
Constraint Logic Programming
B

An Informal Introduction*

Thom Friihwirth, Alexander Herold, Volker Kiichenhoff,
Thierry Le Provost, Pierre Lim, Eric Monfroy, Mark Wallace

ECRC
European Computer-Industry Research Centre
Arabellastr. i7, D-8000 Munich 81, Germany

emaih {thom, herold, volker, thierry, pierre, eric, mark}@ecrc.de

Abs t rac t . Constraint Logic Programming (CLP) is a new class of program-
ming languages combining the declarativity of logic programming with the
efficiency of constraint solving. New application areas, amongst them many
different classes of combinatorial search problems such as scheduhng, plan-
ning or resource allocation can now be solved, which were intractable for logic
programming so far. The most important advantage that these languages of-
fer is the short development time while exhibiting an efficiency comparable
to imperative languages. This tutorial aims at presenting the principles and
concepts underlying these languages and explaining them by examples. The
objective of this paper is not to give a technical survey of the current state
of art in research on CLP, but rather to give a tutorial introduction and
to convey the basic philosophy that is behind the different ideas in CLP.
It will discuss the currently most successful computation domains and pro-
vide an overview on the different consistency techniques used in CLP and its
implementations.

1 I n t r o d u c t i o n

During the last decade a new programming paradigm called "logic programming"
has emerged. The best known representative of this new class of programming lan-
guages is Prolog, originated from ideas of Colmerauer in Marseille and Kowalski
in Edinburgh. Programming in Prolog differs from conventional programming both
stylistically and computationally, as it uses logic to declaratively state problems and
deduction to solve them.

It has been argued in the literature [Kow79, Ste80] that a program is best divided
into two components called competence and performance or logic and control. The
competence component describes factual informat ion- s ta tements of relationships -
which must be manipulated and combined to compute the desired result. The per-
formance component deals with the strategy and control of the manipulations and
combinations. The competence part is responsible for the correctness of the pro-
gram; the performance part is responsible for the efficiency. An ideal programming

* This work is partially funded by the ESPRIT project CHIC, Nr. 5291

methodology would first be concerned with the competence ("what"), and only then,
if at all, worry about the performance ("how"). Logic programming provides a means
for separation of these concerns. It is based on first order predicate logic, and the
performance component is mostly automatic by relying on a built-in computation
mechanism called SLD-resolution.

In this way, logic programming has the unique property that its semantics, oper-
ational and declarative, are both simple and elegant and coincide in a natural way.
These semantics, however, have their limitations. Firstly the objects manipulated by
a logic program are uninterpreted structures - the set of all possible terms that can
be formed from the functions and constants in a given program. Equality only holds
between those objects which are syntactically identical. Every semantic object has
to be explicitly coded into a term; this enforces reasoning at a primitive level. Con-
straints on the other hand are used to implicitly describe the relationship between
such semantic objects. These objects are often ranging over such rich computation
domains, as integers, rationals or reals.

The second problem related to logic programming stems from its uniform but
simple computation rule, a depth-first search procedure, resulting in a generate and
test procedure with its well-known performance problems for large search applica-
tions. Constraint manipulation and propagation have been studied in the Artificial
Intelligence community in the late 1970s and early 1980s [Mon74, Ste80, Mac86] to
make search procedures more intelligent. Techniques like local value propagation,
data driven computation, forward checking (to prune the search space) and look
ahead have been developed for solving constraints. These techniques can be sum-
marised under the heading "Consistency Techniques".

Constraint Logic Programming (CLP) is an attempt to overcome the difficulties
of logic programming by enhancing a Prolog-like language with constraint solving
mechanisms. Curiously both of these limitations of logic programming can be lifted
using "constraints". However, each limitation is treated by a quite different notion
of constraint. CLP has hence two complementary lines of descent.

Firstly it descended from work that aimed at introducing richer data structures
to a logic programming system thus allowing semantic objects, e.g. arithmetic ex-
pressions, directly to be expressed and manipulated. The core idea here is to replace
the computational heart of a logic programming system, unification, by constraint
handling in a constraint domain. This scheme, called CLP(X), has been laid out in
the seminal paper of Jaffar & Lassez [JL87]. X has been instantiated with several so
called computation domains, e.g. reals in CLP(7~), rationals in CLP(Q), and integers
in CLP(Z).

Secondly CLP has been strongly influenced by the work on consistency tech-
niques. With the objective of improving the search behaviour of a logic programming
system Gallaire [Gal85] advocated the use of these techniques in logic programming.
He proposed the active use of constraints, pruning the search tree in an a priori
way rather than using constraints as passive tests leading to a "generate and test"
or "standard backtracking" behaviour. Subsequently the different inference mecha-
nisms underlying the finite domain part of the CLP system CHIP [DVS+88] were
developed. The key aspect is the tight integration between a deterministic process,
constraint evaluation, and a nondeterministic process, search. It is this active view
of constraints which is exploited in CHIP to overcome the well-known performance

problems of "generate and test". This new paradigm exhibits a data-driven compu-
tation and can be characterised as "constrain and generate".

Constraint solving has been used in many different application areas such as en-
gineering, planning or graphics. Problems like scheduling, allocation, layout, fault
diagnosis and hardware design are typical examples of constrained search prob-
lems. The most common approach for solving constrained search problems consists
in writing a specialised program in a procedural language. This approach requires
substantial effort for program development, and the resulting programs are hard
to maintain, modify and extend. With CLP systems a large number of constrained
search problems have been solved, some of them were previously solved with con-
ventional languages. CLP languages dramatically reduce the development time while
achieving a similar efficiency. The resulting programs are shorter and more declara-
tive and hence easier to maintain, modify or extend. The wealth of applications shows
the flexibility of CLP to adapt to different problem areas. Many Operations Research
problems have been solved with the CLP system CIIIP [DVS+88, Van88, DSV90].
Another very promising application domain is circuit design [Sim92, FSTW91]. Ex-
tensive work has also been devoted to financial applications [Ber89, LMY87]. More
recently applications in user interfaces [HttLM91] and in databases [KKR90] have
been studied. As the subsequent tutorial in this summer school focusses on industrial
applications of CLP, we will not further discuss them in this article.

The aim of this informal tutorial is to present the most prominent ideas and con-
cepts underlying CLP languages. It is not intended to present the underlying theory
of this new class of programming languages or to give an overview on the current
state of art in CLP research. There are already technical surveys in the literature,
giving more details on those aspects. In particular the article of IVan91] is worth
reading. A restricted view is presented in [Coh90, Frii90] discussing work around the
CLP scheme. For the usage of "consistency techniques" in CLP, IVan89] is a valu-
able source going from theory to application with a large number of programming
example.

This tutorial is organised as follows: In the next section we will introduce the CLP
scheme and review the most important computation domains that have been devel-
oped so far, linear and non-linear arithmetic and boolean constraints. Then we will
introduce the concept of finite domains, consistency techniques and their extension
to arbitrary domains. Next we will explore ways of extending and tuning constraint
systems. Then the work on search and optimisation in CLP will be presented. Finally
current CLP implementations will be reviewed, amongst them the most well-known
systems: CHIP [DVS+88], CLP(7~) [JMSY90] and Prolog III [Col90].

2 T h e C L P S c h e m e

In this section we will introduce in an informal way the basics of the Constraint Logic
Programming Scheme (called CLP(X)), as developed by Jaffar and Lassez [JL87].
The key aspect in the CLP scheme is to provide the user with more expressiveness
and flexibility concerning the primitive objects the language can manipulate. Clearly
the user wants to design his application using concepts that are as close as possible
to his domain of discourse, e.g. he wants to use sets, boolean expressions, integers,

rationals or reals, instead of coding everything as uninterpreted structures, i.e. fi-
nite trees, as is advocated in logic programming. Associated with each computation
domain are the usual algebraic operations, including set intersection, conjunction of
boolean expressions or multiplication of arithmetic expressions. These computation
domains also have certain relations defined on them, such as set equality, equality be-
tween boolean expressions or equality, disequality and inequality between arithmetic
expressions.

The constraint logic programming scheme admits computation directly over these
domains. Special function and predicate symbols are introduced into logic program-
ming, whose interpretation in the domain of computation is fixed. The relations
over the domain of discourse are termed "constraints". Formulae involving the spe-
cial function and predicate symbols are called "constraint formulae". Informally the
word "constraint" is used also for constraint formulae.

When constraints are introduced into logic programming, a mechanism to solve
them must also be introduced. In traditional logic programming the only constraint
is equality between terms, and the unification algorithm is used to solve such con-
straints. There are two aspects related to unification. Firstly it tells us if the equation
t l " - t2 has a solution. Secondly in case there exists a solution, it gives us a most
general solution, which is logically equivalent to the original equation. The impor-
tant aspect of unification is the first one deciding whether- a constraint (or a set of
constraints) has a solution or not. In other computation domains, where such a most
general solution may not exist, the system can continue manipulating the original
set of constraints. Therefore in order to accommodate constraints in logic program-
ming the unification algorithm needs to be replaced by a decision procedure telling
us whether a constraint or a set of constraints is satisfiable. In the following we will
call such a decision procedure a constraint solver.

One reason for the success of CLP in recent applications has been the choice
of constraint systems integrated into the different implementations. The selection
of new constraint domains needs to satisfy both technical and practical criteria
[DVS+88, JL87, SA89]. Most important are

- the expressive power of the computation domain,

- the existence of a complete and efficient constraint solver,

- its relevance in applications.

The constraint solver is complete if it is able to decide the satisfiability o f any
set of constraints of the computation domain. To achieve efficiency the constraint
solver needs to be incremental, i.e. when adding a new constraint C to an already
solved set of constraints S, the constraint solver should not start solving the new set
S U {C} from scratch.

In the following we will illustrate the operational behaviour of a CLP(X) system
and the two most successful constraint domains, arithmetic and Boolean constraints.
A description of other~interesting domains may be found in section 6 where specific
constraint languagesare described.

2.1 The A r i t h m e t i c D o m a i n

Linear Cons t r a in t s Providing arithmetic was one of the motivations behind the
research in combining logic programming with constraints. Although Prolog has
built-in facilities for evaluating arithmetic expressions the behaviour is not what one
would ideally expect. Prolog cannot handle equations like X - 3 = Y + 5. In Prolog the
term X - 3 is not equM to the term Y + 5 as Prolog knows only about uninterpreted
structures. The programmer needs to resort to the built-in arithmetic. And here the
problems are the same as in any other programming language. Indeed the program-
mer needs to know which of the variables will be instantiated first and then he can
use assignment (is) to instantiate the other. CLP(n) [:IL87] was the first constraint
programming language to introduce arithmetic constraints. There is a caveat. The
decision procedure is only complete for linear arithmetic constraints. Nonlinear con-
straints are suspended until they become linear. Linear constraint handling turned
out to be sufficient in many applications such as simulation of circuits and devices,
decision-support systems and geometrical problems.

Linear arithmetic expressions are terms composed from numbers, variables and
the usual arithmetic operators: negation (-) , addition (+), subtraction (-) , multipli-
cation (.) and division (/). For the condition of linearity to be satisfied it is required
that in a multiplication at most one of the components is a variable and that in a
division the denominator is a number. An arithmetic constraint is an expression of
the form tl R t2 where R is one of the following predicates {>, >_, =, <, <, 5}.

There are several decision procedures for deciding a system of linear arithmetic
constraints. Usually a combination of Gaussian elimination and a modified Simplez

algorithm is employed. The Simplex algorithm is required as soon as inequality
constraints need to be solved. The Simplex algorithm is used because it has quite a
good behaviour on average, it is well-understood, and it can be made incremental.

We now present the execution mechanism for CLP languages informally through
a small example. Consider the following problem from [Col90].

Given the definition of a meal as consisting o] an appetiser, a main meal and a
dessert and a database o]]oods and their calorific values we wish to construct

light meals i.e. meals whose sum of calorific values does not exceed 10.

A CLP program (in an arithmetic domain) for solving this problem is given below.

lightmeal(A,M,D) :-

I > O, J > O, K > O,

I + J + K <= iO,

appetiser(A,I),

main(M,3),

dessert(D,K).

main(M, I) :-

meat (M, I).

main(M, I) :-

fish(M,I).

appetiser(radishes,l).
appetiser(pasta,6).

meat(beef,S).

meat(pork,7).

f i s h (s o l e , 2) .
f i s h (t u n a , 4) .

dessert(fruit,2).
dessert(icecream,6).

A CLP program is syntactically a collection of clauses which are either rules or
facts. Rules are as in Prolog, with the addition that they may contain constraints
in their premises. Rules describe the conclusions that can be reached given certain
premises. For our example we read "The meal consisting of foods A, H and D is a
light meal if A is an appetiser (with a positive calorific value I), M is a main meal
(with positive calorific value J), D is a dessert (with positive calorific value K) and
I + J + K is less than or equal to 10". The premise of a rule is a conjunction of
constraints, e.g. I + J + K <= 10 and atoms e.g. a p p e t i s e r (A , I) . Facts express
known relationships. In our case, the calorific value of beef (which is a meat) is 5.

We shall describe the intermediate results of an execution of a CLP program as
computation states. A computation state consists of two components, a constraint
store and the remaining goals. We shall separate the constraint store from the re-
maining goals by the symbol o. The constraint store consists of the set constraints
collected during the computation so far. CLP programs are executed by reducing
the goals in the computation state using the facts and rules. In each intermedi-
ate computation state the constraint store must be consistent. Consider the general
query ?- l i g h t m e a l (A ,M ,D) asking for all light meal plans. This corresponds to
the initial computation state

o lightmeal(A, M, D).

For our first reduction step we first have to choose an atomic goal to reduce. There
is only one possibility i.e. l i g h t m e a l (A , M, D). Next we need to choose an ap-
plicable rule. Again there is only one possibility i.e. the rule with the consequent
l i g h t m e a l (A , M, D). The next step is to form equations between variables in the
consequent of the rule and the selected atom. The constraint store of the new com-
putation state consists of the current constraint store, this equation set and the
set of constraints in the premise of the rule. The atom set of the new computation
state is the current atom set where the selected goal is replaced by the atoms of the
premise of the rule (as in the case of Prolog). Thus our first reduction step produces
the following computation state:

I + J + K <--I0, I > O, J > O, K > 0 o

appetiser(A,I), main(M, J), dessert(D,K) .2

2 In the examples trivial equations axe omitted

A CLP system searches for all solution by systematical ly t rying all possible rules
(and facts) for the reduction of all the a toms in the a tom set. Therefore any one
possible al ternative is in fact a sequence of reduction steps called a derivation. A
derivation terminates when there are no more a toms to be reduced and the final
constraint store is consistent. For the first example a successful derivation is the
following:

A=radishes, I=l, I+J+K <= I0, I>0, J>O, K>O

o main(N, J), dessert(D, K)

A=radishes, I=l, M=MI, J=II, I+J+K <= I0, I>0, J>O,K>O
o meat(Ml, II), dessert(D, K)

A=radishes, I=l, M=beef, J=5, Ml=beef, II=5, I+5+K <= 10, I>0, 5>0, K>O
o dessert(D, K)

A=radishes, I=I, M=beef, J=5, Ml=beef, II=5, D=fruit, K=2, 1+5+2 <= I0,
1>0, 5>0, 2>0 o.

Note tha t the answer to this query is given by the constraint store. A simplified
answer in te rms of the input variables is A=radishes, M=beef, D--fruit .

I f the constraint store becomes inconsistent, the derivation fails. An example of
a failed derivation is now presented. We begin with the same initial computa t ion
s tate as above but make some different choices in the rules and facts to apply.

A=pasta, I=6, 6+J+K <= 10, 6>0, J>0, K>0
o main(M,J), dessert(D,K)

A=pasta, I=6, M=M1, J=I1, 6+J+K <= 10, 6>0, J>0, K>0
r meat(Ml, I1) , dessert(D,K)

g=pasta , I=6, M=beef, J=5, Ml=beef, I1=5, 6+5+K <= 10, 5>0, 6>0, K>0
o dessert(D,K) (incons is tency)

I f the last computa t ion s tate for this derivation is examined it can be seen tha t the
constraint store containing 6+S+g <= 10 and K > 0 is not satisfiable.

The answer A=radishes, M=beef, D=fruit is definite in the sense tha t a con-
s tant is equated with each variable in the query. However, in general answers can also
be indefinite, i.e. the answer consists of a set of constraints representing a possibly
infinite set of solutions. An example of this kind will be presented a little later when
nonlinear constraints are discussed. How to extract an understandable answer f rom
the constraints in the constraint store is an active field of research [JMSY92].

N o n l i n e a r c o n s t r a i n t s To introduce nonlinear ar i thmetic constraints we shall use
a p rogram mult iplying two complex numbers R1 + I * I 1 , R2 + I * I 2 taken f rom
[JL87]:

]0

z m u l (R 1 , I 1 , R2, I 2 , R3, I 3) : -
R3 = RI*R2 - I 1 . I 2 ,
I3 = RI*I2 + R2*I1 .

If the query z m u l (1 , 2 , 3 , 4 , R 3 , I 3) is given, then the nonlinear equations become
linear at run time, and the answer produced by e.g. CLP(7~) is:

R3 = - 5
I 3 = 10

*** Yes

If we ask the query zmul(l,2,R2,12,R3,I3), the solution is a co,unction of
two linear equalities:

12 = 0.2.13 - 0.4.R3
R2 = 0.4.13 + 0.2.R3

*** Yes

This answer is an example for an indefinite solution. The solution is an infinite
set of points that is represented by a minimal set of constraints stating relations
between the variables of the query. To obtain precise values for I2 and R2 (i.e. to
obtain I2 equal to a constant and R2 equal to a constant), the user has to further
instantiate I3 and R3.

For the two previous queries, there is no need for a nonlinear solver. But for
the query z m u l (R 1 , 2 , R 2 , 4 , - 5 , 1 0) , R2 < 3 nonlinear constraints appear in the
solution. CLP(7~) gives the answer:

RI = -0.5.R2 + 2.5

3 = RI * R2
R2 <3
*** Maybe

This is due to the property of CLP(7~), whose decision procedure can only solve
linear arithmetic. When a nonlinear constraint is encountered during computation,
then it is delayed until it becomes linear. For the previous query, two nonlinear equa-
tions are encountered during computation. They are delayed, but no instantiation
makes them linear. So at the end of the computation CLP(7~) gives back the delayed
constraints without knowing if there are some solutions or not (*** Maybe).

This introduces the need for nonlinear arithmetic solvers in constraint logic pro-
gramming. Nonlinear constraints arise for instance in computational geometry [PS85],
and financial applications. Several algorithms can be used to solve nonlinear con-
straints. Their capacities and complexities are quite different (see [Mon92a] for a
comparison of different solvers). For example GrSbner bases [Buc85] treat only equa-
tions whereas quantifier elimination [Co175] can handle all (well formed) formulae
over the reals at, sometimes, considerable extra cost.

For the first two queries of the previous example (multiplication of complex
numbers) the answer given by nonlinear solvers is the same as the one from CLP(~) .
But the last query zmul(R1, 2, R2, 4, -5 , 10), R2 < 3 is completely solved, and
the answer is definite:

]]

R1 = 1.5

R2=2

GrSbner Bases are used in CAL [Att92], and in the system of [Mon92b]; and an
improved version of quantifier elimination [tton90] is used in RISC-CLP [lion92].

2 . 2 T h e B o o l e a n D o m a i n

The most prominent applications of boolean constraints are in the area of circuit
design [Sim92], here in particular hardware verification [FSTW91], and in theorem
proving in the domain of propositional calculus [SD90, Col90]. Such applications
motivated the incorporation of boolean constraint solvers into constraint logic pro-
gramming languages.

Boolean terms are built from the truth values (false and true, represented some-
times also by 0 and 1), from variables and from logical connectives (e.g. V, @3, A,
neg). The only constraint between boolean terms is the equality (=). In some im-
plementations (e.g. CHIP) additional constants can be used in the construction of
terms. This is particularly important in hardware verification as these constants can
be used to represent symbolic names for input arguments of circuits.

Each of the systems mentioned above employs quite different ways of handling
boolean constraints. A Boolean unification algorithm [BS87] is used in the case of
CHIP. In the literature a number of different unification algorithms for Boolean con-
straints are reported [MN90, Bue88]. Another possibility is to implement boolean
constraint solving as a special case of numerical constraint solving. A modified ver-
sion of the GrSbner bases algorithm [ASS+88] is used in CAL. Prolog III uses a
saturation method to solve boolean constraints [Col90]. This method does not com-
pute a most general solution and is hence not easily applicable to circuit verification.
Since boolean constraint solving provides a decision procedure for propositional cal-
culus and is therefore NP-complete, any algorithm for boolean constraints has an
exponential worst case complexity. It is thus very important to use a compact descrip-
tion of boolean terms to achieve efficiency. CHIP [DVS+88], for example, represents
boolean terms as directed acyclic graphs, which are manipulated by special purpose
graph algorithms [Bry86].

The following classic example coming from hardware verification illustrates how
boolean constraints can be solved by boolean unification.

% Full-adder circuit example

add(I1, 12, I3, O1,O2) : -
X1 = I1 $ I2,
A1 = I1 A I2,
O1 ---= X1 @ I3,
A2 = I3 A X1,
02 -- A1 V A2.

3 ~ is the exclusive or

I1

I2

I3

]2

Figure 1: Full Adder Circuit

O1

02

The computation of an answer to the query add(a, b, c, O1, 02) gives the following
set of intermediary constraints:

X l = a ~ b
Al = b A a
O l = a ~ b ~ c
A2 = cA (a~ b)
0 2 = a A b $ a A c ~ b A c .

The boolean solver hence produces the answer:

Ol = a ~ b ~ c , 0 2 = a A b @ a A c ~ b A c

which describes the logical function of the piece of hardware. The output parameters
are expressed as boolean expressions constructed from the input parameters. These
boolean expressions can now be compared with the specification of the circuit, which
is also expressed in terms of boolean expressions.

In case of hardware verification the full power of boolean unification is needed.
But obviously boolean unification is a very costly method. For simulation tasks for
instance, where the input parameters are not symbolic constants but the ground
values 0 or 1, this power is not needed and other methods are more efficient. In
section 3.2 and 4.2 we will describe such other techniques.

3 C o n s i s t e n c y T e c h n i q u e s

3.1 F in i t e Domains

Consistency techniques were first introduced for improving the efficiency of picture
recognition programs, by researchers in artificial intelligence [WalT2]. Picture recog-
nition involves labelling all the lines in a picture in a consistent way. The number of
potential labellings can be huge, while only very few are consistent.

13

Consistency techniques effectively rule out many inconsistent labellings at a very
early stage, and thus cut short the search for consistent labellings. These techniques
have since proved to be effective on a wide variety of hard search problems, made
even wider since their integration into a logic programming framework in CHIP and
subsequent CLP implementations.

The handling of constraints using consistency techniques is unlike constraint
solving in the CLP Scheme, as described earlier, in that it does not guarantee to
detect inconsistency of the (global) constraint store until the labelling of the problem
variables is complete. Instead consistency techniques provide an efficient way to
extract from the constraint store new information about the problem variables.

A Schedul ing E x a m p l e To illustrate one such consistency technique let us take a
very simple scheduling problem, with six tasks to be scheduled into a five-hour day,
where each task takes an hour. The following diagram shows tasks on the left which
must precede other tasks on the right:

T2

T1 T6
\ /

T3--T5
/

T4

In addition we impose the constraint that tasks T2 and T3 cannot be scheduled at
the same time.

To express this as a constraint satisfaction problem, we associate a variable Ti
with the start time of each task, whose domain of possible values is {1, 2, 3,4,5}.
We then impose the constraints

before(T1,T2)
before(T1,T3)
before(T2,T6)
before(T3,TS)
before(T4,TS)
before(TS,T6)
notequal(T2,T3)

Consistency techniques work by propagating information about the variables via
the constraints between them. For example given that T1 E {1, 2, 3, 4, 5} and that
T2 E {1, 2, 3,4, 5}, then based on the constraint before(T1,T2) our consistency
technique deduces the information that T1 E {1, 2, 3,4} and T2 E {2, 3, 4, 5}. The
value 5 is removed from the domain of T1 because there is no value in the domain
of T2 which is consistent with it - that satisfies the constraint before(T1 ,T2). The
value 1 is removed from the domain of T2 for the same reason. (This consistency
technique, which removes values inconsistent with a single constraint between two
variables, is termed arc consistency [Mac77].)

14

Propagation continues until no further new domain reductions can be extracted
from the constraints. The effect of applying arc consistency in our example is to
reduce the domains associated with the tasks' start times as follows:

TIE {I, 2},T2 E {2,3,4},T3 E {2, 3},T4 e {1,2,3},T5 E {3,4},T6 E {4,5}

Consistency techniques alone can rarely be used to solve a problem, since in gen-
eral there remain combinations of values in the resulting domains which are inconsis-
tent. For example the constraint before (T1, T2) has been used during propagation
to reduce the domains of T1 and T2, but it is still not satisfied by all the values
of the resulting domains of T1 and T2. (Although T1 = 2 is consistent with some
values in the domain of T2, it is not consistent with the value T2 = 2.)

To find a solution to this scheduling problem the system therefore performs some
search, by labelling a variable with some value in its domain (search is discussed in
detail in section 5 below). This choice (which may prove later to have been er-
roneous), allows further propagation to be attempted. For example suppose T1 is
labelled with the value T1 = 2. Propagation yields T2 E {3, 4} and T3 E {3}. At this
point the constraint not equal (T2, T3) is used actively for the first time to produce
the information T2 E {4}. Propagation continues until the following information has
been extracted: T1 E {2}, T2 E {4}, T3 E {3}, T4 e {1, 2, 3}, T5 e {4}, T6 e {5}.

Propagation versus Solving The treatment of the notequal constraint with arc
consistency is a typical example of how and why consistency techniques differ from
constraint solving. If.variables X and Y each have domains with more than one
value, then the constraint notequal(X,Y) will not yield any new information. The
reason is that every value in the domain of Y will be consistent with at least one
value in the domain of X, and vice versa. Propagation on the constraint notequal
can be implemented very efficiently. The constraint yields no information until one of
the Variables has a domain with only one remaining value. This value is immediately
removed from the domain of the other variable, and the constraint is satisfied. It
can never again yield new information.

However if the constraint notequal is handled by a constraint solver it can yield
more information than propagation. For example suppose variable X, Y and Z all
have two-value domains: X E {1, 2}, Y e {1, 2}, Z E {1, 2}. The constraints

notequal(X,Y) notequal(Y,Z) notequal(Z,X)

are not satisfiable. Although this is detected by a solver for the notequal constraint,
arc consistency yields no information.

For simple examples, such as this, the solver can detect the inconsistency at little
cost. However non-trivial problems involve a reasonably large number of constraints
and domains containing a reasonably large number of values; and in this case the cost
of solving the constraints increases very quickly (exponentially) with the number of
variables involved. For such problems it is often too expensive to attempt constraint
solving on the notequal constraints, and constraint propagation proves to be a more
effective technique.

15

C o n s t r a i n t Driven Computation Consistency techniques extend the notion of
data driven program execution. The arrival of "data" no longer means the arrival of
a specific value for a variable, but rather any reduction of the domain associated with
the variable. We call it constraint driven. In this framework new "data" may arrive
many times on a single variable - each time its domain is reduced. Much research
has been published on constraint propagation and its complexity, and we list some
important references [MH86, Mon74, FreT8, HE80, Mac77, MF85].

For handling constraints defined extensionally as relations, there is a range of
standard consistency techniques. However for particular constraints, specialised con-
sistency techniques can be applied which take advantage of their particular seman-
tics. The speciMised techniques can support more efficient constraint propagation
than the standard techniques [DV91].

For problems modelled using integers (like the scheduling example above), the
constraints most often required are equations and inequations between mathematical
expressions (involving the predicates =, > >, < and <). These can be efficiently
handled by reasoning on maxima and minima. For example suppose X, Y and Z
each have domain {1, . . . , 10}. Reasoning on the constraint 2*X + 3*Y + 2 < Z we
use maxima and minima to remove inconsistent values from the domains of all
three variables. Since 10 is the maximum possible value for Z, we can deduce that
2 * X + 3 * Y < 8. Since the minimum value for Y is 1, it follows that 2 * X < 5.
Consequently the domain of X can be reduced to X E {1, 2}. Similarly Y E {1}.
Finally by reasoning on the minima of X and Y we conclude that Z E {8, 9, 10}.

Of particular importance for current day computing systems is that constraint
propagation can be performed in parallel. Propagation on the different constraints
can occur concurrently and asynchronously, and as long as it continues until no more
domain reductions are possible the result is independent of the precise behaviour.

E m b e d d i n g in CLP We now illustrate the embedding of consistency techniques
in a logic programming system, by expressing a couple of problems in the CHIP
language (see section 6 for information about CLP languages).

The above example can be encoded in CHIP as follows:

7- [X,Y,Z] : : 1 . . 1 0 ,
2*X + 3.u + 2 #< Z,
indomain(X), indomain(Y), indomain(Z).

First the finite domain variables X, Y and Z over the subrange 1. . 10 are decl.ared.
Then the constraint that must hold between X, Y and Z are stated as a goal 4. This goal
is recognised by its syntax to be a constraint that will be handled by propagation.
Finally the search for admissible values of X, Y and Z is expressed using the goal
indoma• This goal instantiates its argument to a value in its current domain. This
instantiation will cause constraint propagation to take place, which may reduce the
domains of the remaining variables, or even cause a failure. If this choice proves later
to have been wrong, and the system backtracks, another value in the domain will be
chosen, until all the alternatives have been exhausted.

4 The symbol #< stands for < on finite domains.

]6

Because the domains are pruned by propagation, the two admissible combina-
tions of values are found without any wrong guesses. For this simple example, it
is an interesting exercise to write a logic program without constraints tha t avoids
unnecessary search. For real-life problems, such an exercise is no longer interesting,
and it can easily lead to unmaintainable and even incorrect logic programs. Using
CLP however, we use a simple standard program structure and rely on consistency
techniques for efficiency. The structure is as follows:

- Declare problem variables and their finite domains
- Set up the constraints
- Search for a solution

Notice that consistency techniques are deterministic, as opposed to the search which
is non-deterministic (and usually entails backtracking). This s tandard structure en-
sures that deterministic computat ion during propagation is performed as soon as
possible and non-deterministic computat ion during search is used only when there is
no more propagation to be done. The importance of prioritising deterministic com-
putat ion has been recognised as an impor tant principle in the logic programming
community.

It is also possible to specify user-defined predicates as constraints for propagation,
by a declaration such as lookahead. 5

Thus in the following program goals for the predicate less will be treated using
consistency techniques, whilst goals for the predicate gteq will be treated by choice
and backtracking in the normal fashion of logic programming. 6

lookahead less (d, d).
less(l,l).
less(l,2).
less(2,2).
less(2,3).

gteq(2,1).
gteq(3,2).

The query

?- [X,Y,Z]:: [1,2,3,4,5], less(X,Y), less(Y,Z), gteq(X,Z)

is evaluated as follows. As soon as the constraints (less(X,Y), less(Y,Z)) are set
up, the domains of the variables are reduced by consistency techniques to {1, 2, 3).
Now the goal gteq(X, Z) is invoked; the system selects the first clause defining gteq
and attempts to add the constraints Z = I,X -- 2 to the constraint store. Arc
consistency on less (X,Y) reduces the domain of Y to Y E (2, 3}, then propagation
on less(Y,Z) reveals an inconsistency. Thus the attempt to match the first clause
for gtsq fails, and the second clause is tried. This fails similarly, and so the whole
query fails.

As usual for consistency techniques, the evaluation of the constraint goals less
are constraint driven, and there is no backtracking on these goals.

s "Looking ahead" is another name used for consistency techniques [lIE80]
s The d in lookahead less(d,d) signifies that this argument of less is a domain variable.

17

3.2 Genera l i sed P r o p a g a t i o n

The study of constraint propagation has been recently extended to remove the re-
quirement for finite domains associated with the variables. One step in this direction
is to admit intervals instead of finite domains (eg 1 < X < 10 for real X) [Day87].
However, more radically, it is possible to perform propagation without requiring
either domains or intervals to be associated with the problem variables. This tech-
nique has been named generalised propagation [LW92a]. Generalised propagation
integrates the CLP scheme, described in section 2 above, and constraint satisfaction
techniques, described in this section.

In the CLP scheme an answer to a goal is a (consistent) set of constraints on the
problem variables. Standard logic programming is a particular instance of the CLP
scheme, where answers are expressed using equations on terms. Thus if predicate p
is defined by

p(1,1).
p(2 ,2) .

the query ?- p(X,Y) has two answers X = 1,Y = 1 and X = 2, Y = 2. The idea of
generalised propagation is to enable p (X, Y) to be used as a constraint, even though
there are no domains or intervals associated with its arguments. Instead of extracting
information in the form of reduced domains for X and Y, the information extracted
is in the form of constraints in the current computation domain - i.e. equations
between terms.

As with finite domain propagation, the information extracted must not exclude
any answers to p (X, Y). Thus generalised propagation only extracts information com-
mon to all the answers to p(X,Y). Over this computation domain, the information
extracted from a goal is technically the "most specific generalisation" of all the
answers to the goal. In this case the most specific generalisation is X = Y.

I fp is handled as an ordinary predicate in the query ?- p(X,Y), p(V,W), Y=V,
notequal(X,W), the system will backtrack four times before failing. To use p(X,Y)
and p(Y,Z) as constraints for generalised propagation, it is merely necessary to
annotate the query as follows:

?- propagate p(X,Y), propagate p(V,W), Y=V, notequal(X,W)

The annotation propagate Goal tells the system to perform generalised propagation
on Goal, instead of treating it as an ordinary logic programming goal. Generalised
propagation will immediately deduce that X = Y and V = W. Consequently when
the goals Y=V, notequal(X,W) are executed, the inconsistency will be detected with-
out any backtracking.

Another example of generalised propagation is its application to the predicate
and, defined as follows:

and (0 ,0 ,0) .
and (0 ,1 ,0) .
and(l, O, O).
and(1 ,1 ,1) .

]8

Consider the query ?- propagate and(X,Y, Z), Rest where Rest is some goal that
performs search, eventually yielding further information about the variables X, Y
and Z. Initially no information can be extracted from the constraint and(X,Y,Z).
However as further information is added to the constraint store, during evaluation
of Rest, interesting propagations on and(X, Y, Z) may become possible. For example
if the constraint X -- 0 is added to the constraint store, generalised propagation on
and(X,Y,Z) immediately yields the new equation Z = 0. Alternatively if X -- 1 is
added to the constraint store, generalised propagation yields Z -- Y.

Like propagation, generalised propagation is a form of constraint driven com-
putation. As more information about the problem variables becomes available, via
the constraint store, further information is extracted from the constraints. All the
extracted information is added to the constraint store, which enables further prop-
agation to take place. Propagation is repeatedly attempted on all constraints until
there is no more information to be extracted.

In section 4.2 below, it is described how the user can explicitly program the
handling of constraints, so as to achieve a similar constraint driven behaviour for
the constraint and(X, Y, Z). The advantage of generalised propagation is that such
constraint driven behaviour is achieved by a single annotation, and without risk of
incorrectness or potential omission of possible propagation steps.

Generalised propagation yielding equality constraints, as in the above examples,
has been implemented in a system called Propia [LW92b]. Programming in Propia
has shown three advantages of generalised propagation.

- It is relatively simple to encode the constraints of real problems in Propia, and
there is no need to explicitly add finite domains. (In fact current systems only
admit finite domains of integers which implies an extra encoding step).

- It is very natural to encode a problem using a logic program without regard
for efficiency. To turn such a program into a Propia program utilising gener-
alised propagation, it is merely necessary to add annotations as in the above
example. Consequently it is easy to experiment with different ways of executing
the program by changing the annotations. The final program still has the same
structure as the original logic programming "specification" and is therefore easy
to maintain.

- Even some problems which involve finite domains prove to be solved more effi-
ciently when encoded in Propia, than is achieved with finite domain propagation.
For propositional logic problems, which can be encoded using finite domains with
two values, generalised propagation produces more information than arc consis-
tency. In fact Propia turns but to be broadly as efficient as specialised programs
on a current benchmark of such problems. For problems which involve large
finite domains, on the other hand, generalised propagation scores again by its
simplicity: it extracts less information but it avoids wasting storage and execu-
tion time doing so. Consequently Propia can solve problems which are too big
and too slow to run on existing CLP systems with finite domains.

19

4 E x t e n d i n g a n d S p e c i a l i s i n g t h e C o n s t r a i n t S y s t e m

A given constraint system supports certain computation domains, and certain con-
sistency techniques, enabling it to solve a range of problems efficiently. However,
specialised problems may require specialised constraints, with specialised solving
and consistency techniques. Two different approaches have been developed to tackle
this problem. The first approach consists in identifying frequently occurring con-
straints and offering them via a system library. The second consists in offering the
user a language to define his own constraints and the necessary propagation.

4.1 Specia l i sed Cons t r a in t s

In the past a variety of frequently occurring constraints, have been identified, which
caused problems if they are encoded using the standard built-in constraints. For
these, specialised constraint solving algorithms have been developed. We shortly
mention some of those, developed within the CHIP system. Note that the user of
these constructs need not be concerned about the implementational aspects, as they
all have a declarative reading.

Th e E l emen t Cons t r a in t Many constraint problems use the notion of a cost func-
tion associated with a choice. This can describe the cost which we want to optimise,
or it can be just an internal figure that has to be kept within certain limits. For
example in a production unit switching a job from one machine to another involves
a certain setup time. Now the overall time needed is restricted by some constraints.
These constraints provide a pruning on the possible choices of jobs. An efficient im-
plementation of arc-consistency for the functional constraint between choices (jobs
in this example) and their costs (here the setup times) is supported via a special
element constraint. It has the following structure: element (11, L i s t , Value), with
the reading: Value is the N-th value of the list List.

[MI,M2,M3] :: I..5, ~ 3 Machines, 5 jobs
alldistinct([MI,M2,M3]), ~ no job is done twice
element(Ml,[3,2,6,8,9],C1),
element(M2,[4,6,2,3,2],C2),
element(M3,[6,3,2,5,2],C3),
CI+C2+C3 #= Cost,

Cost #<= 9.

Running this query will give the result that M1 does Job 1 or 2, M2 can do all jobs
except Job 2, and M3 all except Job 1. The cost is guaranteed to be between 6 and
9.

Note that this constraint works in all directions, e.g. restrictions of the possible
values also prune the associated index.

A variety of special constraints on lists of choices have been developed. They
express e.g. that all the elements have to be different (a l l d i s t i n c t) ; certain values
may not occur morethan a certain number of times (atmost, as exampled below);

2O

that only one variable may take a certain value, etc. A special constraint - cumula-

tive - developed for scheduling and loading problem has been recently presented in
lAB92].

[r 7J :

A = $_267
C = $_287

B=5
yes .

[A,B,C]

[0..43
[0..43

: : O..5, atmost (I, [A,B,C] ,5) ,BfS.

4.2 User Def ined Cons t r a in t s

The implementation of special constraints can only be done by the system designer.
But as it is useful to have special constraint solving mechanisms available the trend
now is to develop tools to allow the constraint solving behaviour necessary for the
specific application to be defined by the application programmer. Given these tools
provide means for a simple declarative specification, they once again support one
key concept behind logic programming: the programming time is reduced, different
possibilities can be tested easily, and support of the software becomes easier.

In this section we discuss facilities for the user to control the evaluation of con-
straints, to specify constraint-driven computation, and to define constraint solvers
for new constraints.

De lay Dec la ra t ions We saw above that for certain constraints (like non-linear
constraints in CLP(7~)) it is necessary to delay their handling until certain variables
have a specific value. In some systems the delaying of the appropriate constraints
is built into the system. Often, however, the user needs to be able to control the
delaying of goals and constraints. An example of a declaration to delay the handling
of a goal till a certain condition is satisfied is

delay employee(Nr,Sal) until ground(Nr)

Such a declaration will prevent the system from trying to look up salaries for employ-
ees until a specific employee number is known. The declaration would also postpone
the application of consistency techniques to this goal, in case employee was a con-
straint.

Declarations are annotations applied to a program which refer to the program
text. As such they are termed "me ta -commands" to distinguish them from com-
mands within the program which manipulate the data.

G u a r d s There is another approach to providing user control based on the concept
of a guard The guard defines a logical condition, and is part of the program itself
rather than a meta-command. An example of a guarded clause is

~d(X,Y,Z) <=> X=O [Z=O

21

The guard is X = 0. When the current set of goals include an atomic goal of the
form ?- and(A,B,C) the guard is used to control when, or if, the clause can be
applied. Specifically it can be applied as soon as the constraint store contains, or
implies that, X = 0. As soon as this is true, the atomic goal can be rewritten into
its body (in this case Z = 0). Hence the query ?- and(X, u Z) ,X = 0 will result in
a constraint store X = 0, Z = 0.

A special feature of definitions by guarded clauses is that when a guard is satis-
fied, the system commits to the clause and there is never any backtracking to alterna-
tive clauses. This means that guarded clauses define a computation with "don't care"
nondeterminism, rather than the "don't know" nondeterminism of logic program-
ming which involves backtracking to check the other alternatives. The declarative
semantics of logic programming is sacrificed with the move to don't care nondeter-
minism, unless strict conditions are met by the guarded clauses as given in [Mah87].
An advantage is that the guards can be evaluated concurrently, which is why guarded
clauses are interesting for concurrent CLP, discussed later in this section.

The control offered by the guards is precisely constraint driven computation,
without backtracking, as needed to explicitly encode constraint propagation

Example We shall take as an example the and constraint used earlier in our dis-
cussion of generalised propagation.

Declaratively and is defined as follows:

and(O,O,O).
and(O,1,0) .
and(i,0,O).
a n d (I , 1 , 1) .

We can specify a propagation behaviour for handling and goals using the following
guarded clauses:
and(X,Y,Z) r X=O I Z=O.
and(X,Y,Z) r Y=O J Z=O.
and(X,Y,Z) 4~ Z=l I X=I,Y=I.
and(X,Y,Z) r X=l] Y=Z.
and(X,Y,Z) r Y=I I X=Z.
and(X,LZ) ~, X=Y I Z=X.
Notice that the information Z = 0 is not sufficient to allow any further consequences
to be extracted from the and constraint. Thus if the constraint store only contains
Z = 0 none of the guards are satisfied. In this case more information on X or Y will
be needed before any of the clauses can fire.

Consider the full-adder circuit

a d d (I I , I 2 , I 3 , 0 1 , 0 2) : -
z o r (I I , I 2 , X l) ,
a n d (I I , I 2 , A 1) ,
xo r (X l , I3 ,01) ,
and(I3,Xl,A2),
or(AI,A2,02).

22

together with rules for the logical gates (as was exemplified by the rules for the
and-gate).

The query add(I 1, I 2 , 0 , 0 1 , 1) will produce I I = l , I2=1,01"0. The computation
proceeds as follows: Because I3=0, the result of the and-gate with input I3, the
output A2, must be 0. As 02=1 and A2=0, the other input A1 of the xor-gate must
be 1. Because A1 is also the output of an and-gate, its inputs I1 and I2 must be
both 1. Hence the output Xl of the first xor-gate must be 0, and therefore also the
output 01 of the second xor-gate must be 0.

In this particular case the same behaviour is obtained by applying generalised
propagation to the declarative specification of mad. However the facility to define
explicitly what propagation is to take place on a given goal means that tailored
propagation behaviour can be obtained for particular applications.

E m b e d d i n g in C L P CHIP was the first constraint logic programming language to
introduce constructs to specify user-defined constraint propagation. Their need was
realised in applications for diagnosis and test pattern generation of digital circuits
[SD87, Sim89]. They have been called "demon constructs" [DVS+88] because of their
event-driven activation. CHIP introduces in addition conditional propagation with
the i f - t h e n - e l s e construct. A framework for using guarded rules for constraint
handling is given in [Smo91].

Cons t r a in t Solving To express constraint solving it is necessary to be able to han-
dle the interaction of multiple constraints. Consequently a multi-headed guarded rule
is introduced. A unified approach encompassing single- and multi-headed guarded
clauses has been developed under the name Simplification Rules [Frii92]. Two rules
encoding a solver for the g r e a t e r constraint are as follows:

greater(X,Y) <=> X=Y I fail
greater(X,Y), greater(W,Z) => Y=W I greater(X,Z)

~. irreflexivity
7.transitivity

(If the second clause is executed it does not replace the goal with the body, it merely
augments the current set of remaining goals with the clause body.)

The above rules capture the transitivity and irreflexivity of g r e a t e r but not its
semantics: "less" is also transitive and irreflexive! We now add one further guarded
rule to check that g r e a t e r is indeed the same as the built-in comparator ">" :7

grea te r (X,Y) <=> grotmd(X), ground(Y) I X>Y

C o n c u r r e n t Cons t r a in t s User-defined constraint propagation and simplification
is a very active area of research in constraint logic programming. A framework
including a powerful set of constraint constructors is described in [VDgl]. The
concept of constraint agents, and their transformational semantics underlies much
ongoing work, e.g. [Sar92, Van91]. The idea behind all these approaches is to express

r Since groundness is a meta-concept, some people prefer to use the delay declaration
instead of a guard for this control. The framework of simplification rules supports control
by both guards and delays

23

constraint evaluation in terms of concurrent computations. The first such concurrent
constraint logic programming language has been suggested in [Mah87]. In [Sar92] a
general framework for these languages has been developed based on the notion of ask
& tell. The basic operation in these languages, besides telling (adding) a constraint
to the constraint store and deciding its consistency, is to ask for a constraint, i.e.
to decide if this constraint is entailed (implied) by the constraint store. Algorithms
for constraint entailment are extensions of constraint solving algorithms. In case of
demons above this simplifies to deciding whether the variables in the guard have
certain values or not.

5 S e a r c h a n d O p t i m i z a t i o n in C L P

As outlined above the key idea behind constraint reasoning systems is to tackle
complex tasks by incrementally inferring properties of the problem solutions and
using this information to enforce consistency IVan89]. This deterministic knowledge
is acquired in an explicit form. It is therefore possible to prune the space of possible
alternatives, i.e. excluding certain cases (choices) that need not be considered in the
future.

As in general the solution cannot be inferred right away after the determinis-
tic reasoning steps some assumptions about the problem solution have to be made.
Those assumptions are fed back into the constraint reasoning scheme, thus yield-
ing more information about the solution. This process continues until a solution is
obtained.

If an inconsistent solution description is obtained the assumptions have to be
withdrawn. In this case the process has to be continued with alternative assumptions.
This process is usually referred to as backtracking. The nature of this is another
reason why constraint propagation fits well in the Prolog language, which supports
a backtracking mechanism.

Note that the generate and test approach uses the same schema, but the inference
engine is only used when complete solutions are obtained, i.e. only a test is done, if
a complete solution candidate has been produced.

The constraints reasoning schema depends crucially on two aspects:

- The inference power of the reasoning engine.
- The strategy to make the assumptions.

In this section we will concentrate on the second aspect. In general this is referred
to as the search. We will concentrate on the finite domain case, where this process
is also called labelling.

5.1 Aspec ts of Search

In AI, problem solving is classically seen as a state space search: solving a problem
is to find a path from an initial state to the goal state - representing the solution.
Within that framework search is the general mechanism that is used when no other,
better method is known.

24

Similarly in constraint reasoning we refer to search, if the constraint handler
cannot provide us with more information. But note that we deal here with partial
solutions: e.g. in each state of the search we know some variable values but not
all. In a traveling sMesman problem (TSP), for example, the instantiated variables
represent" known parts of the route. Once we do a search step we assume that a
certain city should be visited best at a certain point of the trip.

Taking a search step within a constraint reasoning framework involves two deci-
sions:

1. On which aspect of the problem do we want tb make an assumption ?
2. What should that assumption should be ?

T h e R igh t G r a n u l a r i t y In general it is important that the granularity and the
strategy of the search process fits well with the constraint handler. The right choices
here are crucial for the performance of the overall system. The assumptions made
during search perform two roles. First they are queries about the solution. Secondly,
and even more important, they provide input to the constraint handler which per-
forms reasoning on the constraints and their impact on other problem variables.
With the right input the solver will be able to prune large parts of the search space,
thus yielding a good problem solving performance.

Dec l a r a t i venes s Within the approaches discussed below the strategy for selecting
variables/values can be defined declaratively. This means that the complexity of the
program used to define the strategy is independent of the complexity of the strategy
itself. This has the important consequence that certain real world problems can still
be tackled with this declarative technology, while specialised procedural constructs
are hard to build. In fact it is has been our experience that CLP solves problems
that are new in the sense that they have not been solved systematically by software
so far - despite the fact that specialised algorithms have been known.

5.2 Labe l l ing S t ra t eg ies

Within the CHIP system the user is free to program his own search strategy. This can
be done easily with the support of the underlying Prolog system. As some general
approaches have given good results they are already incorporated into the system.
They make labelling based

- on individual problem variables and
- on single values for those variables.

The problem variables in the TSP example are the stops on the tour, the values
are the location of those stops.

In many cases it is most effective to use the variable with the smallest remaining
domain for labelling. This principle is often referred to as first fail principle as
with fewer choices possible we will find out earlier if those were right or wrong.
Alternatively the variable which occurs in most constraints can be chosen. Several
combinations of these principles are possible IVan89].

25

label(Problem_variables)
label ([]) .
label(Problem_variables) :-

deleteff(Var, Problem_variables, Rest_vars),
choose var .ith minimal choices

indomain(Var),
choose a value from its domain

label(Rest_vars).

Which value then to give that chosen variable is harder to answer in general. For
some problems it is possible to define a metric, with the 'smallest ' values being most
promising.

For the map colouring problem good results have been obtained by rotat ing the
colours used for labelling. I.e. for the country A use the first colour, for country B
the second and so on. This approach has the effect of the intuitively appealing idea
of using different colours whenever possible, as connected countries have to have
different colours.

special labelling routine for map colouring example
label_colour(Countries, Available_Colours)

label_colour([],_).
label_colour([FirstIRest],Colours):-

member(First,Colours),
rotate(Colours,Coloursl),
label_colour(Rest,Coloursl).

rotate([A,B,C,D], [B,C,D,A]) .

Within the generalised propagation schema it can be very natural to use an entire
tuple of values tha t satisfies a constraint, as the tuples satisfying / defining a con-
straint are usually available. E.g. if we want to solve a crossword puzzle, it makes
sense to put (assume) a word in a certain position, which means labelling a set of
variables with characters at the same time.

L a b e l l i n g w i t h s e v e r a l va lue s In some cases selecting a specific value for a vari-
able can be a very strong assumption. It can therefore be bet ter to make an as-
sumption on the set of possible values of that variable. The classical approach here
is to make a binary chop of the domain. This means that we cut the domain in two
halves and then assume that the value is in one half. This can be done by stating an
additional constraint which excludes the other hMf. This technique has been used
successfully for the cutting stock application [DSV88].

26

binary chop labelling routine

iabel_chop([]).
label_chop([X[Vars]):-

mindomain(X,Min),
maxdomain(X,Max),
Mid is (Min + Max)//2,
above_or_below(X,Mid),
label_chop(Vars).

above_or_below(X,Mid) :-
X #<= Mid. ~ set up additional constraint

above_or_below(X,Mid) :-
X #> Mid.

5.3 B r a n c h a nd B o u n d

Due to the incremental approach of constraint solving branch and bound strategies
fit well with it. For a constraint problem with minimization the current minimal
value of the target function is maintained. As soon as a choice / search step is done
that would increase that value again, this is rejected. Thus parts of the search tree
need not be considered. If a new minimum value has been obtained a new branch
and bound run with that value can be invoked. Note that the previously considered
combinations need not be considered againl as the current minimum is known to be
optimal with regard to the search space already considered.

Given the classical setup of a CHIP program:

s o l v e (V a t s) "-

def ine_vars (Vats) ,
setup_constraints (Vats),
label(Vats).

the program for the minimal solution can be written easily: a labelling routine that
produces the cost values is combined with the minimise declaration.

~. 2-dimensional c u t t i n g stock example
~. Vertical and horizontal cuts, Waste Produced

label_min(Vert_Hor_Cuts) :-

minimis e (
label_waste(Vert_Hor_Cuts, Waste),

~. labelling routine that also computes the waste

Waste).
~. minimise Waste value

As seen in the example in CHIP the declaration to use the branch and bound min-
imization schema is very simple to be added to a program. For some problems this
approach gives quitegood performance results.

27

5.4 Optimization and Advanced Search

For optimization problems it is not always easy to infer deterministic information
about the optimal solution. If fewer inferences can be made the proper choice of
assumptions will become more important.

Local Sea rch One approach is to improve the current assumptions by local search.
The idea is here that an initial solution - satisfying the constraints - is improved in
terms of the cost function to be minimised. An operator is defined that maps one
solution to others that are similar (in the sense that most of the variables retain the
same value). The operator must, of course, ensure the constraints are still satisfied.

Search in this framework means applying the operator to the current solution. If
the new solution has lower cost it becomes the current solution, and search continues
until a solution is reached which cannot be improved upon by a single application of
the operator. The final solution is better than its immediate neighbours, but there
may be still better solutions in another part of the search space. In other words
the final solution may only be a "local" optimum. This approach works well for the
unconstrained traveling salesman problem [LLKS85], where a typical operator is one
that exchanges two edges of a tour. To apply this approach to constrained problems,
it is necessary to impose constraints on the operator that maps solutions to new
solutions. Currently available systems do not offer this feature.

Nove l Sea rch Techn iques The so called 'novel search techniques' suggest differ-
ent ways of moving through the search space, while more or less implicitly informa-
tion about the solution is acquired and used to further guide the search. Currently
they offer the best approaches to solving many important classes of optimization
problems, as e.g. the TSP. For an overview of these techniques see [Kiic92b].

The main disadvantage of these techniques is their missing completeness and
correctness properties. There is no guarantee that a certain mechanism will ever
find an optimal or even constraint satisfying solution. Therefore these approaches
are often ruled out for real world applications where certain requirements - hard
constraints - definitely have to be met. On the other hand it is not necessary to
always obtain the optimal solution with regard to the cost function - which may be
very hard to compute - but rather a good solution can be sufficient [HT85]. Many
real world problems are a mix of constraint satisfaction problems and optimization
problems. A classical example is the vehicle scheduling problem. A fleet of vehicles
has to deliver goods to customers with minimal effort. The problem is related to the
TSP-optimization problem, but additional constraints also have to be met. Those
are for example the capacity constraints of the vehicles. It may thus be permitted to
offer a solution that is not optimal with regard to the length of the proposed tour,
but in any case none of the vehicles may be overloaded.

In an ideal system for constraint optimization an advanced search mechanism is
combined with a constraint solver. It is a current research topic to consider such a
combination in detail.

28

6 CLP systems

This section reviews some constraint programming systems /~nd discusses briefly
their most important features. This list cannot be complete and is not intended to
be. The objective of the single descriptions is not to be exhaustive, but rather to
give a rough idea of the presented system. The interested reader is referred to the
cited literature for each of the systems.

6.1 C H I P

The Constraint Logic Programming language CHIP [DVS+88] has been developed
at the European Computer-Industry Research Centre (ECRC). The most important
feature of the CHIP system is the introduction of arithmetic constraints over finite
domains solved by consistency techniques. In addition CHIP provides a rich set of
symbolic constraints. Minimization is done by a branch and bound technique.

Beside constraints over finite domains CHIP provides the following constraint
Solvers:

- Boolean constraints are solved with a Boolean unification algorithm
- Linear rationM constraints are handled by an extended Simplex algorithm.

Finally as already mentioned CHIP gives the user the possibility to define his
own constraints and control their execution. The demon rules are most prominent.
Conditional propagation based on an if-then-else construct is another way to control
the evaluation of constraints.

Based on the CHIP technology there are currently four different commercial prod-
ucts available or under development. Bull is offering the finite domain technology
within its CHARME system, ICL has a product called DECISION POWER based on
the CHIP/SEPIA compiler [MAC+89, AB91]. Siemens-Nixdorf Informationssysteme
are currently developing their new version of SNI-Prolog, which will incorporate the
whole CHIP technology. Finally the CHIP interpreter has been productised by the
French company COSYTEC.

CHIP's finite domain constraints, and generalised propagation, have been inte-
grated into the OR-parallel logic programming platform ElipSys [DSVX91]. Cur-
rently a successor to CHIP is under development at ECRC. It will provide integra-
tion of new constraint solvers [Mon92b]; generalised propagation [LW92b] working
on various computation domains; constraint simplification rules [Frfi92]; and novel
search techniques [Kiic92a].

6.2 C L P (~)

The Constraint Logic Programming language C L P (~) [JMSY90] has been devel-
oped as a demonstrator for the CLP(X) scheme at Monash University, IBM Yorktown
Heights and Carnegie Mellon University. The constraint domain of CLP(~) is real
linear arithmetic. As already mentioned non-linear constraints are delayed. The un-
derlying constraint solver is an extended Simplex algorithm. Currently there are two
implementations available from IBM /Carnegie Mellon University, an interpreter
and since recently a compiler-based version.

29

6 . 3 P r o l o g - I I I

PROLOG III [Co190] is the CLP language developed at the University of Marseille
and at Prologia in France. It includes three new constraint domains: linear rational
arithmetic, boolean terms and finite strings (or finite lists).

- Linear rational arithmetic is handled via an extended Simplex algorithm.
- The boolean constraint-solver is based on a saturation method.
- The facilities of PROLOG III for finite string (lists) processing is explained be-

low. The constraint solver is based on a restricted string unification algorithm.

For finite strings there exists a single function to concatenate two strings, denoted
by "." and the only constraint is the equality constraint. To illustrate how these finite
strings may be used consider the following problem (from [Co190]).

Find the string(s) Z such that <1,2,3>.Z = Z.<2,3,1>

There are in fact an infinite number of solutions. Hence Prolog III delays the evalua-
tion of such constraints until their length is known. Let us consider the string length
10 (the length operator is infix in Prolog-III and denoted by the operator : :).

(Z :: 10, <1,2,3>.Z = Z.<2,3,1>]- ;

The system comes back with the single solution:

(Z = < 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 >]-

PROLOG III is a commercial product of Prologia, Marseille.

6.4 Tr i logy

Trilogy [Vod88] is a constraint programming language developed at Complete Logic
Systems in Vancouver. The constraint domain of Trilogy is integer arithmetic, i.e.
it allows linear equations, inequations, and disequations over integers and integer
variables to be expressed. The solver is based on a decision procedure for Presburger
Arithmetic. Unlike other CLP systems TRILOGY is not integrated into a Prolog
environment, but it is based on an own "theory of pairs" [Vod88]. Trilogy is compiled
into native code for PCs as target machines. It can be acquired via Complete Logic
Systems in Vancouver.

6.5 CAL and G D C C

CAL [ASS+88] (Constrainte Avec Logique), developed at ICOT, Tokyo, was the first
CLP language to provide non-linear constraints. During the last few years a parallel
version of CAL has been developed at ICOT, called GDCC [AH92]. The system can
handle constraints in the following domains:

- Non-linear real equations are solved with a GrSbner Base algorithm.
- The constraint solver for boolean constraints is based on a modified GrSbner

Base algorithm.
- Linear rational arithmetics are again solved with a Simplex algorithm. A branch

and bound method has been implemented on top of this constraint solver to
solve integer optimization problems.

Both CAL and GDCC are available from ICOT, Tokyo.

30

6 . 6 B N R - P r o l o g

BNR-Prolog [Be188] has been developed at Bell-Northern Research, Ottawa. It has
been specifically designed for Apple Macintosh. The interesting feature of BNR-
Prolog from a CLP point of view is the introduction of the so called relational arith-
metic. This new constraint domain is based on a new interval variable representing
a real number lying between lower and upper bound of this interval. The constraint
handler is based on interval arithmetic [OV90]. The system can be acquired from
Bell-Northern Research, Ottawa.

6.7 R I S C - C L P

RISC-CLP [IIon92] is a prototype system in the domain of real arithmetic terms. It
has been developed at the RISC, Linz. It can handle any arithmetic constraints over
the reals. The constraint solver behind is an improved version of Tarski's quantifier
elimination method [Hon90].

7 Conclusion

This paper aimed at giving an informal introduction into the different concepts of
CLP. It tried to explain the philosophy behind the main ideas in CLP and illustrate
them by examples. Emphasis has been put on the practically relevant parts.

CLP is successfully employed in a large variety of applications, in particular
ones that can be expressed as constrained search problems. While keeping the main
features of logic programming, i.e. declarativeness and flexibility, CLP brings into
these languages

- the efficiency of special purpose algorithms written in imperative languages and
- the expressiveness of the different constraint domains it embodies.

The main advantage of CLP compared to other approaches is that it drastically
reduces development time and provides more flexibility offered by the solution while
showing an efficiency comparable to solutions written in procedural languages.

Constraint Logic Programming is moving out of the research labs into the com-
mercial world. A number of products based on this technology are offered today.
These products have been applied in a large range of very different application
which are in use. Amongst them:

- At Hongkong International Terminal and in the Harbour of Singapore the re-
source planning and scheduling system controls ships, cranes, containers and
stacks.

- At Cathay Pacific the Movement Control Systems supports the planning and
scheduling of their entire fleet.

- At the French national railway SNCF movements of empty waggons are opti-
mised.

- Within Siemens CLP is supporting the circuit designers with their Circuit Ver-
ification Environment.

3]

- In the ESPRIT projects APPLAUSE, CIIIC and PRINCE a large number of
applications is currently under development.

CLP is still very much under development. The main practical systems are im-
plemented to run on a single processor. Many researchers are studying concurrent
constraint handling and parallel implementations of CLP. Secondly constraints in
existing systems need to be well-understood by the end user if he is to obtain maxi-
mum benefit of them in his programs. The development of cleaner and simpler ways
to specify constraint behaviour will be essential for its future industrial acceptance.
Thirdly the practical requirement to integrate constraint handling with other soft-
ware techniques and systems is becoming pressing. The current work on integrating
CLP with data base technology is an important step in this direction.

A c k n o w l e d g e m e n t s

The authors would like to thank the following people for the discussions they had
with them and for their encouragement and support: Abder Aggoun, Nicolas Beldiceanu,
Fran~oise Berthier, G~rard Comyn, Mehmet Dincbas, IIerv~ Gallaire, Thomas Graf,
Micha Meier, Joachim Schimpf, IIelmut Simonis, Pascal Van Itentenryek, Andr~
Veron. Many thanks to Norbert Eisinger for reading a draft of this paper and sug-
gesting improvements.

32

References

lAB91]

lAB92]

[AH92]

lASS+as]

[Bd88]

[Ber89]

[Bry86]

[BS87]

[Buc85]

[Bue88]

[Coh90]

[Co175]

[Co190]

[Dav87]

[DSV88]

[DSV90]

[DSVX91]

[DV91]

A. Aggoun and N. Beldiceanu. Overview of the CHIP ' Compiler System. In
K. Furukuwa and P. Deransart, editors, Proceedings of the 8th International
Conference on Logic Programming, pages 775-789, June 1991.
A. Aggoun and N. Beldiceanau. Extending CHIP in order to solve complex
scheduling problems. Technical report, COSYTEC, 1992.
A. Aiba and R. Hasegawa. Constraint Logic Programming Systems - CAL,
GDCC and Their Constraint Solvers. In Proceedings of FGCS 9P, pages 113-
131, 1992.
A. Aiba, K. Sakai, Y. Sato , D. J. Hawley, and R. Hasegawa. Constraint Logic
Programming Language CAL. In Proceedings of the International Conference
on Fifth Generation Computer Systems (FGCS-88}, 1COT, Tokyo, pages 263-
276, december 1988.
Bell-Northern Research Ltd BNR. BNR-Prolog User Guide. Teclinical report,
Bell-Northern ResearchLtd., 1988.
F. Berthier. A financial model using qualitative and quantitative knowledge.
In F. Gardin, editor, Proceeedings of the International Symposium on Compu-
tational Intelligence 89, Milano, Italy, September 1989.
R. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677-691, 1986.
W. Buettner and H. Simonis. Embedding Boolean Expressions into Logic Pro-
gramming. Journal of Symbolic Computation, 4:191-205, October 1987.
B. Buchberger. GrSbner Bases: an Algorithmic Method in Polynomial Ideal
Theory. In N. K. Bose Ed., editor, Multidimensional Systems theory, pages
184-232. D. Reidel Publishing Company, Dordrecht - Boston - Lancaster, 1985.
W. Buettner. Unification in finite algerbas is unitary (?). In Proceedings CADE-
9. LNCS 310, Springer-Verlag, 1988.
J. Cohen. Constraint logic programming languages. Communications of the
A CM, 33(7):52-68, July 1990.
G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In Proceedings of the Second GI Conference on Au-
tomata Theory and Formal Languages, pages 515-532. Springer Lecture Notes
in Computer Science 33, 1975.
Alain Colmeraner. An introduction to prolog-III. Communications of the A CM,
33(7):69-90, July 1990.
E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32:281-331, 1987.
M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving a Cutting-Stock Prob-
lem in Constraint Logic Programming. In Fifth International Conference on
Logic Programming, Seattle, WA, August 1988.
M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving Large Combinatorial
Problems in Logic Programming. Journal of Logic Programming, 8(1-2):74-'94,
1990.
M. Dorochevsky, K. Schuerman, A. V~ron, and J. Xu. Constraints Handling,
Garbage Collection and Execution Model Issues in ElipSys. In Springer Verlag,
editor, Parallel Execution of Logic Programs, ICLP'91 Pre-Conference Work-
shop Proceedings, pages 17-28, Paris, June 1991.
Y. Deville and P. Van Hentenryck. An efficient arc consistency algorithm for a
class of csp problems. In Proc. of the 13 th IJCAI, Sydney, Australia, August
1991

33

[DVS+88]

[Fre78]

[Frii90]

[Frii92]

[FSTW91]

[aai85]

[HE80]

[HHLM91]

[Hon90]

[Hon92]

[HT85]

[JL87]

[JMSY9O]

[JMSY92]

[KKR90]

[gow79]

[Kiic92a]

[Kiic92b]

[LLKS85]

[LMY87]

[LW92a]

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Gra~, and
F. Berthier. The Constraint Logic Programming Language CHIP. In Proceed-
ings on the International Conference on Fifth Generation Computer Systems
FGCS-88, Tokyo, Japan, December 1988.
E.C. Freuder. Synthesizing constraint expressions. Communications of the
ACM, 21(11):958-966, November 1978.
Thorn Frfihwirth. Constraint logic programming - an overview. Technical Re-
port Technical Report E181-2, Christian Doppler Laboratory For Expert Sys-
tems, August 1990.
Thom Friihwitth. Simplification rules. Technical report, ECRC, Munich, Ger-
mamy, 1992.
T. Filkorn, R. Schmid, E. Tiden, and P. Warkentin. Experiences from a large

industrial circuit design application. In ILPS, San Diego, California, October
1991.
H. Gallaire. Logic programming: Further developments. In IEEE Symposium
on Logic Programming, pages 88-99. IEEE, Boston, July 1985.
R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-314, October 1980.
R. Helm, T. Huynh, C. Lassez, and K. Ma~iott. A linear constraint technology

for user interfaces. Technical Report RC 16913, IBM Yorktown Heights, 1991.
Hoon Hong. Improvements in CAD-Based Quantifier Elimination. PhD the-
sis, Ohio State University, Computer and Information Science Research Center,
Colombus, Ohio, USA, 1990.
H. Hong. Non-linear Constraints Solving over Real numbers in Constraint Logic
Programming (Introducing RISC-CLP). Technical report, RISC, Linz, 1992.
J. Hopfield and D. Tank. 'Neural' computation of decisions in optimization
problems. Biological Cybernetics, 52:141-152, 1985.
Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceed-
ings of the I~th A CM Symposium on Principles of Programming Languages,
Munich, Germany, pages 111-119. ACM, January 1987.
Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(7~)
language and system. Technical Report RC 16292 (#72336) 11/15/90, IBM
Research Division, November 1990.
J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Output in CLP(~). In Proceedings
the FGCS'9~, Tokyo, 1992.
P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. In Pro.
ceedings of PODS 90, pages 299-313W, 1990.
R KowMsi. Logic for Problem Solving. North-Holland, New York, Amsterdam,
Oxford, 1979.
Volker Kiichenhoff. Clp and novel search techniques: an integration. Technical
report, ECRC, Munich, Germany, 1992.
Volker Kiichenhoff. Novel search techniques - an overview. Technical report,
ECRC, Munich, Germany, January 1992.
E. Lawler, J. Lenstra, R. Kan, and D. Shmoys. The Traveling Salesman Prob-
lem. John Wiley and Sons, 1985.
Catherine Lassez, Ken McAloon, and Roland Yap. Constraint logic program-
ming and options trading. IEEE Expert, Special Issue on Financial Software,
(3):42-50, August 1987.
T. Le Provost and M. Wallace. Constraint Satisfaction Over the CLP Scheme.
Technical] ~ e n n r t ~ R f 2 - q ~ _ l ~ R ~ l q Q 9

34

[LW92b]

[Mac77]

[Mac86]

[MAC+89]

[Mah87]

[MF851

[MI-I86]

[MN90]

[Mon74]

[Mon92a]

[Mon92b]

[ov9o]

[PS851

[SA89]

[Sax92]

[SD87]

[SD90]

[s 89]

[Sire92]

T. Le Provost and M. Wallace. Domain Independent Propagation. In Proceed-
ings on the International Conference on Fifth Generation Computer Systems
199P FGCS-9~, pages 1004-1012, Tokyo, Japan, June 1992.
A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99-118, 1977.
A.K. Mackworth. Constraint satisfaction. In Encyclopedia of Artifical Intelli-
gence, 1986.

M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. Henry de Vil-
leneuve, A. I-Ierold, P. Kay, B. Perez, E. van Rossum, and J. Schimpf. SEPIA
- An Extendible Prolog System. In Proceedings of the 11th World Computer
Congress 1FIP'89, San Francisco, August 1989.
M. J. Maher. Logic semantics for a class of committed-choice programs. In Proc.
~th International Conference on Logic Programming, pages 858-876, Melbourne,
Australia, May 1987.
A.K. Mackworth and E.C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Artificial In-
telligence, 25:65-74, 1985.
R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225-233, 1986.
U. Martin and T. Nipkov. Boolean unification - the story so fax. In C. Kirehner,
editor, Unification. Academic Press, 1990.
U. Montanaxi. Networks of constraints : Fundamental properties and applica-
tions to picture processing. Information Science, 7(2):95-132, 1974.
E. Monfroy. A Survey of Non-Lineax Solvers. Technical Report 91-15i, ECRC,
Munich, Germany, January 1992.
E. Monfroy. Non Linear Constraints: a Language and a Solver. Technical Re-
port ECRC-92, ECRC, Munich, Germany, 1992. to appear.
W. Older and A. Vellino. Extending prolog with constraint arithmetics on ral
intervals. In Canadian Conference on Computer and Electrical Engineering,
Ottawa, Canada, 1990.
F. P. Prepaxata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.
K. Sakai and A. Aiba. A Theoretical background of Constraint Logic Program-
ming and its Applications. Journal of Symbolic Computation, 8(6):589-603,
December 1989.
V. A. Saxaswat. Concurrent Constraint Programming Languages. MIT Press,
1992.
H. Simonis and M. Dincbas. Using Logic Programming for Fault Diagnosis in
Digital Ckcuits. In German Workshop on Artificial Intelligence (GWAI-87),
pages 139-148, Geseke, W.Germany, September 1987.
H. Simonis and M. Dincbas. Propositional calculus problems in chip. In
H. Kirchner, editor, Proceedings of the ~nd International Con] on Algebraic and
Logic Programming, Nancy, France, October 1990. CRIN and INRIA-Lorr~ne,
Springer Verlag.
H. Simonis. Test Generation Using the Constraint Logic Programming Lan-
guage CHIP. In Proceedings of the 6th International Conference on Logic Pro-
gramming, Lisbon, Portugal, June 1989.
H. Simonis. Constraint Logic Programming as a Digital Circuit Design Tool.
PhD thesis, 1992. (submitted).

35

[Smo91]

[Ste80]

IVan88]

[v~89]

IVan91]

[VD91]

[Vod88]

[w~723

Gerd Smolka. Residuation and guarded rules for constraint logic programming.
Technical report, Digital Equipment Paris Research Laboratory Research Re-
port, June 1991.
G. L. Steele. The definition and implementation of a computer programming
language based on constraints. Technical Report MIT-AI TR 595, Dept. of
Electrical Engineering and Computer Science, M.I.T., August 1980.
P. Van Hentenryck. A Constraint Approach to Mastermind in Logic Program-
ming. ACM Sigart, (103), January 1988.
P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, Cambridge, MA, 1989.
Pascal Van Hentenryck. Constraint logic programming. The Knowledge Engi-
neering Review, 6(3):151-194, 1991.
Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new
logical connective for constraint logic programming. In Proc. of the 8 th Int.
Conf. on Logic Programming, pages 745-759, Paris, France, 1991. MIT Press.
P. Voda. The constraint language trilogy: Semantics and computations. Tech-
nical report, Complete Logic Systems, North Vancouver, BC, Canaxla, 1988.
D. Waltz. Generating semantic descriptions from drawings of scenes with shad-
ows. Technical Report AI271, MIT, Massachusetts, November 1972.

