, C), true>

7→Unfold (c1) 〈X≤Y ∧ X
.
=Z, 1

.
=X ∧ 2

.
=Y ∧ C

.
=Z〉

7→Solve 〈>, C
.
=1〉 (restricted to variables of initial state)

Using clause (c2) leads to inconsistent constraint store

2≤1 ∧ 2 .=C, the derivation fails.

c©Thom Frühwirth – University of Ulm Page 105 – SoSe 2019

Constraint Programming

CLP Example – Search Tree for min(1,2,C)

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

<min(1, 2, C), true>

ww ''
<X≤Y ∧ X .=Z, 1

.
=X ∧ 2 .=Y ∧ C .=Z>

��

<Y≤X ∧ Y .=Z, 1
.
=X ∧ 2 .=Y ∧ C .=Z>

��
<>, C .=1> <>, false>

c©Thom Frühwirth – University of Ulm Page 106 – SoSe 2019

Constraint Programming

CLP Example – Min (More Derivations)

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

• Goal min(A,2,1):

<min(A, 2, 1), true>

7→Unfold (c1) 〈X≤Y ∧ X
.
=Z, A

.
=X ∧ 2

.
=Y ∧ 1

.
=Z〉

7→Solve 〈>, A
.
=1〉

but fails with (c2).

• min(A,2,2) has answer A
.
=2 for (c1), and 2 ≤ A for (c2)

• min(A,2,3) fails

c©Thom Frühwirth – University of Ulm Page 107 – SoSe 2019

Constraint Programming

CLP Example – Min (More Derivations 2)

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

• min(A,A,B) using (c1) (same answer with (c2))

<min(A, A, B), true>

7→Unfold (c1)〈X≤Y ∧ X
.
=Z, A

.
=X ∧ A

.
=Y ∧ B

.
=Z〉

7→Solve 〈>, A
.
=B〉

• General goal min(A,B,C) ∧ A≤B
– using (c1): answer A=̇C ∧ A≤B
– using (c2): answer A=̇C ∧ A=̇B (more specific)

• min(A,B,C) ?

c©Thom Frühwirth – University of Ulm Page 108 – SoSe 2019

Constraint Programming

CLP Answer Constraint

• logical reading of a state <H,C>: ∃X̄(H ∧ C)

– <G, true> 7→∗ <H,C>
– X̄: variables which occur in H or C but not in G

• answer (constraint) of a goal G:

logical reading of final state of derivation starting with

<G, true>

Answer constraints of successful and failed final states:

• 〈>, C〉 is ∃X̄(> ∧ C), i.e. ∃X̄C

• 〈G, false〉 is ∃X̄(G ∧ false), i.e. false

c©Thom Frühwirth – University of Ulm Page 109 – SoSe 2019

Constraint Programming

CLP Example – Min (Logical Reading)

min(X,Y,Z) ← X≤Y ∧ X
.
=Z (c1)

min(X,Y,Z) ← Y≤X ∧ Y
.
=Z (c2)

∀X1X2X3

(
(min(X1, X2, X3)↔

(∃Y11Y12Y13 Y11=̇X1, Y12=̇X2, Y13=̇X3 ∧ Y11 ≤ Y12 ∧ Y11=̇Y13) ∨

(∃Y21Y22Y23 Y21=̇X1, Y22=̇X2, Y23=̇X3 ∧ Y22 ≤ Y21 ∧ Y22=̇Y23))
)

In short:

∀X1X2X3

(
min(X1, X2, X3)↔ (X1 ≤ X2∧X1=̇X3)∨(X2 ≤ X1∧X2=̇X3)

)

c©Thom Frühwirth – University of Ulm Page 110 – SoSe 2019

Constraint Programming

CLP Declarative Semantics of P

Logical Reading: Union of P↔ with a constraint theory CT

(including CET)

CLP Successful derivations

• Soundness:

If G has successful derivation with answer constraint C, then

P↔ ∪ CT |= ∀(C → G).

• Completeness:

If P↔ ∪CT |= ∀(C → G) and C is satisfiable in CT , then there

are successful derivations for G with answer constraints

C1, . . . , Cn s.t. CT |= ∀(C → (C1 ∨ . . . ∨ Cn)).

(P CL program, G goal)

c©Thom Frühwirth – University of Ulm Page 111 – SoSe 2019

Constraint Programming

CLP Example – Completeness

P

p(X,Y) ← X≤Y

p(X,Y) ← X≥Y

P↔

∀X∀Y p(X,Y)↔ (X ≤ Y ∨ Y ≤ X)

(CT total order ≤)

Completeness:

As P↔ ∪ CT |= ∀(true→ p(X, Y)) there are successful derivations

for the goal p(X,Y). The answer constraints X≤Y and X≥Y of

p(X,Y) satisfy CT |= ∀(true→ X≤Y ∨ X≥Y).

But: Each answer on its own is not sufficient:

CT 6|= ∀(true→ X≤Y) and CT 6|= ∀(true→ X≥Y).

c©Thom Frühwirth – University of Ulm Page 112 – SoSe 2019

Constraint Programming

CLP Failed derivations

Soundness and Completeness:

P↔ ∪ CT |= ¬∃G if and only if

each fair derivation starting with <G, true> fails finitely

(P CL program, G goal)

c©Thom Frühwirth – University of Ulm Page 113 – SoSe 2019

Constraint Programming

CLP Monotonicity (Stability Property)

Ensures correctness of computation step in any larger context.

If

• <G,C> 7→ <G′, C ′>

• C ′ ∧D satisfiable

then also <G ∧H,C ∧D> 7→ <G′ ∧H,C ′ ∧D>.

Computation can be performed in any larger context or it will fail.

(D constraint, H goal)

c©Thom Frühwirth – University of Ulm Page 114 – SoSe 2019

Constraint Programming

CLP vs. LP – Don’t Know Nondeterminism

• generate-and-test in LP : impractical, facts used in passive

manner only

• constrain-and-generate in CLP : use facts in active manner to

reduce the search space (constraints)

c©Thom Frühwirth – University of Ulm Page 115 – SoSe 2019

Constraint Programming

CLP Constrain/Generate vs. LP Generate/Test

Crypto-arithmetic Puzzle – Send More Money

S E N D

+ M O R E

= M O N E Y

Replace distinct letters by distinct digits,

numbers have no leading zeros.

c©Thom Frühwirth – University of Ulm Page 116 – SoSe 2019

Constraint Programming

LP Example – Send More Money (Generate/Test)

send([S,E,N,D,M,O,R,Y]) :-

gen_domains([S,E,N,D,M,O,R,Y],0..9),

labeling([],[S,E,N,D,M,O,R,Y]),

S #\= 0, M #\= 0,

all_distinct([S,E,N,D,M,O,R,Y]),

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y.

95,671,082 choices to find the solution

c©Thom Frühwirth – University of Ulm Page 117 – SoSe 2019

Constraint Programming

CLP Example – Send More Money (Constrain/Generate)

:- use_module(library(clpfd)).

send([S,E,N,D,M,O,R,Y]) :-

gen_domains([S,E,N,D,M,O,R,Y],0..9),

S #\= 0, M #\= 0,

all_distinct([S,E,N,D,M,O,R,Y]),

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y,

labeling([],[S,E,N,D,M,O,R,Y]).

c©Thom Frühwirth – University of Ulm Page 118 – SoSe 2019

Constraint Programming

CLP Example – Send More Money (Constrain/Generate

2)

send without Labeling

:- send([S,E,N,D,M,O,R,Y]).

M = 1, O = 0, S = 9,

E in 4..7,

N in 5..8,

D in 2..8,

R in 2..8,

Y in 2..8 ?

S E N D

+ M O R E

= M O N E Y

c©Thom Frühwirth – University of Ulm Page 119 – SoSe 2019

Constraint Programming

CLP Example – Send More Money (Constrain/Generate

3)

send without Labeling

:- send([9,4,N,D,M,O,R,Y]).

no

Propagation determines N = 5,

R = 8, but fails as D has no possi-

ble value.

But second choice

:- send([9,5,N,D,M,O,R,Y]).

D = 7, M = 1, N = 6,

O = 0, R = 8, Y = 2

yes

already computes solution.

S E N D

+ M O R E

= M O N E Y

c©Thom Frühwirth – University of Ulm Page 120 – SoSe 2019

Constraint Programming

CLP Example – Send More Money (Solution)

S E N D

9 5 6 7

M O R E

+ 1 0 8 5

M O N E Y

= 1 0 6 5 2

c©Thom Frühwirth – University of Ulm Page 121 – SoSe 2019

Constraint Programming

Concurrent Distributed Programming

• processes (agents):

executed concurrently and interact with each other

• communicate and synchronize: sending and receiving messages

• distributed systems: network of processes

• can be intentionally non-terminating (e.g., operating systems,

control)

c©Thom Frühwirth – University of Ulm Page 122 – SoSe 2019

Constraint Programming

Concurrent Constraint Logic

Programming (CCLP)

• integrates ideas from concurrent LP and CLP

• communication: common constraint store (blackboard)

• processes: predicates

• (partial) messages: constraints

• communication channels: variables

• running processes: goals that place and check constraints on

shared variables

c©Thom Frühwirth – University of Ulm Page 123 – SoSe 2019

Constraint Programming

CCLP Ask and Tell

• tell : producer adds/places constraint to the constraint store

• ask : consumer checks entailment (implication) of constraints

from the store (but does not remove any constraint)

Example:

Goal Constraint Store

tell X ≤ Y X ≤ Y

tell Y ≤ Z X ≤ Y ∧ Y ≤ Z

ask X ≤ Z X ≤ Y ∧ Y ≤ Z

ask Y ≤ X X ≤ Y ∧ Y ≤ Z

tell Z ≤ X X = Y ∧ Y = Z

ask Y ≤ X X = Y ∧ Y = Z

ask X > Z X = Y ∧ Y = Z

c©Thom Frühwirth – University of Ulm Page 124 – SoSe 2019

Constraint Programming

CCLP Consequences of Concurrency

• decisions and resulting actions cannot be undone anymore

• search as in CLP languages and failure should be avoided

• don’t-know non-determinism is replaced by don’t-care

non-determinism

• committed choice: just one arbitrary of the applicable clauses is

chosen

• loss in expressiveness, gain in efficiency

c©Thom Frühwirth – University of Ulm Page 125 – SoSe 2019

Constraint Programming

CCLP Early History

1981 K. Clark and S. Gregory, Relational Language for Parallel Prog.

1982-94 Japanese Fifth-Generation Computing Project, KL1

1983 E. Shapiro, Concurrent Prolog, FCP (Flat Concurrent Prolog)

1983 K. Clark and S. Gregory, Parlog (Parallel Prolog)

1985 K. Ueda, GHC (Guarded Horn Clauses)

1987 M. Maher, ALPS language class

1989 V. Saraswat, CC language framework (Concurrent constraints)

1990 S. Haridi, AKL (Andorra Kernel Language)

1991 M. Hermengildo, CIAO (Parallel Multi-Paradigm Prolog Extension)

1992 G. Smolka, OZ/Mozart (integrates functions, objects, and constraints)

c©Thom Frühwirth – University of Ulm Page 126 – SoSe 2019

Constraint Programming

CCLP Syntax

• (CCL) clause: A← D | G
– head A: atom

– guard D: constraint

– body G: goal

• trivial guard “true |” may be omitted

• CCL program: finite set of CCL clauses

c©Thom Frühwirth – University of Ulm Page 127 – SoSe 2019

Constraint Programming

CCLP Syntax - Summary

Atom: A,B ::= p(t1, . . . , tn), n ≥ 0

Constraint: C,D ::= c(t1, . . . , tn) C ∧D, n ≥ 0

Goal : G,H ::= > ⊥ A C G ∧H
CCL Clause: K ::= A← C|G
CCL Program: P ::= K1 . . .Km, m ≥ 0

c©Thom Frühwirth – University of Ulm Page 128 – SoSe 2019

Constraint Programming

CCLP Transition Rules

Unfold

If (B ← D | H) is a fresh variant

of a clause in P with variables X̄

and CT |= ∀ (C → ∃X̄((B
.
=A) ∧D))

then <A ∧G,C> 7→ <H ∧G, (B .
= A) ∧D ∧ C>

Solve

If CT |= ∀ ((C ∧D1)↔ D2)

then <C ∧G,D1> 7→ <G,D2>

c©Thom Frühwirth – University of Ulm Page 129 – SoSe 2019

Constraint Programming

CCLP Unfold

If (B ← D | H) is a fresh variant

of a clause in P with variables X̄

and CT |= ∀ (C → ∃X̄((B
.
=A) ∧D))

then <A ∧G,C> 7→ <H ∧G, (B .
= A) ∧D ∧ C>

• entailment test (Ask): checks implication of guard D by store

C, i.e., CT |= ∀ (C → D)

• clause with head B and guard D is applicable to A in the

context of constraints C, if CT |= ∀(C → ∃X̄((B=̇A) ∧D))

• clause application: A removed, body H added to goal store,

equation B=̇A and guard D added to constraint store (tell)

• committed choice of a clause, cannot be undone

• implicit concurrency (atom selection)

c©Thom Frühwirth – University of Ulm Page 130 – SoSe 2019

Constraint Programming

CCLP Unfold – Matching/One-sided Unification

Clause Applicability Condition in Unfold transition rule

CT |= ∀(C → ∃X̄((B=̇A) ∧D))

Given the constraints of C, try to solve the constraints (B=̇A ∧D)

without further constraining (touching) any variable in A and C

• first check that A matches B

– A is an instance of B

– only allowed to instantiate variables from the clause X̄ of B

but not variables of A

• then check the guard D under this matching

((B=̇A): shorthand for equating arguments of B and A)

c©Thom Frühwirth – University of Ulm Page 131 – SoSe 2019

Constraint Programming

CCLP Example – Matching

CT |= ∀(C → ∃X̄((B=̇A) ∧D))

Matching B=̇A,C = true, D = true

• ∃X(p(X)=̇p(a))

• ∀Y ∃X(p(X)=̇p(Y))

but not

• ∀Y (p(a)=̇p(Y))

More Examples

• CT |= ∀Y (Y =̇a→ ∃X(p(X)=̇p(Y)) ∧X=̇a)

• CT |= ∀Y (Y =̇a→ (p(a)=̇p(Y)))

• CT 6|= ∀Y,Z(Z=̇a→ (p(a)=̇p(Y)))

c©Thom Frühwirth – University of Ulm Page 132 – SoSe 2019

Constraint Programming

CCLP Deadlock

Successful and failed derivations and goals as in CLP. But new final

state deadlocked.

<G,C> with G different from > and C different from false and no

more transitions are possible

• consequence of having no Failure transition

• usually programming errors

c©Thom Frühwirth – University of Ulm Page 133 – SoSe 2019

Constraint Programming

CCLP Example – Flipping Coins

flip(Side) ← Side
.
=face1

flip(Side) ← Side
.
=face2

• CLP:

flip(Coin) with two answers

• CCLP:

output not determined: depending on selected clause

e.g., flip(face1) can either be failed or successful

(But implementations will usually fix the clause choice.)

c©Thom Frühwirth – University of Ulm Page 134 – SoSe 2019

Constraint Programming

CCLP Example – Min

min(X,Y,Z) ← X≤Y | X .=Z (c1)

min(X,Y,Z) ← Y≤X | Y .=Z (c2)

Guard variables correspond to generalized input parameters (per

rule).

• For goal min(1,2,C) rule c1 is applicable since

CT |= ∀(true→ ∃ X, Y, Z((1
.
=X ∧ 2 .=Y ∧ C .=Z) ∧ X ≤ Y))

Derivation:

<min(1, 2, C), true>

7→Unfold (c1) 〈X .=Z, 1
.
=X∧2 .=Y∧C .=Z〉

7→Solve 〈>, C .=1〉

• Rule c2 is not applicable, the guard is not implied.

c©Thom Frühwirth – University of Ulm Page 135 – SoSe 2019

Constraint Programming

CCLP Example – Min (cont)

min(X,Y,Z) ← X≤Y | X .=Z (c1)

min(X,Y,Z) ← Y≤X | Y .=Z (c2)

• <min(A, 2, 1), true>, min(A,2,2), and min(A,2,3) deadlocked

(completely solved in CLP, but with both CL clauses)

• min(A, B, C) ∧ A≤B leads to A≤B ∧ A .=C by selecting the first

clause (two answers in CLP, second one was A
.
=B ∧ A .=C)

• What about <min(A, A, C), true>?

c©Thom Frühwirth – University of Ulm Page 136 – SoSe 2019

Constraint Programming

CCLP Example – Hamming

Hamming’s Problem: compute ordered ascending sequence of all

numbers whose only prime factors are 2, 3, or 5:

1 � 2 � 3 � 4 � 5 � 6 � 8 � 9 � 10 � 12 � 15 � 16 � 18 � 20 � 24 � 25 � ...

• hamming(S) with infinite sequence S

• pretend (infinite!) sequence S is already known

(actually only start 1 is known)

• mults processes multiply the numbers in S with 2, 3, and 5

• merge processes combine results to (ordered, duplicate-free)

sequence S

c©Thom Frühwirth – University of Ulm Page 137 – SoSe 2019

Constraint Programming

CCLP Example – Hamming (cont)

hamming(S) ←
S=̇1�S1 ∧
mults(S,2,S2) ∧ mults(S,3,S3) ∧ mults(S,5,S5) ∧
merge(S2,S3,S23) ∧ merge(S5,S23,S1)

mults(X�S,N,XSN) ← XSN=̇X*N�SN ∧ mults(S,N,SN)

merge(X�In1,Y�In2,XYOut) ← X=Y |
XYOut

.
=X�Out ∧ merge(In1,In2,Out)

merge(X�In1,Y�In2,XYOut) ← X<Y |
XYOut

.
=X�Out ∧ merge(In1,Y�In2,Out)

merge(X�In1,Y�In2,XYOut) ← X>Y |
XYOut

.
=Y�Out ∧ merge(X�In1,In2,Out)

c©Thom Frühwirth – University of Ulm Page 138 – SoSe 2019

Constraint Programming

CCLP Example – Hamming (cont)

• no base cases in recursion as sequences are infinite

• concurrent-process network, processes can be executed in

parallel

• mults and merge processes synchronize themselves

• processes communicate via the shared sequence variables

c©Thom Frühwirth – University of Ulm Page 139 – SoSe 2019

Constraint Programming

CCLP Example – Hamming (cont)

Goal hamming(S)

mults(1�S1,2,S2) with Unfold and Solve leads to

S2
.
=2�S2N ∧ mults(S1,2,S2N).

Overall, the three mults processes yield

S2
.
=2�S2N ∧ S3

.
=3�S3N ∧ S5

.
=5�S5N ∧ mults(S1,2,S2N) ∧

mults(S1,3,S3N) ∧ mults(S1,5,S5N) ∧ merge(S2,S3,S23) ∧
merge(S5,S23,S1).

merge(S2,S3,S23) can unfold with the second clause

S23
.
=2�S23N ∧ merge(S2N,S3,S23N).

merge(S5,S23,S1) yields

S1
.
=2�SN ∧ merge(S5,S23N,SN).

c©Thom Frühwirth – University of Ulm Page 140 – SoSe 2019

Constraint Programming

CCLP Declarative Semantics

• declarative semantics of CCL programs analogous to that of

CL programs

• symbol “|” interpreted as conjunction:

A← C | G corresponds to A← C ∧G

• Clark’s Completion of a CCL program is as in CLP

• discrepancy between operational and declarative semantics, as

CCLP goals have only one derivation (compared to CLP goals)

c©Thom Frühwirth – University of Ulm Page 141 – SoSe 2019

Constraint Programming

Soundness of successful derivations

• If G has a successful derivation with an answer constraint C,

then P↔ ∪ CT |= ∀(C → G).

• Analogous to soundness for CL programs.

(P CCL program, G goal)

c©Thom Frühwirth – University of Ulm Page 142 – SoSe 2019

Constraint Programming

Completeness, Flip Coin Example

Analogous to CLP completeness?

flip(Side) ← Side
.
=face1

flip(Side) ← Side
.
=face2

Declarative semantics P↔:

flip(Coin) ⇔ Coin =̇ face1 ∨ Coin =̇ face2

• P↔ ∪ CT |= (Coin=̇face1→ flip(Coin))

• If flip(Coin) has successful derivation with answer constraint

C ′ then CT |= ∀(Coin=̇face1→ C ′)?

• Wrong if C ′ = Coin=̇face2

Completeness (and soundness for failed derivations) only for

deterministic programs and fair derivations without deadlocks.

(Not discussed further here.)

c©Thom Frühwirth – University of Ulm Page 143 – SoSe 2019

Constraint Programming

Constraint Handling Rules (CHR)

CHR: concurrent committed-choice constraint language

• originally designed for writing constraint solvers

– multi-headed rules that transform constraints into simpler

ones until they are solved

• used now for reasoning in computational logic

• as general-purpose concurrent constraint language

• as flexible production rule system with constraints

c©Thom Frühwirth – University of Ulm Page 144 – SoSe 2019

Constraint Programming

CHR Syntax

• generalization of CCLP calculus by non-atomic heads and two

types of rules

Simplification rule: E ⇔ C G

Propagation Rule: E ⇒ C G

c©Thom Frühwirth – University of Ulm Page 145 – SoSe 2019

Constraint Programming

CHR Syntax (2)

Built-in Constraint : C,D ::= c(t1, . . . , tn) C ∧D, n ≥ 0

CHR Constraint : E,F ::= e(t1, . . . , tn) E ∧ F , n ≥ 0

Goal : G,H ::= > ⊥ C E G ∧H
CHR Rule: R ::= E ⇔ C | G E ⇒ C | G
CHR Program: P ::= R1 . . . Rm,m ≥ 0

CHR constraints instead of (C)CLP atoms.

• (built-in) constraint symbols handled by predefined given

constraint solvers

• (user-defined) CHR constraint symbols defined by a CHR

program

c©Thom Frühwirth – University of Ulm Page 146 – SoSe 2019

Constraint Programming

CHR Operational Semantics

• state <G,C>: G goal (store), C (built-in) constraint (store)

• initial state <G, true>

• successful final state <E,C>:

no transition is applicable, C is different from false

• failed final state <G, false>

CCLP deadlocked states vs. CHR successful states

• CHR constraints that could not be further simplified do not

imply consistency of logical reading

c©Thom Frühwirth – University of Ulm Page 147 – SoSe 2019

Constraint Programming

CHR Transition Rules

• Simplify (extends Unfold of CCLP)

• Propagate (similar Simplify)

• Solve (as in CCLP)

c©Thom Frühwirth – University of Ulm Page 148 – SoSe 2019

Constraint Programming

CHR Transition Rule – Simplify

Simplify

If (F ⇔ D H) is a fresh variant of

a rule in P with variables X̄

and CT |= ∀ (C → ∃X̄(F =̇E ∧D))

then <E ∧G,C> 7→ <H ∧G, (F =̇E) ∧D ∧ C>

• head F

– CCLP: atom

– CHR: user-defined CHR constraint

• F =̇E: pairwise matching of the conjuncts of F and E

c©Thom Frühwirth – University of Ulm Page 149 – SoSe 2019

Constraint Programming

CHR Transition Rule – Propagate

Propagate

If (F ⇒ D H) is a fresh variant of

a rule in P with variables X̄

and CT |= ∀ (C → ∃X̄(F =̇E ∧D))

then <E ∧G,C> 7→ <E ∧H ∧G, (F =̇E) ∧D ∧ C>

• like Simplify except that it keeps constraints E

• never apply a rule second time to same constraints

– ensures termination

c©Thom Frühwirth – University of Ulm Page 150 – SoSe 2019

Constraint Programming

CHR Transition Rule – Solve

Solve

If CT |= ∀((C ∧D1)↔ D2)

then <C ∧G,D1> 7→ <G,D2>

• as in CLP and CCLP

c©Thom Frühwirth – University of Ulm Page 151 – SoSe 2019

Constraint Programming

CHR Transition Rules – Summary

Simplify

If (F ⇔ D H) fresh variant of a rule with variables X̄

and CT |= ∀ (C → ∃X̄(F =̇E ∧D))

then <E ∧G,C> 7→ <H ∧G, (F =̇E) ∧D ∧ C>
Propagate

If (F ⇒ D H) fresh variant of a rule with variables X̄

and CT |= ∀ (C → ∃X̄(F =̇E ∧D))

then <E ∧G,C> 7→ <E ∧H ∧G, (F =̇E) ∧D ∧ C>
Solve

If CT |= ∀((C ∧D1)↔ D2)

then <C ∧G,D1> 7→ <G,D2>

c©Thom Frühwirth – University of Ulm Page 152 – SoSe 2019

Constraint Programming

CHR Example – Partial Order Relation leq

reflexivity @ X leq Y ⇔ X=̇Y | true (r1)

antisymmetry @ X leq Y ∧ Y leq X ⇔ X=̇Y (r2)

transitivity @ X leq Y ∧ Y leq Z ⇒ X leq Z (r3)

idempotency @ X leq Y ∧ X leq Y ⇔ X leq Y (r4)

(true and
.
=: given built-in constraints)

c©Thom Frühwirth – University of Ulm Page 153 – SoSe 2019

Constraint Programming

CHR Example - Partial Order Relation leq (2)

<A leq B ∧ C leq A ∧ B leq C, true>

7→Propagate (r3) <A leq B ∧ C leq A ∧ B leq C ∧ C leq B, true>

7→Simplify (r2) <A leq B ∧ C leq A ∧ B=̇C, true>

7→Solve <A leq B ∧ C leq A, B=̇C>

7→Simplify (r2) <A=̇B, B=̇C>

7→Solve <>, A=̇B ∧ B=̇C>

CHR program:

X leq Y ⇔ X=̇Y | true (r1)

X leq Y ∧ Y leq X ⇔ X=̇Y (r2)

X leq Y ∧ Y leq Z ⇒ X leq Z (r3)

X leq Y ∧ X leq Y ⇔ X leq Y (r4)

c©Thom Frühwirth – University of Ulm Page 154 – SoSe 2019

Constraint Programming

CHR Example – Min

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

(=̇, ≤ and < built-in constraint symbols)

c©Thom Frühwirth – University of Ulm Page 155 – SoSe 2019

Constraint Programming

CHR Example – Min (2)

<min(1, 2, M), true>

7→Simplify (r1) <M=̇1, true>

7→Solve <>, M=̇1>

CHR program:

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

c©Thom Frühwirth – University of Ulm Page 156 – SoSe 2019

Constraint Programming

CHR Example – Min (3)

<min(A, B, M) ∧ A ≤ B, true>

7→Solve <min(A, B, M), A ≤ B>

7→Simplify (r1) <M=̇A, A ≤ B>

7→Solve <>, M=̇A ∧ A ≤ B>

CHR program:

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

c©Thom Frühwirth – University of Ulm Page 157 – SoSe 2019

Constraint Programming

CHR Example – Min (4)

<min(A, 2, 2), true>

7→Propagate (r5) <min(A, 2, 2) ∧ 2 ≤ A ∧ 2 ≤ 2, true>

7→Solve <min(A, 2, 2), 2 ≤ A>

7→Simplify (r2) <2=̇2, 2 ≤ A>

7→Solve <>, 2 ≤ A>

(Deadlock in CCLP.)

CHR program:

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

c©Thom Frühwirth – University of Ulm Page 158 – SoSe 2019

Constraint Programming

CHR Example – Min (5)

<min(A, B, M), A=̇M>

7→Propagate (r5) <min(A, B, M) ∧ M ≤ A ∧ M ≤ B, A=̇M>

7→Solve <min(A, B, M), M ≤ B ∧ A=̇M>

7→Simplify (r1) <A=̇M, A ≤ B ∧ M ≤ B ∧ A=̇M>

7→Solve <>, M ≤ B ∧ A=̇M>

(Deadlock in CCLP.)

CHR program:

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

c©Thom Frühwirth – University of Ulm Page 159 – SoSe 2019

Constraint Programming

CHR Example – Min (6)

• min(A,2,1) leads to A=̇1 via (r4)

• min(A,2,3) leads to failure via (r5)

(Deadlock in CCLP.)

CHR program:

min(X,Y,Z)⇔ X≤Y Z=̇X (r1)

min(X,Y,Z)⇔ Y≤X Z=̇Y (r2)

min(X,Y,Z)⇔ Z<X Y=̇Z (r3)

min(X,Y,Z)⇔ Z<Y X=̇Z (r4)

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

c©Thom Frühwirth – University of Ulm Page 160 – SoSe 2019

Constraint Programming

CHR Monotonicity

If

• <G,C> 7→ <G′, C ′>

• D constraint

• H goal

• CT |= ∃(C ∧D)

then also <G ∧H,C ∧D> 7→ <G′ ∧H,C ′ ∧D>.

c©Thom Frühwirth – University of Ulm Page 161 – SoSe 2019

Constraint Programming

CHR Parallelism

If

• <G,C> 7→ <G′, C ′>

• <H,D> 7→ <H ′, D′>

• CT |= ∃(C ∧D)

then also <G ∧H,C ∧D> 7→ <G′ ∧H ′, C ′ ∧D′>.

Generalisation of Monotonicity.

c©Thom Frühwirth – University of Ulm Page 162 – SoSe 2019

Constraint Programming

CHR Declarative Semantics

• Clark’s completion not used

• each CHR rule alone gives rise to a formula

• “strong” declarative semantics as CHR is concerned with

– solving constraints (that always admit a logical reading)

– not with defining arbitrary processes

(If CHR is used as a general-purpose programming language,

another declarative semantics based on linear logic can be more

useful.)

c©Thom Frühwirth – University of Ulm Page 163 – SoSe 2019

Constraint Programming

CHR Logical Reading

CHR-Rule Logical Reading

Simplify E ⇔ C G ∀X̄ (C → (E ↔ ∃Ȳ G))

Propagate E ⇒ C G ∀X̄ (C → (E → ∃Ȳ G))

• logical reading of CHR program P : union of

– conjunction of logical readings of its rules P
– constraint theory CT defining built-in constraint symbols

• logical reading of state and definition of answer constraints:

same as in (C)CLP

(X̄: variables in E and C, Ȳ : variables that appear only in G)

c©Thom Frühwirth – University of Ulm Page 164 – SoSe 2019

Constraint Programming

CHR Soundness and Completeness

Equivalence of States

• computable constraint of G: logical reading of a state which

appears in a derivation of G

• for all computable constraints C1 and C2 of G:

P ∪ CT |= ∀ (C1 ↔ C2)

• no distinction between successful and failed derivations

(P : CHR program, G: goal)

c©Thom Frühwirth – University of Ulm Page 165 – SoSe 2019

Constraint Programming

CHR Soundness

If

• G has a derivation with answer constraint C

then P ∪ CT |= ∀ (C ↔ G).

(P : CHR program, G: goal)

c©Thom Frühwirth – University of Ulm Page 166 – SoSe 2019

Constraint Programming

CHR Completeness

If

• G with at least one finite derivation

• P ∪ CT |= ∀ (C ↔ G)

then

• G has a derivation with answer constraint C ′

• P ∪ CT |= ∀ (C ↔ C ′).

(P : CHR program, G: goal)

c©Thom Frühwirth – University of Ulm Page 167 – SoSe 2019

Constraint Programming

CHR Example – Completeness

CHR program P :

p⇔ p

CHR Completeness does not hold if G has no finite derivation

• goal G: p

• P ∪ CT |= p↔ p

• but G has only one infinite derivation

c©Thom Frühwirth – University of Ulm Page 168 – SoSe 2019

Constraint Programming

CHR Soundness and Completeness for Failed

Derivations

If goal G has a finitely failed derivation, then P ∪ CT |= ¬∃G.

But the converse does not hold, e.g.

p ⇔ q

p ⇔ false

• P ∪ CT |= ¬q

• q has no finitely failed derivation, but a successful one

c©Thom Frühwirth – University of Ulm Page 169 – SoSe 2019

Constraint Programming

CHR Confluence

The answer of a query is always the same, no matter which of the

applicable rules are applied.

• confluent : for all states S, S1, and S2

If S 7→∗ S1 and S 7→∗ S2 then S1 and S2 are joinable.

• joinable: if there exist states T1 and T2 such that S1 7→∗ T1 and

S2 7→∗ T2 and T1 and T2 are variants.

In general infinitely many states to test.

c©Thom Frühwirth – University of Ulm Page 170 – SoSe 2019

Constraint Programming

CHR Decidable Confluence with Terminating

Programs

• terminating CHR program: there are no infinite derivations

A terminating CHR program is confluent if and only if all its

critical states are joinable.

• S: critical ancestor state built from overlap of heads and

guards of two rules R1 and R2

• S 7→R1
S1, S 7→R2

S2

• check joinability

– S1 7→∗ T1, S2 7→∗ T2
– T1, T2 are variants?

c©Thom Frühwirth – University of Ulm Page 171 – SoSe 2019

Constraint Programming

CHR Example – Confluence Flip Coin

flip(Coin) ⇔ true | Coin =̇ face1,

flip(Coin) ⇔ true | Coin =̇ face2

The source state

<flip(Coin), true>

yields the following target states (forming a critical pair):

<Coin=̇face1,>> versus <Coin=̇face2,>>

These two states are not joinable, hence the program is not

confluent.

c©Thom Frühwirth – University of Ulm Page 172 – SoSe 2019

Constraint Programming

CHR Example – Confluence Min

min(X,Y,Z) ⇔ X ≤ Y | X =̇ Z,

min(X,Y,Z) ⇔ Y ≤ X | Y =̇ Z

Overlapping the two rules yields the source state

<min(X, Y, Z), X ≤ Y ∧ Y ≤ X>

and the critical pair

<X=̇Z,X ≤ Y ∧ Y ≤ X> versus <Y =̇Z,X ≤ Y ∧ Y ≤ X>

Both states of the critical pair can yield

<>, X=̇Y ∧ Y =̇Z>

Hence the program is confluent.

c©Thom Frühwirth – University of Ulm Page 173 – SoSe 2019

Constraint Programming

CHR Soundness and Completeness of Failed

Derivations

If

• P : terminating and confluent CHR program

• G: goal with at least one answer constraint consisting of only

built-in constraints

then

P ∪ CT |= ¬∃G if and only if each finite derivation starting with

<G, true> fails.

c©Thom Frühwirth – University of Ulm Page 174 – SoSe 2019

Constraint Programming

CHR∨: Adding Disjunction

• to subsume the expressive power of CLP:

disjunctions on the right-hand sides of CHR rules

• entire application in a uniform language

Split

<(H1 ∨H2) ∧G,C> 7→ <H1 ∧G,C> | <H2 ∧G,C>

• additional transition Split for CHR∨, to deal with disjunction

∨

Example:

min(X,Y ,Z) <=> true | ((X ≤ Y ∧X=̇Z) ∨ (Y ≤ X ∧ Y =̇Z))

c©Thom Frühwirth – University of Ulm Page 175 – SoSe 2019

Constraint Programming

Constraint System (Σ,D, CT, C)

• signature Σ: contains constraint symbols, at least

– true/0 and false/0, and

– syntactic equality =̇/2

• domain (universe) D together with interpretation of function

and constraint symbols in Σ

• constraint theory CT over Σ:

– non-empty

– consistent

• allowed constraints C:
– all constraints from Σ

– closed under existential quantification (or: variable

renaming) and conjunction

c©Thom Frühwirth – University of Ulm Page 176 – SoSe 2019

Constraint Programming

Example – Constraint System E (Syntactic

Equality)

• signature Σ: contains

– countably infinitely many function symbols, including at

least one constant

– constraint symbols true/0, false/0, and =̇/2

• domain D: Herbrand universe

• constraint theory CT : CET (Clark’s Equality Theory)

• allowed constraints

C ::= true false s=̇t ∃x̄ C C ∧ C

(s, t: terms over Σ)

c©Thom Frühwirth – University of Ulm Page 177 – SoSe 2019

Constraint Programming

Constraint Theory

Completeness

For every constraint C, either CT |= C or CT |= ¬C.

Satisfaction-completeness

For every allowed constraint C ∈ C, either CT |= ∃C or CT |= ¬∃C.

Example:

• CET is complete

• If there were only finitely many function symbols in Σ

– not complete

– but satisfaction-complete

c©Thom Frühwirth – University of Ulm Page 178 – SoSe 2019

Constraint Programming

Constraint Solvers

• implement algorithms for solving allowed constraints in

accordance with constraint theory

• collect the constraints that arrive incrementally from one or

more running programs

• put constraints into the constraint store

• test satisfiability, simplify, and if possible solve constraints

c©Thom Frühwirth – University of Ulm Page 179 – SoSe 2019

Constraint Programming

Capabilities of Constraint Solvers

As required by constraint programming languages (solve transition

and transition preconditions).

Reasoning Services (in order of importance)

• Satisfiability (Consistency) test

• Simplification

• Variable determination

• Variable projection/elimination

• Entailment test

c©Thom Frühwirth – University of Ulm Page 180 – SoSe 2019

Constraint Programming

Satisfiability (Consistency) test

The solver returns false if C is inconsistent: CT |= ¬∃C.

• solver implements a decision procedure for satisfiability of

allowed constraints

• syntactic equality and linear polynomial equations admit

efficient satisfaction-complete algorithm

• Boolean satisfiability is NP-complete (there is no efficient

algorithm), same for finite domains

Example:

X>X is inconsistent, X>Y is consistent

c©Thom Frühwirth – University of Ulm Page 181 – SoSe 2019

Constraint Programming

Simplification

The solver tries to transform a given constraint C into a logically

equivalent, but simpler constraint D (solve transition):

CT |= ∀(C ↔ D).

• simpler constraint can be handled more efficiently when new

constraints arrive

• improve presentation of answer constraint

• what simpler exactly means depends on the constraint system

(often in the eye of the beholder)

• finding most simple representation can be substantially harder

than solving

Example:

X≤2 ∧X≤4 is simplified into X≤2

2∗X=6 into X=3

c©Thom Frühwirth – University of Ulm Page 182 – SoSe 2019

Constraint Programming

Variable Determination

Detect that a variable X occurring in a constraint C can only take

a unique value: CT |= ∀(C → X=v), where v is a value.

• special case of simplification

• important for representing answer constraints as solutions that

give values to variables

• supports a simple way of communication between different

constraint solvers via shared variables by exchanging values for

those variables

Example:

X≤2 ∧ 2≤X implies X=2

X2=X ∧X < 1 implies X=0

c©Thom Frühwirth – University of Ulm Page 183 – SoSe 2019

Constraint Programming

Variable Projection/Elimination

Eliminate a variable X by projecting a constraint C onto all other

variables: CT |= ∃XC ↔ D, where D does not contain X.

• keep constraint store small

• simplify answer constraint by eliminating local variables

• but in some cases not possible, significant increase in

size/number for constraints,

c©Thom Frühwirth – University of Ulm Page 184 – SoSe 2019

Constraint Programming

Examples – Variable projection/elimination

• Projection of ∃Y (X<Y ∧ Y <Z) onto X and Z results in X<Z

over the reals and X+1<Z over the integers

• Elimination of Y in

∃Y (X1<Y ∧ . . . ∧Xm<Y ∧ Y <Z1 ∧ . . . ∧ Y <Zn)

yields n∗m constraints of the form Xi<Zj for

1 ≤ i ≤ m, 1 ≤ j ≤ n

• In the constraint system E, in the formula ∃Y (X=f(Y)), the

variable Y cannot be eliminated

c©Thom Frühwirth – University of Ulm Page 185 – SoSe 2019

Constraint Programming

Entailment test

Check whether a constraint C implies D: CT |= ∀(C → D)?

• required for guard checks in concurrent constraint languages

like CCLP and CHR

• (incomplete) entailment test can be implemented as follows:

if C ∧D simplifies to C, then C → D, or:

if C ∧ ¬D is inconsistent, then C → D.

c©Thom Frühwirth – University of Ulm Page 186 – SoSe 2019

Constraint Programming

Example – Entailment test

X<Y entails X≤Y , but not vice versa.

• X<Y → X≤Y entailed

– solve(X < Y ∧X ≤ Y) = (X < Y)

– solve(X < Y ∧X > Y) = false

• X≤Y → X < Y not entailed

– solve(X ≤ Y ∧X < Y) = (X < Y)

– solve(X ≤ Y ∧X ≥ Y) = (X = Y)

c©Thom Frühwirth – University of Ulm Page 187 – SoSe 2019

Constraint Programming

Reasoning Services – Implementation

• variations of simplification that maintain a normal form of the

constraints

• implement simplification efficiently – average time complexity

should be a polynomial of low degree

• prefers incomplete implementation if complete one would take

exponential time

c©Thom Frühwirth – University of Ulm Page 188 – SoSe 2019

Constraint Programming

Desirable Properties of Constraint Solvers

Constraint solver modeled as a function solve over allowed

constraints.

• Correct : If solve(C) = D, then CT |= ∀(C ↔ D)

• Satisfaction-complete: If CT |= ¬∃C, then solve(C) = false

• Incremental : solve(solve(C) ∧D) = solve(C ∧D)

– ideally, the incremental computation solve(solve(C) ∧D)

should not be more costly than solve(C ∧D)

• Independence of variable naming : C and D are variants of each

other, then solve(C) and solve(D) are variants

c©Thom Frühwirth – University of Ulm Page 189 – SoSe 2019

Constraint Programming

Properties of Constraint Solvers (2)

• Congruence respecting :

Associative solve((C ∧D) ∧ E) = solve(C ∧ (D ∧ E))

Identity solve(C ∧ true) = solve(C)

Commutative solve(C ∧D) = solve(D ∧ C)

• Idempotent : solve(solve(C)) = solve(C)

– solve computes a fixpoint

– no gain in simplifying simplified constraints again

• Canonical : If CT |= ∀(C ↔ D), then solve(C) = solve(D)

– very strong condition, implying all previous ones

Terminating and confluent CHR program is idempotent,

congruence respecting, and incremental.

c©Thom Frühwirth – University of Ulm Page 190 – SoSe 2019

Constraint Programming

Properties of Constraint Solvers (3)

Dependency on Variable Order

Algorithms based on variable elimination (e.g., solving linear

polynomial equations) often rely on an order of variables.

(Typical variable orders: chronological or alphabetical.)

• different variable orders may result in different simplified

constraints, e.g., X=Y vs. Y=X

• properties that may not hold anymore

– Independence of variable naming

– Congruence respecting

– Incremental

– Canonical

c©Thom Frühwirth – University of Ulm Page 191 – SoSe 2019

Constraint Programming

Principles of Constraint-Solving Algorithms

Variety of algorithms, mostly adapted from artificial intelligence,

graph theory, and operations research.

Two viewpoints

• variable-elimination (or: equation solving)

– typically satisfaction-complete

• local-consistency (or: local-propagation)

– interleaved with search to achieve completeness

c©Thom Frühwirth – University of Ulm Page 192 – SoSe 2019

Constraint Programming

Variable Elimination - Normal Form

Allowed constraints are equations.

• e1 = e2

– l.h.s. (left-hand side) e1

– r.h.s. (right-hand side) e2

• Normal form: X=e

X variable, e expression of some specific syntactic form

c©Thom Frühwirth – University of Ulm Page 193 – SoSe 2019

Constraint Programming

Variable Elimination - Solved Form

Solved (normal) form or solution: logically equivalent form that

• determines variables (gives values to variables)

• is unique (if possible)

usually

• conjunction of syntactic equality constraints X=v

• X only l.h.s. occurrence of the variable

Examples:

• X=Y ∧ Y=Z and X=Z ∧ Z=Y in solved form

• X=Y ∧ X=Z not in solved form, X occurs twice on l.h.s.

• Gaussian elimination for solving linear polynomial equations

X=7−Y ∧ X=3+Y leads to X=5 ∧ Y=2

c©Thom Frühwirth – University of Ulm Page 194 – SoSe 2019

Constraint Programming

Variable Elimination Algorithms

Eliminate multiple occurrences of variables.

• repeatedly choose an equation X=e

• replace all other occurrences of X by e

• simplify s.t. normal form is maintained

• termination result may rely on order of variables and

expressions

• usually not confluent, i.e. solved form not unique, e.g.

X=7−Y−2Z ∧ X=3+Y may lead to

X=3+Y ∧ Y=2−Z or

X=5−Z ∧ Y=2−Z

c©Thom Frühwirth – University of Ulm Page 195 – SoSe 2019

Constraint Programming

Local Consistency (Local Propagation)

Small fixed-size sub-problems of the initial problem considered

repeatedly until a fixpoint is reached.

• sub-problems are simplified and new implied (redundant)

constraints are computed (propagated) from them

• constraints are added hoping that they cause simplification

Examples:

• X>Y ∧ Y >Z ∧ Z>X

The first two constraints imply X>Z and together with Z>X

imply false, i.e., inconsistency is detected (satisfaction

complete).

• X 6= Y ∧ Y 6= Z ∧X 6= Z no propagation for sub-problems of

two constraints but inconsistent if only same two values

possible for each variable.

c©Thom Frühwirth – University of Ulm Page 196 – SoSe 2019

Constraint Programming

Local Consistency – Flat Normal Form

Variables are the only arguments of functions.

• often required by local-consistency methods

• flattening : performing the opposite of variable elimination

– replace each non-variable sub-expression by a new variable

– equate this new variable with the sub-expression

• uniform treatment of allowed constraints but introduction of

auxiliary variables

• consistency methods sensitive to representation of constraints,

but no efficient way to find an optimal representation

Examples:

• 2X+Y >5 flattened into W>F ∧ T+Y=W ∧ 2X=T ∧ F=5

• X2>3Y flattened into

L>R ∧ L=XT ∧ T=2 ∧ R=DY ∧D = 3

c©Thom Frühwirth – University of Ulm Page 197 – SoSe 2019

Constraint Programming

Local Consistency (Local Propagation) - Complexity and

History

Polynomial number of small sub-problems.

• sub-problems in polynomial time then overall algorithm in

polynomial time

Classical consistency algorithms first explored for constraint

networks in artificial intelligence research in the late 1960s.

Originally, the algorithms involved unary and binary constraints

over finite sets of values only.

• arc consistency and path consistency: main classical algorithms

c©Thom Frühwirth – University of Ulm Page 198 – SoSe 2019

Constraint Programming

Search

Local-consistency methods combined with search to achieve

satisfaction-completeness, i.e., global consistency.

• branching: introduce branches in search tree

• case analysis: case splitting by introducing choices

• exponential complexity to combinatorial and other

NP-complete constraint problems, because dependencies

between choices are not and cannot be fully taken care of

• interleaved with constraint solving (repeat until solution is

found)

– perform local propagation

– constraint is simplified together with the existing constraints

– search step performed, it adds a new constraint

c©Thom Frühwirth – University of Ulm Page 199 – SoSe 2019

Constraint Programming

Search Routines/Procedures

Labeling procedure or enumeration procedure (routine): try possible

values for a variable X=v1 ∨ . . . ∨X=vn

• labeling procedure will use heuristics to choose the next

variable and value for labeling

• variable ordering : chosen sequence of variables

first-fail principle: choose the most constrained variable first;

will often lead to failure quickly, thus pruning the search tree

early

• value ordering: next value for labeling a variable must be

chosen

c©Thom Frühwirth – University of Ulm Page 200 – SoSe 2019

Constraint Programming

Constraint Systems – CHR∨

• CHR∨ for implementation

– Prolog style disjunction in the body of rules for search

– CHR rule is never applied a second time to (syntactically)

same conjunction of constraints

• in implementations efficient is achieved by

– using simpagation rules

– relying on textual rule application order

– compiler options

– additional constraints in the guards of propagation rules

c©Thom Frühwirth – University of Ulm Page 201 – SoSe 2019

Constraint Programming

Constraint Systems – CHR∨

Mapping abstract syntax into concrete syntax

logical symbols program code symbols

⇔ <=>

⇒ ==>

∧ ,

∨ ;

=
= (built-in syntactical equality of Prolog) or

eq (CHR constraint)

<,≤, >,≥, 6= <, =<, >, >=, \= (built-in arithmetic constraints)

lt, le, gt, ge, ne (CHR constraints)

c©Thom Frühwirth – University of Ulm Page 202 – SoSe 2019

Constraint Programming

Boolean Algebra B (Propositional Logic)

Constraint System B

Domain

Truth values > and ⊥

Signature

• Function symbols

– Constants: truth values 0 and 1

– Boolean operations:

∗ Unary connective ¬
∗ Binary connectives u,t,⊕,→,↔ (do not confuse with ∧,

∨)

• Constraint symbols

– Nullary symbols true, false

– Binary symbol = (for Boolean expressions)
c©Thom Frühwirth – University of Ulm Page 203 – SoSe 2019

Constraint Programming

Constraint System B (2)

Constraint theory

Instances of X = Z, ¬X=Z, and X � Y=Z according to the

following truth table, where � ∈ {u,t,⊕,→,↔}.

X Y ¬X X u Y X t Y X ⊕ Y X → Y X ↔ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 0 0

1 1 0 1 1 0 1 1

• translation into formulae: 0 t 0 = 0 . . .

• theory decidable and complete

c©Thom Frühwirth – University of Ulm Page 204 – SoSe 2019

Constraint Programming

Constraint System B (3)

Allowed atomic constraints

C ::= true false X = Z ¬X = Z X � Y = Z

(X, Y , Z: variables or truth values)

• allowed atomic constraints are in flat normal form: each

constraint contains at most one logical connective

• ¬X = Z, X � Y=Z: inputs X, Y and output Z

• no independence of negated constraints, e.g.

(true ∧ ¬(X = 0) ∧ ¬(X = 1)) (equality over finite signature)

Example:

(X u Y) t Z=¬W flattened into

(U t Z=V) ∧ (X u Y=U) ∧ (¬W=V)

c©Thom Frühwirth – University of Ulm Page 205 – SoSe 2019

Constraint Programming

B – Local-Propagation Constraint Solver

Rules for X u Y = Z (Boolean equality =) in relational form

(built-in syntactic equality =):

a1 @ and(X,Y,Z) <=> X=0 | Z=0.

a2 @ and(X,Y,Z) <=> Y=0 | Z=0.

a3 @ and(X,Y,Z) <=> X=1 | Y=Z.

a4 @ and(X,Y,Z) <=> Y=1 | X=Z.

a5 @ and(X,Y,Z) <=> X=Y | Y=Z.

a6 @ and(X,Y,Z) <=> Z=1 | X=1,Y=1.

Analogous for other logical connectives.

• value/constant propagation (a1, a2, a6)

• propagate equalities between variables (a3-a5)

c©Thom Frühwirth – University of Ulm Page 206 – SoSe 2019

Constraint Programming

B – Local-Propagation Constraint Solver (2)

Query: and(X,Y,Z), X = 0

Answer: X = 0, Z = 0

Query: and(X,Y,Z), neg(Y,Z), X=1

Answer: false

Query: and(X,Y,0), and(X,Z,V), and(Y,V,W)

Answer: and(X,Y,0), and(X,Z,V), and(Y,V,W)

(but W=1 yields false, therefore W=0)

c©Thom Frühwirth – University of Ulm Page 207 – SoSe 2019

Constraint Programming

B – Local-Propagation Constraint Solver (3)

• determining satisfiability is NP-complete

• solver is terminating and confluent, e.g. overlap and(0,0,Z)

• complexity : slightly worse than O(c2)

– at most c derivation steps

– in each derivation step, check (each of the) O(c) constraints

– checking the applicability of one constraint against one rule

in quasi-constant time

– rule application in quasi-constant time (syntactical equality

in quasi-constant time using classical union-find algorithm)

• complexity linear if only value propagation

(c atomic Boolean constraints in query)

c©Thom Frühwirth – University of Ulm Page 208 – SoSe 2019

Constraint Programming

B Example – Complexity

and(X,Y1,Y2), and(X,Y2,Y3), ..., and(X,YC,YCC), X=Y1

• c Boolean constraints

• X=Y1 leads to Y1=Y2 hence X=Y2

• after step I:

– X=Y1=Y2=...=YI,

– check all constraints with variables X, Y1, Y2, ..., YI

• hence all constraints must be checked

• complexity O(c2) due to equality between variables

c©Thom Frühwirth – University of Ulm Page 209 – SoSe 2019

Constraint Programming

B – Search

• incomplete (polynomial time cannot solve exponential

problems), and(X,Y,Z), and(X,Y,W), neg(Z,W) inconsistency

not detected

and(X,Y,0), and(X,Z,V), and(Y,V,W) not detected W=1

• interleave constraint solving and search for efficency

(in CHR: search part at end of query)

• labeling procedure enum in CHR∨

enum([]) <=> true.

enum([X|L]) <=> bool(X), enum(L).

bool(X) <=> (X=0 ; X=1).

Example:

and(X,Y,Z), and(X,Y,W), neq(Z,W), enum([X,Y,Z,W])

c©Thom Frühwirth – University of Ulm Page 210 – SoSe 2019

Constraint Programming

B – Search Heuristic

Heuristics to improve the labeling (static or dynamic).

• variable ordering:

– choose the variable that occurs most (as input)

– hope that this will cause most simplification

– this heuristic is an instance of the first-fail principle

• value ordering: to improve labeling

– count the cases in which the values 0 and 1 cause

simplification for a variable

– e.g., choosing 0 for the last argument of and is not profitable

– based on the counts, try one of the values first

c©Thom Frühwirth – University of Ulm Page 211 – SoSe 2019

Constraint Programming

B Example – Half-adder

or
and

and

not

A

B

S

C

Expected behavior:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

c©Thom Frühwirth – University of Ulm Page 212 – SoSe 2019

Constraint Programming

B Example – Half-adder (2)

add(A,B,S,C) <=>

or(A,B,X1),

and(A,B,C),

neg(C,X3),

and(X1,X3,S).

or
and

and

not

A

B

S

C

Query: add(1,0,S,C) Answer: S=1,C=0

Query: add(A,B,S,C), C=1 Answer: A=1, B=1, S=0, C=1

Query: add(A,B,S,C), C=0 Answer: or(A,B,S), and(A,B,0)

c©Thom Frühwirth – University of Ulm Page 213 – SoSe 2019

Constraint Programming

B Application – Full-Adder Circuit

• adds three single-digit binary numbers I1,I2,I3 (I3:

carry-in), to a single number with two digits O1,O2, (O2:

overflow or carry-out

• circuit consist of (logical) gates, which correspond to allowed

atomic constraints

add(I1,I2,I3,O1,O2) <=>

and(I1,I2,A1),

xor(I1,I2,X1),

and(X1,I3,A2),

xor(X1,I3,O1),

or(A1,A2,O2).

% or use two half adders

add(I1,I2,I3,O1,O2) <=>

add(I1,I2,X01,X02),

add(I3,X01,O1,Y02),

or(X02,Y02,O2).

Example:

add(I1,I2,I3,O1,O2),I3=0,O2=1 reduces to

I3=0,O2=1,I1=1,I2=1,O1=0

c©Thom Frühwirth – University of Ulm Page 214 – SoSe 2019

Constraint Programming

B Application – Fault Analysis of Full Adder

Each logical gate Gi is associated with a Boolean fault variable Fi

Gate works if it is not faulty: ¬Fi → Gi

• If Fi = 1 then Gi is faulty

• If Fi = 0 then Gi is not faulty

• ¬Fi ↔ Gi is too strict.

¬F1 → (I1 u I2 ↔ A1) And gate G1

¬F2 → (I1 ⊕ I2 ↔ X1) Xor gate G2

¬F3 → (X1 u I3 ↔ A2) And gate G3

¬F4 → (X1 ⊕ I3 ↔ O1) Xor gate G4

¬F5 → (A1 tA2 ↔ O2) Or gate G5

c©Thom Frühwirth – University of Ulm Page 215 – SoSe 2019

Constraint Programming

B – Application Fault Analysis of Full Adder (2)

Hypothesis: At most one gate is faulty:

¬(F1uF2) u ¬(F1uF3) u ¬(F1uF4) u ¬(F1uF5) u ¬(F2uF3) u

¬(F2 uF4) u ¬(F2 uF5) u ¬(F3 uF4) u ¬(F3 uF5) u ¬(F4 uF5)

Inputs: I1 = 0, I2 = 0 and I3 = 1

Outputs: O1 = 0 and O2 = 1

Solution: F1 = 0, F2 = 1, F3 = 0, F4 = 0, F5 = 0 (Gate G2 is faulty)

c©Thom Frühwirth – University of Ulm Page 216 – SoSe 2019

Constraint Programming

B – Application Fault Analysis of Full Adder (3)

faultanalysis(X,Y,Z,O1,O2,F1,F2,F3,F4,F5) <=>

and(X,Y,A1), xor(A1,I1,NF1), imp(NF1,F1),

xor(X,Y,XO1), xor(XO1,I2,NF2), imp(NF2,F2),

and(I2,Z,A2), xor(A2,I3,NF3), imp(NF3,F3),

xor(Z,I2,XO1), xor(XO1,O1,NF4), imp(NF4,F4),

or(I1,I3,OR2), xor(OR2,O2,NF5), imp(NF5,F5),

and(F1,F2,0), and(F1,F3,0), and(F1,F4,0), and(F1,F5,0),

and(F2,F3,0), and(F2,F4,0), and(F2,F5,0),

and(F3,F4,0), and(F3,F5,0),

and(F4,F5,0),

enum([F1,F2,F3,F4,F5]).

(¬Fi → Gi has been rewritten to simplify implementation.)

Idea: replace and’s for Fi’s by single global constraint that counts.

c©Thom Frühwirth – University of Ulm Page 217 – SoSe 2019

Constraint Programming

B Example – Boolean Cardinality

#(L,U,BL,N) if between L and U 1’s in the list BL.

• formula for counting true propositions is exponential in the

number of involved propositions

• global constraint – admits arbitrary number of variables

• can express all other logical operators of form �Ci = 1, e.g.

– negation #(0,0,[C],1) (→ C = 0)

– exclusive-or (xor) #(1,1,[C1,C2],2) (→ neg(C1,C2))

– at most one #(0,1,[C1,...,Cn],N) (→ fault analysis)

– conjunction #(N,N,[C1,...,Cn],N)

– disjunction #(1,N,[C1,...,Cn],N)

Clauses expressible with disjunction and xor cardinality.

c©Thom Frühwirth – University of Ulm Page 218 – SoSe 2019

Constraint Programming

B Example – Boolean Cardinality (2)

triv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.

pos_sat @ #(L,U,BL,N) <=> L=N | all(1,BL).

neg_sat @ #(L,U,BL,N) <=> U=0 | all(0,BL).

pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1) |

0<U, #(L-1,U-1,BL1,N-1).

neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1) |

L<N, #(L,U,BL1,N-1).

c©Thom Frühwirth – University of Ulm Page 219 – SoSe 2019

Constraint Programming

B – Consistency Approaches for Solving Bool

• Generic Consistency Methods (Local Propagation)

translate into constraints over finite integer domains

• Theorem Proving

– SAT problem: propositional Boolean constraint problem in

clausal form

– transformation into clauses in linear time and vice versa

– 2-SAT and Horn-SAT is linear time

– already 3-SAT problem is NP-complete (max. 3 variables

per clause)

– currently most successful algorithms based on randomly

flipping truth value of a variable

c©Thom Frühwirth – University of Ulm Page 220 – SoSe 2019

Constraint Programming

B – Variable Elimination Approaches for Bool

• Integer Programming

– translate into linear polynomial equations over integers

– solved by operations research methods like linear

programming

– wide range of methods exist, but often not incremental

• Boolean Unification

– extension of syntactic unification

– computes a single, most general solution

– needs auxiliary variables – exponential blow-up

Example: For X = Y u Z, Z is not a function of X and Y

(X = Y = 0), but Z = X ⊕ (¬Y u V) (new variable V).

– Boolean expressions encoded efficiently as binary decision

diagrams (BDD)

c©Thom Frühwirth – University of Ulm Page 221 – SoSe 2019

Constraint Programming

Theorem Proving – Resolution

High-Level Implementation in CHR

• Syntax: Clause as ordered list of signed variables,

e.g. ¬x ∨ y ∨ z as cl([-x,+y,+z])

• Boolean CSP in CNF: Conjunction of clauses

• Clause: Disjunction of Literals

• Literal: Positive or negative atomic proposition

c©Thom Frühwirth – University of Ulm Page 222 – SoSe 2019

Constraint Programming

Theorem Proving – Resolution (2)

Resolution

empty_clause @ cl([]) <=> false.

idempotence @ cl(L) \ cl(L) <=> true.

tautology @ cl(L) <=> in(+X,L),in(-X,L)| true.

res @ cl(L1), cl(L2) ==> del(+X,L1,L3),del(-X,L2,L4)|

merge(L3,L4,L),

cl(L).

Auxiliary predicates:

in(A,L): Element A occurs in list L.

del(A,L1,L2): List L1 without element A is L2.

merge(L1,L2,L): Ordered union of L1 and L2 is L3.

c©Thom Frühwirth – University of Ulm Page 223 – SoSe 2019

Constraint Programming

B – Projection/Elimination (1)

Constraints in conjunctive normal form (CNF):

(Y u Z = X) ≡ (¬X t Y) u (¬X t Z) u (X t ¬Y t ¬Z)

Projection onto X and Z:

Clauses:

C0 = {¬X t Z} Y does not appear

C+ = {¬X t Y } Y appears positively

C− = {X t ¬Y t ¬Z} Y appears negatively

Resolution between C+ and C− (eliminate Y): {¬X t ¬Z tX}

Result: (¬X t ¬Z tX) u (¬X t Z) ≡ ¬X t Z ≡ X → Z

Repeated variable elimination can check satisfiability (of course,

exponential).

c©Thom Frühwirth – University of Ulm Page 224 – SoSe 2019

Constraint Programming

B – Projection/Elimination (2)

Specialized Resolution Rule, simply add eliminate

eliminate(X),

cl(L1),cl(L2) ==> del(+X,L1,L3),del(-X,L2,L4)|

merge(L3,L4,L),

cl(L).

Variable removal

eliminate(X), cl(L) <=> (in(+X,L);in(-X,L)) | true.

eliminate(X) <=> true.

eliminate(X) at end of query

c©Thom Frühwirth – University of Ulm Page 225 – SoSe 2019

Constraint Programming

B – Projection/Elimination (3)

?-c([-x,+y]),c([-x,+z]),c([+x,-y,-z]), eliminate(y).

c([-(x),+(z)])

?-c([-x,+y]),c([-x,+z]),c([+x,-y,-z]), eliminate(z).

c([-(x),+(y)])

?-c([-x,+y]),c([-x,+z]),c([+x,-y,-z]),eliminate(x),eliminate(y).

true

?-c([-x,+y]),c([+x]),c([-y]),eliminate(x),eliminate(y).

false

c©Thom Frühwirth – University of Ulm Page 226 – SoSe 2019

Constraint Programming

Rational Tree (RT)

Finite and (certain) infinite terms.

Possibly infinite tree which has a finite set of subtrees.

Example: the infinite tree f(f(f(. . .))) only contains itself.

• no occur-check in early Prolog implementations for efficiency,

unification could loop, e.g., X=̇f(X)

Prolog II: algorithm for resulting terms

• theory based on constraint system E (for finite trees)

• finite representations: as equality constraint, e.g., X=̇f(Y)

and as directed (possibly cyclic) graph, with function symbols

as nodes and arcs from the term to its arguments (arcs labelled

with argument position number)

c©Thom Frühwirth – University of Ulm Page 227 – SoSe 2019

Constraint Programming

Constraint System RT

Domain

Herbrand universe with Herbrand interpretation

Signature

• Infinitely many function symbols (at least one constant).

• Constraint symbols.

– Nullary symbols true, false

– Binary symbol for syntactic equality =̇

c©Thom Frühwirth – University of Ulm Page 228 – SoSe 2019

Constraint Programming

Constraint System RT (2)

Constraint theory

Reflexivity ∀(true→ x=̇x)

Symmetry ∀(x=̇y → y=̇x)

Transitivity ∀(x=̇y ∧ y=̇z → x=̇z)

Compatibility ∀(x1=̇y1 ∧ . . . ∧ xn=̇yn → f(x1, . . . , xn)=̇f(y1, . . . , yn))

Decomposition ∀(f(x1, . . . , xn)=̇f(y1, . . . , yn)→ x1=̇y1 ∧ . . . ∧ xn=̇yn)

Contradiction

(Clash)

∀(f(x1, . . . , xn)=̇g(y1, . . . , ym)→ false) if f 6= g or n 6=
m

c©Thom Frühwirth – University of Ulm Page 229 – SoSe 2019

Constraint Programming

Constraint System RT (3)

Constraint theory (cont)

• CET without occur-check (acyclicity)

– decidable

– satisfaction-complete

– but not complete, e.g. ∃X,Y (X=̇f(X) ∧ Y =̇f(Y) ∧ ¬X=̇Y)

(complete with Maher’s uniqueness axiom about implied

equalities)

Allowed atomic constraints

C ::= true false s=̇t

(s, t: terms over Σ)

c©Thom Frühwirth – University of Ulm Page 230 – SoSe 2019

Constraint Programming

RT – Solved Normal Form

Conjunction of allowed constraints is solved (in solved normal

form):

• false or

• X1=̇t1 ∧ . . . ∧Xn=̇tn (n ≥ 0) (Xi: variables, ti: terms)

– X1, . . . , Xn pairwise distinct (to avoid clashes)

– Xi different to tj if i < j (to avoid cycles)

Each variable occurs at most once on the left and on the right of an

equation, but arbitrary often inside terms.

c©Thom Frühwirth – University of Ulm Page 231 – SoSe 2019

Constraint Programming

RT – Solved Normal Form (2)

Examples:

• not in solved normal form:

f(X, b)=̇f(a, Y),

X=̇t ∧X=̇s,

X=̇Y ∧ Y =̇X

• in solved normal form:

logically equivalent but syntactically different forms:

X=̇Y and Y =̇X

X=̇f(X) and X=̇f(f(X))

X=̇Y ∧ Y =̇a and X=̇a ∧ Y =̇a

c©Thom Frühwirth – University of Ulm Page 232 – SoSe 2019

Constraint Programming

RT – Variable Elimination Constraint Solver

reflexivity @ X eq X <=> var(X) | true.

orientation @ T eq X <=> var(X),X<<T | X eq T.

decomposition @ T1 eq T2 <=> nonvar(T1),nonvar(T2) |

same_functor(T1,T2),

args2list(T1,L1),args2list(T2,L2),

same_args(L1,L2).

confrontation @ X eq T1, X eq T2 <=> var(X),X<<T1,T1=<<T2 |

X eq T1, T1 eq T2.

Satisfaction-complete: produces solved normal form (while not in

solved normal form one of the rules is applicable)

c©Thom Frühwirth – University of Ulm Page 233 – SoSe 2019

Constraint Programming

RT – Variable Elimination Constraint Solver (2)

Auxiliary constraints

• For termination:

s<<t : total strict order on terms that holds at least

– if s and t are different variables

– if depth of s is less than depth of t

(depth: maximum nesting level of function symbols)

• For term manipulation:

– var(T), nonvar(T): T is variable, function term

– same_functor(T1,T2): T1 and T2 have same function

symbol and same arity (functor)

– args2list(T1,L1): L1 is ordered list of arguments of term

T1

(size: number of occurrences of variables and function symbols)

c©Thom Frühwirth – University of Ulm Page 234 – SoSe 2019

Constraint Programming

RT Example – Equating two Terms

h(Y,f(a),g(X,a)) eq h(f(U),Y,g(h(Y),U)))

7→decomposition 7→∗ Y eq f(U), f(a) eq Y, g(X,a) eq g(h(Y),U)

7→orientation Y eq f(U), Y eq f(a), g(X,a) eq g(h(Y),U)

7→decomposition 7→∗ Y eq f(U), Y eq f(a), X eq h(Y), a eq U

7→orientation Y eq f(U), Y eq f(a), X eq h(Y), U eq a

7→confrontation Y eq f(U), f(U) eq f(a), X eq h(Y), U eq a

7→decomposition 7→∗ Y eq f(U), U eq a, X eq h(Y), U eq a

7→confrontation Y eq f(U), U eq a, X eq h(Y), a eq a

7→decomposition 7→∗ Y eq f(U), U eq a, X eq h(Y)

c©Thom Frühwirth – University of Ulm Page 235 – SoSe 2019

Constraint Programming

RT Example – Equating two Terms (2)

X eq f(X), X eq f(f(X))

7→confrontation X eq f(X), f(X) eq f(f(X))

7→decomposition 7→∗ X eq f(X), X eq f(X)

7→confrontation X eq f(X), f(X) eq f(X)

7→decomposition 7→∗ X eq f(X), X eq X

7→reflexivity X eq f(X)

Non-termination without the proper order guards in

confrontation:

X eq f(X), X eq f(f(X))

7→confront/wrong f(f(X)) eq f(X), X eq f(f(X))

7→decomposition 7→∗ f(X) eq X, X eq f(f(X))

7→orientation X eq f(X), X eq f(f(X))

c©Thom Frühwirth – University of Ulm Page 236 – SoSe 2019

Constraint Programming

RT Solver – Correctness

• logical readings of reflexivity and orientation are

consequences of the corresponding axioms Reflexivity and

Symmetry, respectively.

• decomposition is a consequence of the axioms Compatibility,

Decomposition, and Contradiction (Clash)

– same_functor fails if there is a clash

• confrontation is a consequence of Transitivity and Symmetry

– rule chosen over transitivity for efficiency (it does not

increase the number of equations)

– performs limited amount of variable elimination by only

considering l.h.s. of equations

c©Thom Frühwirth – University of Ulm Page 237 – SoSe 2019

Constraint Programming

RT Solver – Confluence

No critical pairs/overlaps between different rules (disjoint guards),

but overlap of confrontation rule with itself

confrontation @ X eq T1, X eq T2 <=> var(X),X<<T1,T1=<<T2 |

X eq T1, T1 eq T2.

Example of critical ancestor state:

X eq T1, X eq T2, X eq

T3,var(X),X<<T1,T1=<<T2,T2=<<T3

• one possible derivation: 7→ X eq T1, T1 eq T2, X eq T3

7→ X eq T1, T1 eq T2, T1 eq T3 (T1 variable or not?)

• another possible derivation: 7→ X eq T1, X eq T2, T2 eq T3

7→ X eq T1, T1 eq T2, T2 eq T3

In practice, both states will lead to the same final state

(since Ti are known and can be ordered).

c©Thom Frühwirth – University of Ulm Page 238 – SoSe 2019

Constraint Programming

Termination and Complexity

Each rule can be applied in constant time (with indexing on left

side variables, for confrontation rule).

reflexivity, orientation rule apply at most once to an equation.

decomposition produces clash or finite number of equations with

terms of smaller size and of smaller depth.

confrontation applies at most v times to second equation until

left side is a function term (in the worst case). Equation size may

double, but depth stays the same. Then only decomposition

applies, reducing the depth.

Hence complexity is exponential in term depth in the worst case.

Unclear if it can happen in practical implementations.

(v: number of different variables in problem)

c©Thom Frühwirth – University of Ulm Page 239 – SoSe 2019

Constraint Programming

Flattening

Flat constraints do not contain nested function terms.

Produce flat normal form for allowed constraints

• Opposite of variable elimination, introduce new auxiliary

variables for nested terms

• Flattening function [.] transforms atomic equality constraint eq

into conjunction of flat equations:

[S eq T] := [X0 eq S] ∧ [X0 eq T]

[X eq T] :=

 X eq T if T is a variable

X eq f(X1, . . . , Xn) ∧
∧n

i=1[Xi eq Ti] if T=f(T1, . . . , Tn)

(X variable, S function term, T term, X0 . . . Xn new variables)

Flattening increases problem size by a constant factor only.

c©Thom Frühwirth – University of Ulm Page 240 – SoSe 2019

Constraint Programming

Flattening for Quadratic Complexity

With flat equations (which have at most one function symbol):

decomposition produces clash or equations between variables only.

confrontation applies at most v times to second equation until

left side is a flat function term (in the worst case). Then only

decomposition applies. Overall, a function term is replaced by

equations for its argument variables.

At most one equation for each function symbol and each variable

occurrence in the problem. Each equation costs at most v.

Hence complexity quadratic in problem size in the worst case.

(v: number of different variables in problem)

Flat function terms can be ordered arbitrarily.

Almost-linear time complexity possible with union-find algorithm.

c©Thom Frühwirth – University of Ulm Page 241 – SoSe 2019

Constraint Programming

RT Application – Program Analysis

In general, rational trees can represent directed graphs, e.g.,

automata.

Here we use rational trees to represent a recursive data type and to

type check terms with it.

A list is defined recursively as

• constant nil

• binary list constructor cons applied to a term of type Element

and to a list

Type of lists

List eq (nil or cons(Element,List)).

(or: binary infix operator separating alternatives)

c©Thom Frühwirth – University of Ulm Page 242 – SoSe 2019

Constraint Programming

RT Application – Program Analysis (2)

Type checker: Term of Type if Term is of type Type

Term of (Type1 or Type2) <=> (Term of Type1 ; Term of Type2).

Term of Type <=> nonvar(Term),nonvar(Type) |

same_functor(Term,Type),

args2list(Term,Args),args2list(Type,Types),

check_args(Args,Types).

Term of Type, Type eq Type1 <=> var(Type) |

Term of Type1, Type eq Type1.

check_args([],[]) <=> true.

check_args([Arg|Args],[Type|Types]) <=>

Arg of Type, check_args(Args,Types).

c©Thom Frühwirth – University of Ulm Page 243 – SoSe 2019

Constraint Programming

RT Application – Program Analysis (3)

• generate the type or lists with

list(List,Element) <=> List eq (nil or cons(Element,List)).

• list(NL,(0 or 1 or ...or 9)) lists over single-digit

numbers

• cons(3,cons(0,nil)) of NL performs a type check:

cons(3,cons(0,nil)) of (nil or cons((0 or 1 or ...

or 9), NL))

– either:

cons(3,cons(0,nil)) of nil (fails)

– or:

cons(3,cons(0,nil)) of cons(0 or 1 or ... or

9,NL)

check_args([3,cons(0,nil)],[0 or 1 or ... or

9,NL])

3 of 0 or 1 or ... or 9, cons(0,nil) of NL
c©Thom Frühwirth – University of Ulm Page 244 – SoSe 2019

Constraint Programming

Feature Terms (FTs)

Feature terms allow to model records in logic (originally from

linguistics).

Motivation

Prolog Herbrand terms.

Pros: universal, flexible data structure

Cons: position-based access, hard to extend

• features: selectors (attributes/name-based access)

• sort : type name of record

• can be represented as graphs:

sorts are nodes, features are arcs

• feature trees can represent rational trees and vice versa

c©Thom Frühwirth – University of Ulm Page 245 – SoSe 2019

Constraint Programming

Constraint System FT

Signature

• Infinitely many constants

• Constraint symbols:

– unary sorts s

– binary features f

– =̇, true, and false

Domain

Infinite set of individuals (constants).

c©Thom Frühwirth – University of Ulm Page 246 – SoSe 2019

Constraint Programming

Constraint System FT (2)

Constraint theory

Equivalence relation = over variables and constants

(refl., symm., trans.)

X f Y ∧X f Z ⇒ Y = Z

a(X) ∧ b(X)⇒ false if a 6= b

Allowed atomic constraints

C ::= true false s(X) X f Y X = Y

(s: sort, f : feature in infix notation, X,Y : variable or constant)

c©Thom Frühwirth – University of Ulm Page 247 – SoSe 2019

Constraint Programming

FT – Solved Normal Form

Conjunction of allowed constraints is solved (in solved normal

form):

• false (due to different sorts)

• if each variable comes in at most one sort constraint and at

most once in the left hand side of an equation or particular

feature constraint

c©Thom Frühwirth – University of Ulm Page 248 – SoSe 2019

Constraint Programming

FT – Solved Normal Form (2)

Example:

person(X) ∧X name Y ∧ Y = leo ∧X livesIn Z ∧munich(Z)∧
X name V ∧ V = sepp

• by CT V = Y , replace V by Y

• by CT Y = leo and Y = sepp leads to false

Note: person(X) ∧X name Y ∧ Y = leo ∧X livesIn Z ∧munich(Z)

can be compactly written as

X:person(name=leo,livesIn=munich)

c©Thom Frühwirth – University of Ulm Page 249 – SoSe 2019

Constraint Programming

FT – Constraint Solver

equal @ X eq Y <=> X=Y.

feature @ X.F.Y \ X.F.Z <=> Y=Z.

sort @ X:S1 \ X:S2 <=> S1=S2.

• – =: eq, =

– s(X): X:s

– X f Y : X.f.Y

• constraint solver uses built-in unification (=) between variables

and constants

• equal: variable elimination

• feature: feature decomposition (functional)

• sort: sort intersection

c©Thom Frühwirth – University of Ulm Page 250 – SoSe 2019

Constraint Programming

FT – Constraint Solver (2)

FT – Properties of Solver

• Correctness: rules obvious logical consequences of

corresponding axioms.

• Termination: obvious, since each rule removes one CHR

constraint.

• No Confluence: no overlaps between different rules, but sort

and feature rule can overlap with themselves, e.g.,

X.F.Y, X.F.Z yields X.F.Y, Y=Z or X.F.Z, Z=Y.

• Complexity: number of rule trials and applications linear in

number of constraints if indexing is used for sorts and

variable-feature pairs. Rule applications take constant time if

built-in equality takes constant time (possible with union-find

algorithm).

c©Thom Frühwirth – University of Ulm Page 251 – SoSe 2019

Constraint Programming

FT – Constraint Solver (3)

Extension: Negation

Added to allowed constraints:

¬s(X)

¬X f (shorthand for ∀Y ¬(X f Y))

Added to formulas of CT:

s(X) ∧ ¬s(X)⇒ false

X f Y ∧ ¬X f ⇒ false

Added to rules of constraint solver:

X:S, not X:S <=> false.

X.F.Z, not X.F <=> false.

c©Thom Frühwirth – University of Ulm Page 252 – SoSe 2019

Constraint Programming

FT – Constraint Solver (4)

Extension: Arity Constraints

Herbrand-Term X = g(Y, Z) can be written as

g(X) ∧X 1 Y ∧X 2 Z.

Forbid additional features like X 3 V by explicitly stating allowed

features (here X{1, 2}) (also useful to explicitly disallow definition

of new features, e.g. X{livesIn,name}.)

Added to allowed constraints:

X{f1, . . . , fn}

(Variant: S{f1, . . . , fn}, S sort not sufficient with free Herbrand

terms)

c©Thom Frühwirth – University of Ulm Page 253 – SoSe 2019

Constraint Programming

FT – Constraint Solver (5)

Extension: Arity Constraints (cont)

Added to formulas of CT:

X F ∧X G⇒ false if F 6= G

X F ∧X f Y ⇒ false if f 6∈ F

Added to rules of constraint solver (Fs, G ordered lists of features):

X in Fs \ X in G <=> Fs=G.

X in Fs, X.F.Y ==> member(F,Fs).

Another possible extension:

Ordered sorted feature trees allow hierarchies (Ait-Kaci et al. 93).

c©Thom Frühwirth – University of Ulm Page 254 – SoSe 2019

Constraint Programming

FT Example – Linguistics

FT use in knowledge representation in linguistics, e.g. to describe

the contents of a sentence.

X = ∃Y

Person

office : Y

home : Y

name :

 first : Leo

last : Smith

Person(X) ∧X office Y ∧X home Y ∧X name N ∧N first S1∧
S1 = Leo ∧N last S2 ∧ S2 = Smith

c©Thom Frühwirth – University of Ulm Page 255 – SoSe 2019

Constraint Programming

Description Logics (DL)

Terminological Reasoning

Rich formalism for knowledge representation (originating in

Brachman’s KL-ONE, 1980s).

Concepts (unary constraints): properties like human, car (not

disjunct).

Roles (binary constraints): relations like child, age (not

functional dependent).

Graph representation: concepts are nodes, roles are arcs.

By default, concepts do not exclude each other.

Rich subset of first order logic to define concepts:

parent isa human and some child is human

Multiple inheritance possible. Related to type systems.

c©Thom Frühwirth – University of Ulm Page 256 – SoSe 2019

Constraint Programming

DL – Knowledge Representation

Two kinds of knowledge:

Terminological knowledge (T-Box)

General background knowledge of the application domain.

Intensional representation (like database scheme).

Concepts are defined by other concepts and restrictions on roles.

T-Box does not contain variables and individuals.

parent isa human and some child is human

Assertional knowledge (A-Box)

Concrete problem-specific knowledge.

Extensional representation (like database extension) that is checked

against T-Box.

Statements about concepts and roles of individuals (objects).

sue:parent, (sue,joe):child

c©Thom Frühwirth – University of Ulm Page 257 – SoSe 2019

Constraint Programming

Constraint System DL

Domain

Infinite set of individuals (constants).

Signature

Infinitely many constants for individuals, concept and role names.

Function symbols and, or, not, every, some, is for building concept

terms involving concept and role names.

Constraint symbols: true, false, isa (definitions) and “:” (assertions).

Allowed Constraints

C ::= true false I : s (I, J) : r

A-Box: I : s membership, (I, J) : r role filler

T-Box: c isa s concept definition with concept name c implemented

as a rule

(I, J : variables or individuals, r role name, s concept term)

c©Thom Frühwirth – University of Ulm Page 258 – SoSe 2019

Constraint Programming

Constraint System DL (2)

Concept Term s

A concept (name) c, or one of:

not s, s and t, s or t, some r is s, every r is s,

where s and t are concept terms.

Constraint Theory

I : not S ↔ ¬(I : S)

I : S1 and S2 ↔ I : S1 ∧ I : S2

I : S1 or S2 ↔ I : S1 ∨ I : S2

I : some R is S ↔ ∃J((I, J) : R ∧ J : S)

I : every R is S ↔ ((I, J) : R→ J : S) (also holds if no (I, J) : R)

C isa S ↔ (I : C ↔ I : S)

c©Thom Frühwirth – University of Ulm Page 259 – SoSe 2019

Constraint Programming

DL – Solved Normal Form

Conjunction of allowed constraints of form

• false

• I : Ci, I : not Cj where Ci, Cj are primitive (undefined)

concepts (Ci 6= Cj)

I : every R is S, (I, J) : R (unchanged)

c©Thom Frühwirth – University of Ulm Page 260 – SoSe 2019

Constraint Programming

DL – Constraint Solver (1)

Direct implementation of theory: A-Box as constraints, T-Box as

rules. (Variant: T-Box as constraints)

Produces solved normal form that shows inconsistency. (Only

membership constraints change.)

Split membership constraints:

I:S1 and S2 <=> I:S1, I:S2.

I:some R is S <=> (I,J):R, J:S.

I:every R is S, (I,J):R ==> J:S.

label, I:S1 or S2 <=> true | (I:S1 ; I:S2), label. % search

I:C \ I:C <=> true. % remove duplicates

c©Thom Frühwirth – University of Ulm Page 261 – SoSe 2019

Constraint Programming

DL – Constraint Solver (2)

Negation

I:not not S <=> I:S.

I:not (S1 and S2) <=> I:not S1 or not S2.

I:not (S1 or S2) <=> I:not S1 and not S2.

I:not (some R is S) <=> I:every R is not S.

I:not (every R is S) <=> I:some R is not S.

Clash Rule

I:not S, I:S <=> false.

For each concept definition C isa S (unfold definitions)

I:C <=> I:S.

I:not C <=> I:not S.

(T-Box as constraint: C isa S \ I:C <=> I:S).

c©Thom Frühwirth – University of Ulm Page 262 – SoSe 2019

Constraint Programming

DL – Family Relationships Example T-Box

male isa not female.

parent isa human and some child is human.

mother isa parent and female.

proud_parent isa parent and every child is phd.

Undefined concepts are called primitive:

female, human and phd.

Implicit concept hierarchy (taxonomy) with multiple inheritance:

parent<human, mother<parent, mother<female,

proud_parent<parent.

Notes:

Cyclic definitions (female isa not male)

Completion by human isa female or male

c©Thom Frühwirth – University of Ulm Page 263 – SoSe 2019

Constraint Programming

DL – Family Relationships Example A-Box

sue:proud_parent, (sue,joe):child, joe:not phd.

- Unfold concept definition proud_parent

sue:parent and every child is phd,...

- Unfold concept definition parent and split and

sue:human, sue:some child is human, sue:every child is

phd,...

- Simplify exists-in restriction some

sue:human, (sue,X):child, X:human, sue:every child is

phd,...

- Propagate value restriction every

X:phd, joe:phd, sue:human, (sue,X):child, X:human,

sue:every child is phd, (sue,joe):child, joe:not phd.

- Clash between joe:phd and joe:not phd

Note: X may be joe, but need not to be.

c©Thom Frühwirth – University of Ulm Page 264 – SoSe 2019

Constraint Programming

DL – Properties

Confluence

Overlaps between clash and duplicate rules lead to easily

joinable critical pairs.

Anytime and Online Algorithm

Computation can be stopped and restarted anytime while getting

closer to solved form. Assertions can be added while program runs.

Parallelism and Concurrency

Rule heads consider only one membership assertion at a time, so

can be executed in parallel. Program is confluent, so order does not

matter. Propagation rules can be applied simultaneously.

c©Thom Frühwirth – University of Ulm Page 265 – SoSe 2019

Constraint Programming

DL – Termination

• Only rewritten constraints are memberships assertions

• Propagation rule: generates finite number of smaller

membership assertions

– Concept term: larger than its proper subterms

– Atomic concept: larger than its defining concept term

– Primitive concept: smallest

• Concept definitions are finite and acyclic by definition, so order

is well-founded

c©Thom Frühwirth – University of Ulm Page 266 – SoSe 2019

Constraint Programming

DL – Complexity

• Worst-case time complexity is at least exponential due to

disjunction in or, the propagation rule every, and repeated

unfolding of same nonprimitive concept.

• For example, consider n T-box definitions in form for

(1 ≤ i ≤ n):

Ci isa some r is ai and some r is bi and every r is

Ci−1

• Role-fillers form binary tree of depth n; each node has a child

of concept a and a child of concept b. Tree is generated by

exponential number of rule applications.

c©Thom Frühwirth – University of Ulm Page 267 – SoSe 2019

Constraint Programming

DL – Some Extensions

Top (universal) and bottom (empty) concepts:

X:top <=> true. X:bot <=> false.

everysome quantifiers:

parent isa everysome child is human

I:everysome R is S <=> I:every R is S, I:some R is S

Role chains (nested roles):

grandfather isa father of father

(I,J):A of B <=> (I,K):A, (K,J):B

Inverse Roles:

(I,J):inv(R) <=> (J,I):R.

Transitive Roles:

(I,K):R, (K,J):R ==> transitive(R) | (I,J):R.

c©Thom Frühwirth – University of Ulm Page 268 – SoSe 2019

Constraint Programming

DL – Some Extensions II

Functional roles (features, attributes) e.g. F=age:

(I,J):F, (I,K):F ==> feature(F) | J=K.

Distinct, disjoint primitive concepts:

I:C1, I:C2 ==> distinct(C1), distinct(C2) | C1=C2.

Nominals (named individuals, singleton concepts):

X:{I1,I2,...,In} ==> (X=I1;X=I2;...;X=In).

Concrete domains (constraints from other domains):

(I,J):smaller ==> I<J.

(I,J):not_smaller ==> I>=J.

(I,A):flight_from, (I,B):flight_to ==> flight(I,A,B).

T-box axioms of inclusion between concept terms, written C v S:

I:C ==> I:S.

c©Thom Frühwirth – University of Ulm Page 269 – SoSe 2019

Constraint Programming

DL – Applications

Assessing the contents of web pages (XML, OWL).

Represent medical knowledge (illnesses).

Configuration of technical systems (e.g. PC peripherals).

c©Thom Frühwirth – University of Ulm Page 270 – SoSe 2019

Constraint Programming

Description Logic with Rules

Combine DL with logic-based rules

• achieves more expressiveness

• allows role-filler assertions that do not have a tree structure,

e.g. definition of uncle role (male sibling of person’s father)

For atoms Ai and Bj , implications of the form:

A1 ∨ . . . An ← B1 ∧Bm

can be translated into propagation rules with disjunction:

B1,...,Bm ==> (A1 ; ...; An)

c©Thom Frühwirth – University of Ulm Page 271 – SoSe 2019

Constraint Programming

Description Logic with Rules: Example

The uncle example yields the CHR rule:

Z:male, (Y,Z):hassibling, (X,Y):hasparent ==> (X,Z):hasuncle.

A concept definition in CHR:

X:uncle <=> (Y,X):hasuncle.

The single previous rule is too weak; CHR only applies rules

left-to-right. Thus additional rules maybe needed:

X:uncle ==> (Y,X):hasuncle.

(Y,X):hasuncle ==> X:uncle.

c©Thom Frühwirth – University of Ulm Page 272 – SoSe 2019

Constraint Programming

Description Logic with Rules: Example II

Contrapositive of a conditional statement is formed by negating

both terms and reversing the direction of inference.

CHR lacks reasoning with contrapositives, e.g. for the rule:

X:beer ==> sean:happy

the contrapositive can be added:

sean:not happy ==> X:not beer

c©Thom Frühwirth – University of Ulm Page 273 – SoSe 2019

Constraint Programming

Description Logic with Rules - Summary

Rule-based DL approaches translate to CHR propagation rules,

whose closure is performed bottom-up.

The rule extension proposals for DL use sophisticated translations

into FOL, making reasoning more difficult than in CHR.

c©Thom Frühwirth – University of Ulm Page 274 – SoSe 2019

Constraint Programming

Linear Polynomial Equations <

Constraint System <

Domain

The set < of real numbers.

Signature

• Function symbols.

– The real numbers 0 and 1

– Unary prefix operators + and −
– Binary infix operators + and ∗

• Constraint symbols.

– Nullary symbols true, false

– Binary symbols =, <,≤, >,≥, 6=

c©Thom Frühwirth – University of Ulm Page 275 – SoSe 2019

Constraint Programming

Constraint System < (2)

Constraint theory

The linear existential fragment of Tarski’s axiomatic theory of real

closed fields for elementary geometry.

Allowed atomic constraints

Linear equations and inequations:

C ::= true false a1 ∗X1 + . . .+ an ∗Xn + b � 0, (n ≥ 0)

• coefficients ai, b ∈ <, ai 6= 0,

• variables X1, . . . , Xn totally ordered in strictly descending order

• � ∈ {=, <,≤, >,≥, 6=}

The l.h.s. of the equation is called (linear) polynomial.

c©Thom Frühwirth – University of Ulm Page 276 – SoSe 2019

Constraint Programming

< – Real closed fields

Decidable constraint theory for real arithmetic from Tarski.

C1 (x+ y) + z = x+ (y + z) associative (+)

C2 x+ 0 = x neutral element (+)

C3 x+ (−1 ∗ x) = 0 inverse element (+)

C4 x+ y = y + x commutative (+)

C5 (x ∗ y) ∗ z = x ∗ (y ∗ z) associative (∗)
C6 x ∗ 1 = x neutral element (∗)
C7 x 6= 0→ ∃y x ∗ y = 1 inverse element (∗)
C8 x ∗ y = y ∗ x commutative (∗)
C9 x ∗ (y + z) = (x ∗ y) + (x ∗ z) distributive

C10 0 6= 1

c©Thom Frühwirth – University of Ulm Page 277 – SoSe 2019

Constraint Programming

< – Real closed fields (2)

O1 ¬(x < x) irreflexive

O2 x < y ∧ y < z → x < z transitive

O3 x < y ∨ x = y ∨ y < x total order

O4 x < y → x+ z < y + z

O5 0 < x ∧ 0 < y → 0 < x ∗ y
R1 0 < x→ ∃y y ∗ y = x

R2
yn 6= 0→ ∃x yn ∗xn +yn−1 ∗xn−1 + · · ·+y0 = 0

for every odd n

c©Thom Frühwirth – University of Ulm Page 278 – SoSe 2019

Constraint Programming

< – Tarski’s theory

• theory is complete and decidable, but intractable

• covers linear and non-linear polynomials

• linear existential fragment is decidable in polynomial time

• but only refers to the real numbers 0 and 1

c©Thom Frühwirth – University of Ulm Page 279 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver

• incremental variants of classical variable elimination algorithms

– Gaussian elimination for equations (cubic complexity in

number of different variables)

– Dantzig’s Simplex algorithm for equations and inequations

(exponential worst case complexity but polynomial on

average)

• implementation problems

– reals: approximated by floating-point numbers, with

unavoidable rounding errors (partial remedy: avoid using

variables for elimination that have a small coefficient)

– rationals: precise, size can grow exponentially in the size of

the problem due to multiplication operations

c©Thom Frühwirth – University of Ulm Page 280 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver (2)

Conjunction of allowed constraints is solved (in solved normal

form):

• false or

• left-most variable of each equation does not appear in any

other equation

Compute solved form by eliminating multiple occurrences of

variables, eliminate variables one by one:

• choose an equation a1 ∗X1 + . . .+ an ∗Xn + b = 0

• make its left-most variable explicit:

X1 = −(a2 ∗X2 + . . .+ an ∗Xn + b)/a1

• replace all other occurrences of X1 by

−(a2 ∗X2 + . . .+ an ∗Xn + b)/a1

• simplify resulting equations into allowed constraints

c©Thom Frühwirth – University of Ulm Page 281 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver (3)

Logical Form of Variable Elimination

a1 ∗X1 + . . .+ an ∗Xn + b1 = 0 ∧
a′1 ∗X ′1 + . . .+ a′i ∗X1 + . . .+ a′n ∗X ′n + b2 = 0

↔
a1 ∗X1 + . . .+ an ∗Xn + b1 = 0 ∧
a′1∗X ′1+. . .+a′i∗(−b1−(a2∗X2 . . .+an∗Xn))/a1+. . .+a′n∗X ′n+b2 = 0

c©Thom Frühwirth – University of Ulm Page 282 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver

eliminate @ A1*X+P1 eq 0 \ PX eq 0 <=>

find(A2*X,PX,P2) |

normalize(A2*(-P1/A1)+P2,P3),

P3 eq 0.

empty @ B eq 0 <=> number(B) | zero(B).

Solver is satisfaction-complete since it produces the solved form.

(A1, A2, B coefficients; X variable; P1, P2, PX polynoms)

c©Thom Frühwirth – University of Ulm Page 283 – SoSe 2019

Constraint Programming

< Example – Elimination

1*X+3*Y+5 eq 0, 3*X+2*Y+8 eq 0

• match eliminate rule

• X in second equation removed via

normalize(3*(-(3*Y+5)/1) + (2*Y+8), P3)

1*X+3*Y+5 eq 0, -7*Y+ -7 eq 0

• match eliminate rule

• Y in first equation removed via

normalize(3*(-(-7)/-7) + (1*X+5), P3)

1*X+2 eq 0, -7*Y+ -7 eq 0

c©Thom Frühwirth – University of Ulm Page 284 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver (6)

• terminates

– finite number of variables for given constraint problem, no

new variables are introduced during derivation

– variables ordered strictly descending, variable of an equation

is replaced by several strictly smaller ones

• not confluent

– for two equations with same left-most variable, eliminate

can be applied in two different ways, resulting in different

pairs of equations

c©Thom Frühwirth – University of Ulm Page 285 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver (7)

< – O(c2v2) Complexity

• at most cv occurrences of variables in a state of derivation (c

and v do not increase during derivation)

• at most cv applications of eliminate rule (removes a single

occurrence of a variable from one equation)

– find complexity linear in v

– normalize complexity linear in v

• O(cv) complexity in trying to apply the rule to a given

constraint

• O(c) rule application attempts (at most c possible partner

constraints), if indexing on variables is used

– find complexity linear in v

(c equations, v different variables)

c©Thom Frühwirth – University of Ulm Page 286 – SoSe 2019

Constraint Programming

< – Variable Elimination Constraint Solver (8)

< – Determined Variables

determine @ A*X+B eq 0 <=> number(B) | X is -B/A.

determined @ P eq 0 <=> find(A*X,P,P1), number(X) |

normalize(A*X+P1,P2), P2 eq 0.

c©Thom Frühwirth – University of Ulm Page 287 – SoSe 2019

Constraint Programming

< – Inequations

• flatten inequation into equation and inequation on one slack

variable

– inequation replaced by equation with added slack variable

– P � 0 flattened into P = S ∧ S � 0, where

� ∈ {<,≤, >,≥, 6=}
– Example: P ≥ 0 is rewritten into P = S ∧ S ≥ 0

• then apply solver for equations and ignore the inequations

• until values for the slack variables are known (determination)

• no longer satisfaction-complete: slack-only equations may be

inconsistent even if different from false in solved form.

Example: 3 ∗ S1+4 ∗ S2+0=0 ∧ S1 ≥ 0 ∧ S2 > 0 is inconsistent

c©Thom Frühwirth – University of Ulm Page 288 – SoSe 2019

Constraint Programming

< – Inequations (2)

Equation with only non-negative slack variables can be simplified if

• all coefficients have same sign

Examples:

• 3 ∗ S1+4 ∗ S2+0=0 ∧ S1 ≥ 0 ∧ S2 ≥ 0

• 2 ∗ S1 + 3 ∗ S2 + 1 = 0 ∧ S1 ≥ 0 ∧ S2 ≥ 0 is inconsistent

But: Incomplete as multiple equations are not considered:

−S1 + S2 = 2 ∧ S3 + S2 = 1 (variable S2 not in first position)

c©Thom Frühwirth – University of Ulm Page 289 – SoSe 2019

Constraint Programming

< – Inequations (3)

satisfaction-completeness in the presence of slack-only equations

• introduce a more strict solved form (as done in CHIP) (for

Si ≥ 0)

– slack variables in all equations reordered (and resolved) s.t.

coefficient of left-most slack variable has different sign than

the constant

– inconsistent, if this reordering is not possible

– reordering may affect termination

• do more variable elimination to derive all implicit equalities (as

done in CLP(<)), e.g. Fourier Elimination

c©Thom Frühwirth – University of Ulm Page 290 – SoSe 2019

Constraint Programming

< – Fourier Elimination

Set of linear inequations:

C = C0 ∪ C+ ∪ C−.

Projection onto var(C) \ {Y }:

Clauses:

C0 Y does not appear

C+ inequations Y ≤ t1 appear

C− inequations t2 ≤ Y appear

Resolution between C+ and C− (eliminate Y):

CY = {t2 ≤ t1 | t2 ≤ Y ∈ C−, Y ≤ t1 ∈ C+}

Result:

C = C0 ∪ CY

c©Thom Frühwirth – University of Ulm Page 291 – SoSe 2019

Constraint Programming

< Example – Fourier Elimination

Diamond:

X + Y ≤ 1 X − Y ≤ 1

−X + Y ≤ 1 −X − Y ≤ 1

Split:

C0 = {}
C+ = {Y ≤ 1−X,Y ≤ 1 +X}
C− = {X − 1 ≤ Y,−1−X ≤ Y }

X

Y

1-1

1

-1

Fourier elimination:

X − 1 ≤ Y and Y ≤ 1−X yield X ≤ 1

X − 1 ≤ Y and Y ≤ 1 +X yield −1 ≤ 1

−1−X ≤ Y and Y ≤ 1−X yield −1 ≤ 1

−1−X ≤ Y and Y ≤ 1 +X yield −1 ≤ X
c©Thom Frühwirth – University of Ulm Page 292 – SoSe 2019

Constraint Programming

< Example – Fourier Elimination (2)

A1*X+P1 >= 0, XP >= 0 ==>

find(A2*X,XP,P2),

opposite_sign(A1,A2) |

compute(P2-(P1/A1)*A2,P3),

P3 >= 0.

B >= 0 <=> number(B) | geq(B).

Example:

1*X+1*Y+0 >= 0, -1*X+1*Y+0 >= 0

compute((1*Y+0) - ((1*Y+0)/1)*-1,P3)

1*X+1*Y+0 >= 0, -1*X+1*Y+0 >= 0, 2*Y+0 >= 0

c©Thom Frühwirth – University of Ulm Page 293 – SoSe 2019

Constraint Programming

c©Thom Frühwirth – University of Ulm Page 294 – SoSe 2019

Constraint Programming

< – Combination of Algorithms

Fourier’s Algorithm for >=

A1*X+P1 >= 0, XP >= 0 ==>

find(A2*X,XP,P2),

opposite_sign(A1,A2) |

compute(P2-

(P1/A1)*A2,P3),

P3 >= 0.

Gaussian Elimination for =

A1*X+P1 = 0 \ XP = 0 <=>

find(A2*X,XP,P2) |

compute(P2-

(P1/A1)*A2,P3),

P3 = 0.

Bridge Rule for = and >=

A1*X+P1 = 0 \ XP >= 0 <=>

find(A2*X,XP,P2) |

compute(P2-

(P1/A1)*A2,P3),

P3 >= 0.

Redundant Inequations

A1*X+P1 >= 0 \ XP >= 0 <=>

find(A2*X,XP,P2),

\+opposite_sign(A1,A2),

compute(P2-

(P1/A1)*A2,P3),

number(P3), P3 >= 0 | true.

c©Thom Frühwirth – University of Ulm Page 295 – SoSe 2019

Constraint Programming

< – Optimization and Related Approaches

• move from one solution to the next better one until an

optimum is found, not directly suitable for implementation

inside constraint solvers

– linear programming with Simplex algorithm: find the

solution that maximizes a given objective function (linear

polynom)

– barrier or interior-point method: non-linear programming

• symbolic arithmetic software packages like Mathematica, Maple

and CPLEX

– more solving power

– not tightly integrated in a programming language for

solving conjunctions of allowed constraints incrementally

and efficiently

– successfully loosely coupled with the CLP language Eclipse

at IC-PARC and in the ILOG Optimization Suite
c©Thom Frühwirth – University of Ulm Page 296 – SoSe 2019

Constraint Programming

< Application – Finance

% D: Amount of Loan, Debt, Principal

% T: Duration of loan in months

% I: Interest rate per month

% R: Rate of payments per month

% S: Balance of debt after T months

mortgage(D, T, I, R, S) <=>

T = 0,

D = S

;

T > 0,

T1 = T - 1,

D1 = D + D*I - R,

mortgage(D1, T1, I, R, S).

c©Thom Frühwirth – University of Ulm Page 297 – SoSe 2019

Constraint Programming

< Application – Finance (2)

• mortgage(100000,360,0.01,1025,S) yields S=12625.90.

• mortgage(D,360,0.01,1025,0) yields D=99648.79.

• S=<0, mortgage(100000,T,0.01,1025,S)

yields T=374, S=-807.96.

• mortgage(D,360,0.01,R,0) yields R=0.0102861198*D.

• If the interest rate I is unknown, the equation D1 = D + D*I

- R will be non-linear after one recursion step, since D1, the

new D, is not determined either.

c©Thom Frühwirth – University of Ulm Page 298 – SoSe 2019

Constraint Programming

Finite Domains FD

Basic Idea

• each variable takes its value from a given, finite set

• integers for values allows for arithmetic expressions as

constraints

• constraint propagation proceeds by removing values from the

sets of possible values that do not participate in any (partial)

solution

c©Thom Frühwirth – University of Ulm Page 299 – SoSe 2019

Constraint Programming

FD – History

• many real-life combinatorial problems

– scheduling and planning

• synthesis of LP and finite-domain constraint networks as

explored in artificial intelligence research since the late 1960s.

• appeared in one of the first CLP languages CHIP

• Other influential languages clp(FD) and cc(FD)

c©Thom Frühwirth – University of Ulm Page 300 – SoSe 2019

Constraint Programming

Constraint System FD

Domain

The set Z of integers.

Signature

• Function symbols.

– Constant 0 and unary successor function s

– Lists (used for enumeration domains)

– Binary infix operators + and .. (for interval domains)

• Constraint symbols.

– Nullary symbols true, false

– Binary symbols =, <,≤, >,≥, 6=, and in (for domains)

Interpretation maps arithmetic expressions to integers.

c©Thom Frühwirth – University of Ulm Page 301 – SoSe 2019

Constraint Programming

Constraint System FD (2)

Allowed atomic constraints

Linear equations and inequations:

C ::= true false X in n..m X in [k1, . . . , kl] X�Y X+Y=Z

n, m, k1, . . . , kl: integers (l ≥ 0)

� ∈ {=, <,>,≤,≥, 6=}
X, Y and Z: pairwise distinct variables

domain constraint X in D: X ∈ D (D: given finite domain)

• enumeration domain constraint X in [k1, . . . , kl]:

values of X explicitly enumerated

• interval domain constraint X in n..m:

values of X in interval n..m (bounds included)

c©Thom Frühwirth – University of Ulm Page 302 – SoSe 2019

Constraint Programming

Constraint System FD (3)

Constraint theory: Presburger Arithmetic

0 = s(X)→ ⊥

X = X

X = Y → s(X) = s(Y)

s(X) = s(Y)→ X = Y

X = Y ∧ Y = Z → X = Z

X + 0 = X

X + s(Y) = s(X + Y)

Decidable and complete CT for integer linear arithmetic.

Peano arithmetic adds ∗ and induction principle – incomplete.

Gödel: Any consistent extension of Peano arithmetic is incomplete.

c©Thom Frühwirth – University of Ulm Page 303 – SoSe 2019

Constraint Programming

Constraint System FD (4)

Constraint theory

Presburger’s arithmetic extended by

• 0 < s(X), s(X) ≤ s(Y)↔ X ≤ Y , . . .

• X in n..m↔ n≤X ∧X≤m

• X in [k1, . . . , kl]↔ X=k1 ∨ . . . ∨X=kl

Empty domain X in [] or X in n..m with n > m is unsatisfiable.

c©Thom Frühwirth – University of Ulm Page 304 – SoSe 2019

Constraint Programming

FD Interval vs. Enumeration Domain

Different implementations:

• interval domain

– constraint simplification performed only on interval bounds

• enumeration domain

– each element in the enumeration considered

– allow more simplification (tighter domains)

– only tractable for sufficiently small enumerations

Example:

• X in [1, 2, 3] ∧X 6=2 yields tighter domain constraint X in [1, 3]

• X in 1..3 ∧X 6=2: no propagation since interval bounds do not

change

c©Thom Frühwirth – University of Ulm Page 305 – SoSe 2019

Constraint Programming

FD Flat Normal Form, Linear Polynomial

• allowed atomic constraints in flat normal form and integers are

not allowed in the place of variables

• determined variable (X=v) is expressed by a domain constraint

X in [v] or X in v..v.

• linear polynomial equation can be expressed as a conjunction of

allowed constraints

– multiply coefficients of polynomial s.t. they are all integers

– rewrite multiplications as sums, e.g., 3X becomes

X +X +X

– flatten the resulting expression, e.g., X+X+Y >5 becomes

W>F ∧X+V=W ∧X+Y=V ∧ F in [5]

c©Thom Frühwirth – University of Ulm Page 306 – SoSe 2019

Constraint Programming

Constraint Networks

Binary constraint network:

• Variables

• Binary constraints between variables

The network can be represented by a directed constraint graph

where

• Nodes: variables

• Arcs: binary constraints

Solution of a constraint network:

Assignment of values to variables that satisfies all constraints

c©Thom Frühwirth – University of Ulm Page 307 – SoSe 2019

Constraint Programming

FD – Example Consistency

laender.ps

Map Coloring Problem

faerbe.ps

c©Thom Frühwirth – University of Ulm Page 308 – SoSe 2019

Constraint Programming

FD – Arc Consistency

Atomic constraint c(X1, . . . , Xn) (hyper-)arc consistent with

respect to a conjunction of enumeration domain constraints

X1 in D1 ∧ . . . ∧ Xn in Dn, if for all i ∈ {1, . . . , n} and for all

values vi in Di (vi ∈ {k1i, . . . , kli}) constraint

∃(X1 in D1 ∧ . . . ∧Xi=vi ∧ . . . ∧ Xn in Dn ∧ c(X1, . . . , Xn)) is

satisfiable, i.e. if for each variable in the constraint and for each

value in the domain of the variable, there exist values in the

domains of the other variables such that the constraint is satisfied.

Every value of every domain takes part in a solution

(X1, . . . , Xn: pairwise distinct variables)

c©Thom Frühwirth – University of Ulm Page 309 – SoSe 2019

Constraint Programming

FD – Arc Consistency (2)

Logically, each domain is the projection of the constraints.

∃−Xi (c(X1, . . . , Xn) ∧X1 in D1 ∧ · · · ∧Xn in Dn)→ Xi in Di

A conjunction of constraints is arc consistent if each atomic

constraint in it is arc consistent.

c©Thom Frühwirth – University of Ulm Page 310 – SoSe 2019

Constraint Programming

FD – Arc Consistency (3)

Examples:

• X in [1, 2, 3] ∧ X 6=2 not arc consistent

But: X in [1, 3] ∧X 6=2 arc consistent

• X in [1, 2, 3] ∧ Y in [1, 2, 3] ∧ X<Y not arc consistent

But: X in [1, 2] ∧ Y in [2, 3] ∧ X<Y arc consistent

c©Thom Frühwirth – University of Ulm Page 311 – SoSe 2019

Constraint Programming

FD – Arc Consistency (4)

Limitations:

• must rename apart multiple occurrences of same variable

X 6=X represented by X 6=Y ∧X=Y

• arc consistency does not imply satisfiability (global

consistency):

X in D ∧ Y in D ∧X 6=Y ∧X=Y arc consistent for all |D| > 1

• arc consistency sensitive to flattening:

X in [1, 2] ∧ Z in [2, 3, 4] ∧ 2X=Z not arc consistent

But:

X in [1, 2] ∧ Y in [1, 2] ∧ Z in [2, 3, 4] ∧ X=Y ∧ X+Y=Z

arc consistent

c©Thom Frühwirth – University of Ulm Page 312 – SoSe 2019

Constraint Programming

FD – Arc Consistency (5)

Local Consistency Methods

Look at a small, fixed number of variables and constraints:

• Use them to propagate new, redundant constraints,

• Simplify the new constraints with old constraints

• Reconsider the changed old constraints until no more change

(fixpoint reached)

Local consistency (Propagation) + Search (Labeling, Enumeration)

= Complete Solver (Global consistency)

c©Thom Frühwirth – University of Ulm Page 313 – SoSe 2019

Constraint Programming

FD – Arc Consistency (6)

local-consistency algorithm = local propagation algorithm

• make atomic constraint arc consistent by deleting values from

domain of its variables that do not participate in any solution

• make conjunction of constraints arc consistent by making each

atomic constraint arc consistent

• worst case time complexity O(cdn) (c: number of at most n-ary

constraints, d: size of largest domain)

c©Thom Frühwirth – University of Ulm Page 314 – SoSe 2019

Constraint Programming

FD – Arc Consistency (7)

Achieving Arc Consistency

An algorithm based on the logical formulation:

X1 :: D1 ∧ . . . ∧Xi :: Di ∧ . . . ∧Xn :: Dn

∧ c(X1, . . . , Xn) → Xi :: D′i
Then D′i ∩Di is the new domain.

Example:

Domain constraints: X :: [1, 2, 3], Y :: [1, 2, 3], Z :: [1, 2, 3]

Binary constraints: X < Y ∧ Y < Z ∧ Z ≤ 2

1. X < Y implies X :: [1, 2] and Y :: [2, 3]

2. Z ≤ 2 implies Z :: [1, 2]

3. Y < Z implies Y :: [] and Z :: []

c©Thom Frühwirth – University of Ulm Page 315 – SoSe 2019

Constraint Programming

FD – Global Constraints

Take arbitrary number of variables as arguments

• alldifferent (X1, . . . , Xn) logically equivalent to∧
1≤i<j≤nXi 6=Xj

• arc consistency does not detect unsatisfiability of

X1 6=X2 ∧X1 6=X3 ∧X2 6=X3 when the variables are constrained

to the same domain of two values

• sophisticated algorithms for global constraints achieve more

propagation than arc consistency and detect unsatisfiability in

this case

c©Thom Frühwirth – University of Ulm Page 316 – SoSe 2019

Constraint Programming

FD – Bounds Consistency

For interval domains, a weaker but analogous form of arc

consistency proves useful.

Atomic constraint c(X1, . . . , Xn) is bounds (or: box) consistent with

respect to a conjunction of interval domain constraints

X1 in D1 ∧ . . . ∧ Xn in Dn, if for all i ∈ {1, . . . , n} and for all

bounds vi in Di (Di = ni..mi, vi ∈ {ni,mi}) the constraint

∃(X1 in D1 ∧ . . . ∧Xi=vi ∧ . . . ∧ Xn in Dn ∧ c(X1, . . . , Xn)) is

satisfiable.

(X1, . . . , Xn: pairwise distinct variables)

c©Thom Frühwirth – University of Ulm Page 317 – SoSe 2019

Constraint Programming

FD – Bounds Consistency (2)

A conjunction of constraints is bounds consistent if each atomic

constraint in it is bounds consistent.

Analogously to arc consistency enforcement, constraints can be

made bounds consistent by tightening their interval domains.

Examples:

• X in 1..3 ∧ X 6=2 is bounds consistent

• – X in 1..3 ∧ Y in 1..3 ∧X<Y is not bounds consistent

– X in 1..2 ∧ Y in 2..3 ∧ X<Y is bounds consistent

• X in D ∧ Y in D ∧ X 6=Y ∧ X=Y is bounds consistent for

all |D| > 1

c©Thom Frühwirth – University of Ulm Page 318 – SoSe 2019

Constraint Programming

FD – Local-Propagation Constraint Solver for

Interval Domains

• in, le, eq, ne, add: CHR constraints

• <, >, =<, >=,\=: built-in arithmetic constraints

• min, max, +, -: built-in arithmetic functions

• rules for bounds consistency affect interval in constraints only

• rules based on interval arithmetic

inconsistency @ X in A..B <=> A>B | false.

intersection @ X in A..B, X in C..D <=>

X in max(A,C)..min(B,D).

c©Thom Frühwirth – University of Ulm Page 319 – SoSe 2019

Constraint Programming

FD Interval Domains – Inequalities

Sample rules for inequalities:

le @ X le Y, X in A..B, Y in C..D <=> B>D |

X le Y, X in A..D, Y in C..D.

le @ X le Y, X in A..B, Y in C..D <=> C<A |

X le Y, X in A..B, Y in A..D.

eq @ X eq Y, X in A..B, Y in C..D <=> A\=C |

X eq Y, X in max(A,C)..B, Y in max(C,A)..D.

eq @ X eq Y, X in A..B, Y in C..D <=> B\=D |

X eq Y, X in A..min(B,D), Y in C..min(D,B).

ne @ X ne Y, X in A..B, Y in C..D <=> A=C,C=D |

X ne Y, X in (A+1)..B, Y in C..D.

c©Thom Frühwirth – University of Ulm Page 320 – SoSe 2019

Constraint Programming

FD Interval Domains – Inequalities (2)

Example:

A in 2..3, B in 1..2, A le B

7→le B in 1..2, A le B, A in 2..2

7→le A le B, A in 2..2, B in 2..2.

c©Thom Frühwirth – University of Ulm Page 321 – SoSe 2019

Constraint Programming

FD Interval Domains – Add

X+Y=Z represented in relational form as add(X,Y,Z):

add @ add(X,Y,Z), X in A..B, Y in C..D, Z in E..F <=>

not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D) |

add(X,Y,Z),

X in max(A,E-D)..min(B,F-C),

Y in max(C,E-B)..min(D,F-A),

Z in max(E,A+C)..min(F,B+D).

Guard negates condition that describes arc consistency of add.

c©Thom Frühwirth – University of Ulm Page 322 – SoSe 2019

Constraint Programming

FD Interval Domains – Add (2)

Examples

• A in 1..3, B in 2..4, C in 0..4, add(A,B,C) 7→add

add(A,B,C), A in 1..2, B in 2..3, C in 3..4

• X in 1..1000, Y in 1..1000, Z in 1..1000,

X eq Z, add(X,Y,Z) 7→∗

...

c©Thom Frühwirth – University of Ulm Page 323 – SoSe 2019

Constraint Programming

FD Interval Domains – Termination

• rules inconsistency and intersection remove one interval

constraint each

• assume that remaining rules deal with non-empty intervals only

• in each rule, at least one interval in the body is strictly smaller

than the corresponding interval in the head, while the other

intervals remain unaffected

FD Interval Domains – Confluence

The solver is confluent provided the intervals are given.

c©Thom Frühwirth – University of Ulm Page 324 – SoSe 2019

Constraint Programming

FD Interval Domains – Complexity (1)

• arithmetic built-in constraints take constant time to compute

• find domain of a variable in constant time using indexing

• each rule application or try takes constant time

• – w = m− n+ 1: maximum width (size) of constraint

X in n..m

– v: number of different variables, c: number of constraints

w, c and v do not increase during derivation

c©Thom Frühwirth – University of Ulm Page 325 – SoSe 2019

Constraint Programming

FD Interval Domains – Complexity (1)

• worst number of rule applications is O(vw), not dependent on

number of constraints (v can not exceed O(c))

• there are at most O(c) rule tries

• worst case time complexity is O(cvw)

Example:

X in 1..1000, Y in 1..1000, X le Y, X eq Y

7→ X in 1..999, Y in 2..1000, X le Y, X eq Y

7→ ...

c©Thom Frühwirth – University of Ulm Page 326 – SoSe 2019

Constraint Programming

FD – Local-Propagation Constraint Solver for

Enumeration Domains

inconsistency @ X in [] <=> false.

intersection @ X in L1, X in L2 <=>

intersection(L1,L2,L3), X in L3.

le @ X le Y, X in L1, Y in L2 <=> max(L1) > max(L2) |

filter_max(L1,L2,L3),

X le Y, X in L3, Y in L2.

...

(filter_max removes all values from a list that are larger than all

values in another list)

c©Thom Frühwirth – University of Ulm Page 327 – SoSe 2019

Constraint Programming

FD Example – Enumeration Domains

• X le Y, X in [4,6,7], Y in [3,7] 7→∗

X le Y, X in [4,6,7], Y in [7]

• X le Y, X in [2,3,4,5], Y in [1,2,3] 7→∗

X le Y, X in [2,3], Y in [2,3]

• X le Y, X in [2,3,4], Y in [0,1] 7→∗

false

c©Thom Frühwirth – University of Ulm Page 328 – SoSe 2019

Constraint Programming

FD Enumeration Domains – eq and add

eq @ X eq Y, X in L1, Y in L2 <=> diff(L1,L2) |

intersection(L1,L2,L3),

X eq Y, X in L3, Y in L3.

add @ add(X,Y,Z), X in L1, Y in L2, Z in L3 ==>

all_substractions(L3,L2,L4),

all_substractions(L3,L1,L5),

all_additions(L1,L2,L6),

not (L1 se L4, L2 se L5, L3 se L6),

|

X in L4, Y in L5, Z in L6.

(se: set equality)

c©Thom Frühwirth – University of Ulm Page 329 – SoSe 2019

Constraint Programming

FD Enumeration Domains – Termination, Confluence

Termination and confluence similar to interval domain solver.

FD Enumeration Domains – Complexity

• replace interval width w by maximum size of an enumeration

domain d

• built-in constraints take up to O(d2) for operations on

arbitrarily large enumeration domains

• worst time complexity is O(cvd3)

c©Thom Frühwirth – University of Ulm Page 330 – SoSe 2019

Constraint Programming

FD – Search

Use search to achieve satisfaction-completeness.

enum([]) <=> true.

enum([X|Xs]) <=> indomain(X), enum(Xs).

indomain(X), X in [V|L] <=> L=[_|_] |

(X in [V] ; X in L, indomain(X)).

For interval domains, search is usually done by splitting intervals in

two halves until bounds of interval are the same

indomain(X), X in A..B <=> A<B |

C is (A+B)//2,

(X in A..C ; X in (C+1)..B), indomain(X).

The guards ensure termination.

c©Thom Frühwirth – University of Ulm Page 331 – SoSe 2019

Constraint Programming

FD – Implementations

• linear polynomial equations are allowed as constraints

• hybrid, compact form of domains is used in implementations

• domain is list of intervals, so an interval can have holes since it

can be split if a value inside the interval needs to be removed

• for small enumeration domains, bit vectors can be used

c©Thom Frühwirth – University of Ulm Page 332 – SoSe 2019

Constraint Programming

FD Application – n-Queens Problem

Place n queens q1, . . . , qn on an n×n chess board, such that they do

not attack each other.

1
2
3
4

q1 q2 q3 q4

q1, . . . , qn ∈ {1, . . . , n}

∀ i 6=j. qi 6=qj ∧ |qi − qj |6=|i− j|

• no two queens on same row, column or diagonal

– each row and each column with exactly one queen

– each diagonal at most one queen

• qi: row position of the queen in the i-th column

c©Thom Frühwirth – University of Ulm Page 333 – SoSe 2019

Constraint Programming

FD Application – n-Queens Problem (2)

constraints solve/2, queens/1, safe/3, no_attack/3.

solve(N,Qs) <=> make_domains(Qs,N), queens(Qs), enum(Qs).

queens([]) <=> true.

queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).

safe(X,[],N) <=> true.

safe(X,[Y|Qs],N) <=> no_attack(X,Y,N), NP1 is N+1,

safe(X,Qs,NP1).

no_attack(X,Y,N) <=> X ne Y, VN in N..N,

add(X,VN,XPN), XPN ne Y,

add(Y,VN,YPN), YPN ne X.

c©Thom Frühwirth – University of Ulm Page 334 – SoSe 2019

Constraint Programming

Application – n-Queens Problem (3)

solve(4,[Q1,Q2,Q3,Q4])

• make_domains produces

Q1 in [1,2,3,4], Q2 in [1,2,3,4]

Q3 in [1,2,3,4], Q4 in [1,2,3,4]

• safe adds noattack producing ne constraints

• label called for labeling

• [Q1,Q2,Q3,Q4] = [2,4,1,3], [Q1,Q2,Q3,Q4] = [3,1,4,2]

1
2
3
4

•
•

•
•

q1 q2 q3 q4

1
2
3
4

•
•

•
•

q1 q2 q3 q4

c©Thom Frühwirth – University of Ulm Page 335 – SoSe 2019

Constraint Programming

Application – Send More Money (1)

S E N D

+ M O R E

= M O N E Y

Replace distinct letters by distinct digits,

numbers have no leading zeros.

c©Thom Frühwirth – University of Ulm Page 336 – SoSe 2019

Constraint Programming

Application – Send More Money (2)

:- use_module(library(clpfd)).

send([S,E,N,D,M,O,R,Y]) :-

gen_domains([S,E,N,D,M,O,R,Y],0..9),

S #\= 0, M #\= 0,

all_distinct([S,E,N,D,M,O,R,Y]),

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y,

labeling([],[S,E,N,D,M,O,R,Y]).

c©Thom Frühwirth – University of Ulm Page 337 – SoSe 2019

Constraint Programming

FD – Scheduling

• planning of temporal order of tasks (jobs) in presence of limited

resources

– task, e.g., production step or lecture

– resource e.g., a machine, electrical energy, or lecture room

– tasks compete for limited resources

– dependencies between tasks

– find a schedule with an optimal value for a given objective

function (measuring time or use of other resources)

• job shop scheduling problem

– tasks have fixed duration and cannot be interrupted

– resources are machines for at most one task at a time

– objective is to minimize the overall production time that is

needed to accomplish all the tasks

c©Thom Frühwirth – University of Ulm Page 338 – SoSe 2019

Constraint Programming

FD Scheduling – Job Shop

• task Ti with Si + di = Ei (0 ≤ Si, Ei ≤ maxtime)

– Si: starting time

– di: duration (known)

– Ei: end time

• precedence constraint Si + di ≤ Sj :

– task Ti must terminate before task Tj starts

– partial order between tasks

• capacity constraint ct(Si,di,Sj,dj)

– Si + di ≤ Sj ∨ Sj + dj ≤ Si:

tasks Ti and Tj cannot be processed at the same time

– exponential complexity if disjunction is implemented by

search

– often encoded by a special finite-domain constraint

c©Thom Frühwirth – University of Ulm Page 339 – SoSe 2019

Constraint Programming

FD Example – Job Shop

• query: S1::1..6, S2::1..10, ct(S1,7,S2,6)

disjunction in ct(S1,7,S2,6) yields two cases:

– S1 is before S2: S1::1..3, S2::8..10

– S2 is before S1: inconsistent

• query: S1::0..9, S2::4..9, S3::4..10, ct(S1,5,S2,5)

ct(S1,5,S3,5), ct(S2,5,S3,5)

– only solution: S1=0, S2=5, S3=10

c©Thom Frühwirth – University of Ulm Page 340 – SoSe 2019

Constraint Programming

FD Scheduling – More things to cope with

• additional constraints to model

– set-up times

– release times

– deadlines

– renewable resources

– non-availability

– resources at certain times

• most can be modeled as arbitrary logical formulas over

precedence constraints

• often implemented as global constraints

c©Thom Frühwirth – University of Ulm Page 341 – SoSe 2019

Constraint Programming

Modeling

How to model a problem?

• Several models for a problem

– different variables

– different constraints

• efficiency depends on

– number of variables and constraints

– type of constraints (algorithm)

• flexibility, maintainability

c©Thom Frühwirth – University of Ulm Page 342 – SoSe 2019

Constraint Programming

Modeling Example – Simple Allocation Problem

• 4 workers: w1, w2, w3, w4

• 4 products: p1, p2, p3, p4

• A worker is allocated a product and vice versa.

Profit of worker wi with product pj is given by

p1 p2 p3 p4

w1 7 1 3 4

w2 8 2 5 1

w3 4 3 7 2

w4 3 1 6 3

Problem is solved when total profit is at least 19.

c©Thom Frühwirth – University of Ulm Page 343 – SoSe 2019

Constraint Programming

Modeling with Boolean Variables

• operations research-method: 16 Boolean variables Bij

• Bij = 1: worker i is allocated to product j

Model with linear arithmetic constraints:

• worker wi is allocated to a single product:

∀i : Bi1 +Bi2 +Bi3 +Bi4 = 1

• product pj is allocated to a single worker:

∀j : B1j +B2j +B3j +B4j = 1

c©Thom Frühwirth – University of Ulm Page 344 – SoSe 2019

Constraint Programming

Modeling with Boolean Variables (2)

• total profit:

P = 7 ∗B11 +B12 + 3 ∗B13 + 4 ∗B14

+ 8 ∗B21 + 2 ∗B22 + 5 ∗B23 +B24

+ 4 ∗B31 + 3 ∗B32 + 7 ∗B33 + 2 ∗B34

+ 3 ∗B41 +B42 + 6 ∗B43 + 3 ∗B44

P ≥ 19

• we compute all solutions (no optimization)

c©Thom Frühwirth – University of Ulm Page 345 – SoSe 2019

Constraint Programming

Modeling with Boolean Variables (3)

assignment(List) :-

List = [B11,B12,B13,B14,B21,B22,B23,B24,

B31,B32,B33,B34,B41,B42,B43,B44],

gen_domains(List,0..1),

B11 + B12 + B13 + B14 #= 1, B21 + B22 + B23 + B24 #= 1,

B31 + B32 + B33 + B34 #= 1, B41 + B42 + B43 + B44 #= 1,

B11 + B21 + B31 + B41 #= 1, B12 + B22 + B32 + B42 #= 1,

B13 + B23 + B33 + B43 #= 1, B14 + B24 + B34 + B44 #= 1,

P #= 7 * B11 + B12 + 3 * B13 + 4 * B14

+ 8 * B21 + 2 * B22 + 5 * B23 + B24

+ 4 * B31 + 3 * B32 + 7 * B33 + 2 * B34

+ 3 * B41 + B42 + 6 * B43 + 3 * B44,

P #>= 19,

labeling([],List).

c©Thom Frühwirth – University of Ulm Page 346 – SoSe 2019

Constraint Programming

Modeling with Boolean Variables (4)

:- assignment([B11,B12,B13,B14,B21,B22,...]).

B11 = 0, B11 = 0, B11 = 0, B11 = 1

B12 = 0, B12 = 0, B12 = 1, B12 = 0

B13 = 0, B13 = 0, B13 = 0, B13 = 0

B14 = 1, B14 = 1, B14 = 0, B14 = 0

B21 = 1, B21 = 1, B21 = 1, B21 = 0

B22 = 0, B22 = 0, B22 = 0, B22 = 1

B23 = 0, B23 = 0, B23 = 0, B23 = 0

B24 = 0, B24 = 0, B24 = 0, B24 = 0

B31 = 0, B31 = 0, B31 = 0, B31 = 0

B32 = 0, B32 = 1, B32 = 0, B32 = 0

B33 = 1, B33 = 0, B33 = 1, B33 = 1

B34 = 0, B34 = 0, B34 = 0, B34 = 0

B41 = 0, B41 = 0, B41 = 0, B41 = 0

B42 = 1, B42 = 0, B42 = 0, B42 = 0

B43 = 0, B43 = 1, B43 = 0, B43 = 0

B44 = 0, B44 = 0, B44 = 1, B44 = 1

28 search steps in total

c©Thom Frühwirth – University of Ulm Page 347 – SoSe 2019

Constraint Programming

Modeling with variables for the workers

4 variables: W1,W2,W3,W4

If worker i is allocated to product j, then Wi equals j.

Different value for each variable:

Wi 6= Wj for all 1 ≤ i 6= j ≤ 4

Modeling by the constraint all_distinct

all_distinct([W1,W2,W3,W4])

c©Thom Frühwirth – University of Ulm Page 348 – SoSe 2019

Constraint Programming

Modeling with variables for the workers (2)

• profiti: profit of worker i for every product

• profiti[j]: profit, if product j is done by worker i

• profit of worker i: profiti[Wi]

Modeling by the array constraint element

element(W1,[7,1,3,4],WP1)

(profit1[1] = 7, profit1[2] = 1, profit1[3] = 3, profit1[4] = 4)

W1 in [2,3], element(W1,[7,1,3,4],WP1) ⇒ WP1 in [1,3]

WP1 ≥ 4, element(W1,[7,1,3,4],WP1) ⇒ W1 in [1,4]

c©Thom Frühwirth – University of Ulm Page 349 – SoSe 2019

Constraint Programming

Modeling with variables for the workers (3)

element(?X,+List,?Y)

• X, Y: integers or domain variables

• List: list of integers or domain variables

• element(?X,+List,?Y): True if the X-th element of List is Y.

• Operationally, the domains of X and Y are constrained s.t. for

every element from the domain of X, there is a compatible

element from the domain of Y, and vice versa.

Query: Value #> 5, element(N,[7,8,4,3],Value).

Answer: Value in 7..8, N in 1..2

c©Thom Frühwirth – University of Ulm Page 350 – SoSe 2019

Constraint Programming

Modeling with variables for the workers (4)

assignment(W1,W2,W3,W4) :-

W1 in 1..4,

W2 in 1..4,

W3 in 1..4,

W4 in 1..4,

all_distinct([W1,W2,W3,W4]),

element(W1,[7,1,3,4],WP1),

element(W2,[8,2,5,1],WP2),

element(W3,[4,3,7,2],WP3),

element(W4,[3,1,6,3],WP4),

P #= WP1 + WP2 + WP3 + WP4,

P #>= 19,

labeling([],[W1,W2,W3,W4]).

c©Thom Frühwirth – University of Ulm Page 351 – SoSe 2019

Constraint Programming

Modeling with variables for the workers (5)

:- assignment(W1,W2,W3,W4).

W1 = 1, W1 = 2, W1 = 4, W1 = 4

W2 = 2, W2 = 1, W2 = 1, W2 = 1

W3 = 3, W3 = 3, W3 = 2, W3 = 3

W4 = 4, W4 = 4, W4 = 3, W4 = 2

14 search steps in total

c©Thom Frühwirth – University of Ulm Page 352 – SoSe 2019

Constraint Programming

Modeling with variables for the products (1)

assignment(P1,P2,P3,P4) :-

P1 in 1..4,

P2 in 1..4,

P3 in 1..4,

P4 in 1..4,

all_distinct([P1,P2,P3,P4]),

element(P1,[7,8,4,3],TP1),

element(P2,[1,2,3,1],TP2),

element(P3,[3,5,7,6],TP3),

element(P4,[4,1,2,3],TP4),

P #= TP1 + TP2 + TP3 + TP4,

P #>= 19,

labeling([],[P1,P2,P3,P4]).

c©Thom Frühwirth – University of Ulm Page 353 – SoSe 2019

Constraint Programming

Modeling with variables for the products (2)

:- assignment(P1,P2,P3,P4).

P1 = 1, P1 = 2, P1 = 2, P1 = 2

P2 = 2, P2 = 1, P2 = 3, P2 = 4

P3 = 3, P3 = 3, P3 = 4, P3 = 3

P4 = 4, P4 = 4, P4 = 1, P4 = 1

7 search steps in total

Reason: Better propagation

TP1 in 3..8, TP2 in 1..3, TP3 in 3..7, TP4 in 1..4,

P #= TP1 + TP2 + TP3 + TP4, P #>= 19

TP1 ≥ min(P)−max(TP2)−max(TP3)−max(TP4)

yields TP1 ≥ 5. The constraint element(P1,[7,8,4,3],TP1) then

reduces the domain of P1 to 1..2.

c©Thom Frühwirth – University of Ulm Page 354 – SoSe 2019

Constraint Programming

Modeling Comparison

A difficult task

Some aspects

• efficiency

– propagation of the constraints

– number of variables (in general: the less the better)

• flexibility: additional constraints

– depends on the type of the constraints

c©Thom Frühwirth – University of Ulm Page 355 – SoSe 2019

Constraint Programming

Modeling Comparison (2)

Flexibility

Ensure, that never worker 1 is allocated product 1 and worker 4 is

allocated product 4.

• Boolean constraints: B11 +B44 ≤ 1

• more difficult in the other models

c©Thom Frühwirth – University of Ulm Page 356 – SoSe 2019

Constraint Programming

Modeling Comparison (3)

Worker 3 is allocated a product with a number greater than the

number of the product done by worker 2

• variables for the workers: W3 > W2

• more difficult with Boolean constraints

• even more difficult with variables for the products

Combination of different modelings

• provides redundant constraints for more propagation and

flexibility

• requires bridge constraints to link variables from different

models

c©Thom Frühwirth – University of Ulm Page 357 – SoSe 2019

Constraint Programming

Non-linear Equations I

Constraint System I

Domain

The set of real numbers.

Signature

• Function symbols:

– The real numbers 0 and 1

– Arithmetic function symbols +, ∗, log, sin, exp, . . . as

well as ‘..’ for intervals.

• Constraint symbols:

– Nullary symbols true, false

– Binary symbols =, <,≤, >,≥, 6= as well as in for domains

c©Thom Frühwirth – University of Ulm Page 358 – SoSe 2019

Constraint Programming

Constraint System I (2)

Constraint theory

An extension of the linear existential fragment of Tarski’s axiomatic

theory of real closed fields, including X in n..m↔ n≤X ∧X≤m

Allowed atomic constraints

Arithmetic equations and inequations:

C ::= true false X in n..m | X�Y f(X1, . . . , Xl) = Z

• n, m: real numbers

• � ∈ {=, <,≤, >,≥, 6=}

• X, Y, Z and X1, . . . , Xl (l≥0): pairwise distinct variables

• f(X1, . . . , Xl): flat term, i.e., a function symbol from the

signature applied to variables

c©Thom Frühwirth – University of Ulm Page 359 – SoSe 2019

Constraint Programming

Constraint Theory

• extends constraint theory for linear polynomials <

• undecidable if trigonometric functions are introduced

• periodicity of trigonometric functions can express the integer

number property

• theory must include a model of Peano arithmetic, which is

Presburger’s arithmetic extended by multiplication

• Gödel: any consistent extension of Peano arithmetic is

incomplete

c©Thom Frühwirth – University of Ulm Page 360 – SoSe 2019

Constraint Programming

I Approaches (1)

Variable elimination for non-linear polynomial equations

• e.g. Gröbner-Basis-Method (used in programming language

CAL)

• no trigonometric functions

• double exponential time complexity

c©Thom Frühwirth – University of Ulm Page 361 – SoSe 2019

Constraint Programming

I Approaches (2)

Local consistency methods using interval arithmetics

• developed in AI (since 1960s)

• approximation method – can quickly be imprecise (incomplete)

• logarithmic and trigonometric functions can also be dealt with

• can approximate irrational numbers, e.g.√
2 as Sqrt2 in 1.41..1.42 or π as Pi in 3.14..3.15

• sophisticated extension of finite integer interval domains of FD

• polynomial time complexity

c©Thom Frühwirth – University of Ulm Page 362 – SoSe 2019

Constraint Programming

I Example – Interval Propagation

• X4 − 12X3 + 47X2 − 60X = 0

interval propagation yields the interval 0.0..5.0 for X (solutions

are 0, 3, 4, 5)

• X4 − 12X3 + 47X2 − 60X + 24 =I 0

yields 0.8..1.0 (solutions are 0.888305... and 1)

• X4 − 12X3 + 47X2 − 60X + 24.1 =I 0

no solution, but may yield a non-empty interval

We do not know how many solutions an interval contains.

Boundaries of an interval need not be a solution – due to rounding

and irrational numbers

Notion of bounds consistency of FD has to be adopted.

c©Thom Frühwirth – University of Ulm Page 363 – SoSe 2019

Constraint Programming

I – Local-Propagation Constraint Solver

• rules of FD-solver modified to work for intervals of reals

• non-trivial real-number intervals admit infinitely many values

• granularity:

– limits the precision, stop if interval is small enough

– only heuristics for the size of the smallest useful interval

– rounding errors in arithmetic computations avoided by

rounding bounds of interval outward

• multiplication, exponentiation, logarithmic and trigonometric

functions

– not monotonic anymore, e.g. sin-function

– interval propagation is difficult to implement and not very

effective

c©Thom Frühwirth – University of Ulm Page 364 – SoSe 2019

Constraint Programming

I – Interval Domains

intersect @ X in A..B, X in C..D <=> X in max(A,C)..min(B,D).

empty @ X in Min..Max <=> Min>Max | fail.

le @ X le Y, X in A..B, Y in C..D ==> Y in A..D, X in A..D.

eq @ X eq Y, X in A..B, Y in C..D ==> Y in A..B, X in C..D.

ne @ X ne Y, X in A..A, Y in A..A <=> fail.

add @ add(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

X in E-D..F-C, Y in E-B..F-A, Z in A+C..B+D.

• Smallest interval guards not implemented.

• Outward rounding not implemented.

• ne rule applies, problem also with (strict) <, since successor

function does not exist for reals.

c©Thom Frühwirth – University of Ulm Page 365 – SoSe 2019

Constraint Programming

I – Interval Domains (2)

• variables (never) determined

– stopping at small intervals

– outward rounding

– infinitely many possible values in domains

c©Thom Frühwirth – University of Ulm Page 366 – SoSe 2019

Constraint Programming

I – Multiplication

mult(X,Y,Z) means X∗Y=Z

has_zero(A..B) iff A ≤ 0 ∧ 0 ≤ B

mult_z @ mult(X,Y,Z), X in A..B, Y in C..D ==>

M1 is A*C, M2 is A*D, M3 is B*C, M4 is B*D,

Z in min(M1,M2,M3,M4)..max(M1,M2,M3,M4).

mult_y @ mult(X,Y,Z), X in A..B, Z in E..F ==>

not has_zero(A..B) |

M1 is E/A, M2 is E/B, M3 is F/A, M4 is F/B,

Y in min(M1,M2,M3,M4)..max(M1,M2,M3,M4).

mult_x @ mult(Y,X,Z), X in A..B, Z in E..F ==> ...

c©Thom Frühwirth – University of Ulm Page 367 – SoSe 2019

Constraint Programming

I – Multiplication (2)

Examples:

• A in 0..0.3, B in 0..0.3, C in 0..0.3, A eq B, B eq

C,

mult(A,B,C)

yields A in 0.0..1.0e-07, B in 0.0..1.0e-07, C in

0.0..1.0e-07

(assuming size of smallest intervals is 1.0e-07)

• A in -1..1, B in -1..1, C in -1..1, B eq C,

mult(A,B,C)

– propagation has no effect

– solutions A=1 or B=C=0 cannot make intervals smaller

c©Thom Frühwirth – University of Ulm Page 368 – SoSe 2019

Constraint Programming

I – Multiplication (3)

More propagation: Take care of non-monotonicity around 0. Split

intervals in positive and negative part.

* − 0 +

− + 0 −

0 0 0 0

+ − 0 +

• If possible remove complete positive or negative sub-interval.

• mult(X,Y,Z), X in -2..3, Y in -3..4, Z in 7..12 does

not propagate, but should simplify to mult(X,Y,Z), X in

1.75..3, Y in 2.33..4, Z in 7..12, since -2*-3 is only 6.

c©Thom Frühwirth – University of Ulm Page 369 – SoSe 2019

Constraint Programming

I – Multiplication (4)

mult_xyz @ mult(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

has_zero(A..B), has_zero(C..D), not has_zero(E..F) |

mult0(X,Y,Z).

mult0(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

A*C<E | D>0, X in E/D..B.

mult0(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

B*D<E | C<0, X in A..E/C.

mult0(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

F<A*D | C<0, X in F/C..B.

mult0(X,Y,Z), X in A..B, Y in C..D, Z in E..F ==>

F<B*C | D>0, X in A..F/D.

c©Thom Frühwirth – University of Ulm Page 370 – SoSe 2019

Constraint Programming

I – Local-Propagation Constraint Solver (2)

• terminates (ref. FD-solver):

intervals get smaller with each rule application (even with

outward rounding) and too small intervals not considered by

rules

• not confluent :

order of rule applications, resulting intervals may be different

due to stopping at small intervals and accumulated roundings

• O(cvw) complexity (ref. FD-solver):

width (size) w of n..m.: number of floating point numbers or

smalles intervals between n and m

c©Thom Frühwirth – University of Ulm Page 371 – SoSe 2019

Constraint Programming

I – Local-Propagation Constraint Solver (3)

• search: try to isolate solutions

– solver remains incomplete (variables never determined)

– domain splitting: divide intervals in halves until they are

too small

– probing: try out a smallest interval taken from the given one

– shaving: remove intervals around interval bounds if probing

determines unsatisfiability

c©Thom Frühwirth – University of Ulm Page 372 – SoSe 2019

Constraint Programming

I – Improving and Extending Interval

Propagation

Improve by:

• non-flat or global constraints (but no tractable method to

determine best representation)

• convergence acceleration

Combine with:

• variable elimination (Groebner Bases)

• Newton’s approximation

• Taylor expansion

c©Thom Frühwirth – University of Ulm Page 373 – SoSe 2019

Constraint Programming

I – Applications

• physics, chemistry, mathematics (geometry)

• physical, chemical, and molecular-biological modeling and

simulation of hybrid systems

• hybrid circuits, spatial reasoning, robot control, equilibrium of

chemicals, financial analysis

c©Thom Frühwirth – University of Ulm Page 374 – SoSe 2019

