
Proving Termination of Constraint SolverProgramsThom Fr�uhwirthLudwig-Maximilians-Universit�at M�un
henOettingenstrasse 67, D-80538 Muni
h, Germanyfruehwir�informatik.uni-muen
hen.dewww.informatik.uni-muen
hen.de/~fruehwir/Abstra
t. We adapt and extend existing approa
hes to termination inrule-based languages (logi
 programming and rewriting systems) to provetermination of a
tually implemented CHR
onstraint solvers.CHR (Constraint Handling Rules) are a de
larative language espe
iallydesigned for writing
onstraint solvers. CHR are a
on
urrent
onstraintlogi
 programming language
onsisting of multi-headed guarded rulesthat rewrite
onstraints into simpler ones until they are solved.The approa
h allows to prove termination of many
onstraint solvers,from Boolean and arithmeti
 to terminologi
al and path-
onsistent
on-straints. Be
ause of multi-heads, our termination orders must
onsider
onjun
tions, while atomi
 formulas suÆ
e in usual approa
hes.Our results indi
ate that in pra
ti
e, proving termination for
on
urrent
onstraint logi
 programs may not be harder than for other
lasses oflogi
 programming languages,
ontrary to what has been feared in theliterature.1 Introdu
tionWe adapt and extend existing approa
hes to termination in rule-based languages(logi
 programming and rewriting systems) to prove termination of a
tually im-plemented CHR
onstraint solver programs.CHR (Constraint handling rules) [Fru98,AFM99℄ are a high-level languageespe
ially designed for writing
onstraint solvers. CHR are a
ommitted-
hoi
e
on
urrent
onstraint logi
 programming language
onsisting of multi-headedguarded rules that rewrite
onstraints into simpler ones until they are solved.CHR de�ne both simpli�
ation of and propagation over user-de�ned
onstraints.Simpli�
ation repla
es
onstraints by simpler
onstraints while preserving logi-
al equivalen
e. Propagation adds new
onstraints whi
h are logi
ally redundantbut may
ause further simpli�
ation. CHR have been used in dozens of proje
tsworldwide to en
ode
onstraint solvers, in
luding new domains su
h as termi-nologi
al, spatial and temporal reasoning [Fru98℄ and new appli
ations domainssu
h as optimal pla
ement of sender stations [FrBr00℄.The study of termination of CHR programs is not only essential for reliable
onstraint solvers, termination is a prerequisite for analyzing and de
iding
on-
uen
e [Abd97,AFM99℄ and operational equivalen
e [AbFr99℄ of CHR programs.

Con
uen
e guarantees that the result of a
omputation will always be the same,no matter whi
h of the appli
able rules are applied.In logi
 programming in general, a termination problem
an only o

ur ifre
ursion is involved. On
e re
ursion is present, the problem is almost at on
eunde
idable. There is a fair amount of work on suÆ
ient
onditions ensuringtermination of (pure) logi
 programs [dSD94℄, whi
h started about a de
adeago. The basi
 idea is to prove that in ea
h rule, the head atom is stri
tly largerthan every atom o

urring in the body of the rule.Typi
ally, the ne
essary well-founded orders are adopted from term rewritingsystems (TRS). A
ommonly used order is
alled polynomial interpretation whi
his known in TRS sin
e more than twenty years [Der87,BaNi98℄. The idea isto map terms and atoms to natural numbers. Instan
es of this mapping arealso
alled measure fun
tion, norm, ranking or level mapping. To ensure well-foundedness, programs and queries usually have to be well-moded (and well-typed) or queries suÆ
iently known.The main line of work in termination of logi
 programs is
onsidered to befrom Apt, Bezem and Pedres
hi [ApPe90,Bez93℄. Both programs and goals are
hara
terized in terms of level mappings, a fun
tion from ground atoms to naturalnumbers. A logi
 program is re
urrent if for every ground instan
e of ea
h rule,the level of the head atom is higher than the level of ea
h body atom. A goal isbounded (rigid) if for every (ground) instan
e of ea
h atom in the goal there is amaximum level whi
h is not ex
eeded. Su

essive work of the authors re�ned thisapproa
h: Lo
al variables and the spe
i�
 left-to-right SLD resolution of Prologare taken into a

ount. A program is a

eptable if for every ground instan
e ofea
h rule the level of the head atom is higher than the level of ea
h body atomwhenever it is not in the model of the program and all the body atoms on theright are in the model. The model of a program is
hara
terized by suitableinterargument relations that must hold on the atoms. The notion of boundedgoals is extended as well to take the model into a

ount.There are only a few re
ent papers on termination for
onstraint logi
 pro-grams [CMM95,Mes96,Rug97℄, logi
 programs with
oroutining [Nai92,MaTe95℄and
on
urrent logi
 programs [Plu92,KKS97℄. [Rug97,Mes96,MaTe95,Plu92℄embark on level mappings. The theoreti
al work [CMM95℄ provides ne
essaryand suÆ
ient
onditions for termination based on data
ow graphs, the pra
ti
alwork [Nai92℄ dis
usses informally how terminating pro
edures
an be
ombinedensuring overall termination, and [KKS97℄
an use te
hniques from TRS dire
tlysin
e they translate GHC programs into TRS.To the best of our knowledge, there is no work yet on proving termination of
on
urrent
onstraint logi
 programs and of
onstraint solver implementations.In the literature it is generally agreed that the issue of termination for
on-
urrent
onstraint languages is even harder than for other logi
 programs, sin
eprograms with
onstraints do not go well with the idea of modes and well-modedness, and sin
e programs with
oroutining or
on
urren
y do not have astati
ally �xed sear
h and sele
tion rule.

The following example illustrates the behavior of
ommitted-
hoi
e languageswith respe
t to delaying and termination.Example 1. Consider a CHR
onstraint
hara
terizing even numbers. We useProlog syntax, where Variables start with upper
ase letters, and fun
tion andpredi
ate symbols with lower
ase letters. Assume that numbers are expressedin su

essor notation and that = means synta
ti
al equality. The
onstraint maybe de�ned by the single rule:even(X) <=> X=s(Y) | Y=s(Z), even(Z).The rule says that if the argument X to even is the su

essor of some numberY, then the prede
essor of this number Z must be even in order to ensure thatthe initial number X is even. The query even(N) delays. The query even(f(N))delays as well. To the query even(s(N)) the rule is appli
able, the answer isN=s(N1), even(N1).It was already dis
ussed in detail in [Nai92℄ that the
onjun
tion of twoquery atoms, that both terminate on its own, need not terminate. Here, thequery even(N), even(s(N))will not terminate. It leads to even(N), N=s(N1),even(N1), whi
h is equivalent to even(s(N1)), even(N1), whi
h is just a vari-ant of the initial query.For CHR, we not only have
on
urren
y and
onstraints, but also propagationrules and multiple heads to
onsider. Thus we
annot hope to give a de�nitiveor �nal answer
on
erning termination at this point in time. In this paper werather
on
entrate on ensuring termination in pra
ti
e, in existing
onstraintsolvers written in CHR.Overview of the Paper. We will �rst give syntax and semanti
s for CHR.In the next se
tion, we introdu
e useful termination orders for CHR. Then weprove termination of a
tually implemented CHR
onstraint solvers ranging fromBoolean and arithmeti
 to terminologi
al and path-
onsistent
onstraints. Fi-nally, we summarize the a
hievements of the
urrent approa
h and dis
uss futurework.2 Syntax and Semanti
sIn this se
tion we give syntax and simple semanti
s for CHR, for more detailedsemanti
s see [Abd97,AFM99℄. We assume some familiarity with (
on
urrent)
onstraint (logi
) programming [vHSD92,JaMa94,FrAb97,MaSt98,CDJK99℄.A
onstraint is a predi
ate (atomi
 formula) in �rst-order logi
. We dis-tinguish between built-in (prede�ned)
onstraints and CHR (user-de�ned)
on-straints. Built-in
onstraints are those handled by a prede�ned, given
onstraintsolver. CHR
onstraints are those de�ned by a CHR program.The syntax of CHR is de�ned by EBNF grammar rules and is reminis
ent ofProlog and GHC. Upper
ase letters stand for
onjun
tions of
onstraints.

De�nition 1. A CHR program is a �nite set of CHR. There are two kinds ofCHR. A simpli�
ation CHR is of the form[N '�'℄ H '<=>' [G '|'℄ B.and a propaggation CHR is of the form[N '�'℄ H '==>' [G '|'℄ B.where the rule has an optional name N, the multi-head H is a
onjun
tion of CHR
onstraints. The optional guard G is a
onjun
tion of built-in
onstraints. Thebody B is a
onjun
tion of built-in and CHR
onstraints. As in Prolog syntax, a
onjun
tion is a sequen
e of
onjun
ts separated by
ommas.The de
larative semanti
s of a CHR program P is a
onjun
tion of univer-sally quanti�ed logi
al formulas (one for ea
h rule) and a
onsistent built{in
onstraint theory CT whi
h determines the meaning of the built{in
onstraintsappearing in the program. The theory CT is expe
ted to in
lude an synta
ti-
al equality
onstraint = and the basi
 trivial
onstraints true and false. Thede
larative reading of a rule relates heads and body provided the guard is true.A simpli�
ation rule means that the heads are true if and only if the body istrue. A propagation rule means that the body is true if the heads are true.The operational semanti
s of CHR programs is given by a state transitionsystem. With
omputation steps (transitions, redu
tions) one
an pro
eed fromone state to the next. A
omputation is a sequen
e of
omputation steps.De�nition 2. A state (or: goal) is a
onjun
tion of built-in and CHR
on-straints. An initial state (or: query) is an arbitrary state. In a �nal state (or:answer) either the built-in
onstraints are in
onsistent or no
omputation stepis possible anymore.De�nition 3. Let P be a CHR program for the CHR
onstraints and CT bea
onstraint theory for the built-in
onstraints. The transition relation 7�! forCHR is as follows. All variables o

urring in states stand for
onjun
tions of
onstraints. �x denotes the variables o

urring in the rule
hosen from P .SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H <=> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H ==> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)By equating two atomi

onstraints,
(t1; : : : ; tn) =
(s1; : : : ; sn) synta
ti
ally,we mean (t1 = s1)^ : : :^(tn = sn). By (H1^ : : :^Hn) = (H 01^ : : :^H 0n) we mean(H1 = H 01) ^ : : : ^ (Hn = H 0n). Conjun
ts
an be permuted sin
e
onjun
tion isassumed to be asso
iative and
ommutative.

When we use a rule from the program, we will rename its variables using newsymbols. A rule is appli
able to CHR
onstraints H 0 whenever these atomi

onstraints mat
h (are an instan
e of) the head atoms H of the rule and theguard G is entailed (implied) by the built-in
onstraint store. The mat
hing isthe e�e
t of the existential quanti�
ation in 9�x(H = H 0) [Mah87℄. Mat
hingand entailment
he
ks are performed by the
onstraint solver for the built-in
onstraints. Any of the appli
able rules
an be applied, but it is a
ommitted
hoi
e, it
annot be undone.If an appli
able simpli�
ation rule (H <=> G | B) is applied to the CHR
onstraints H 0, the Simplify transition removes H 0 from the state, adds B andalso adds the equation H = H 0 and the guard G to the state. If a propagationrule (H ==> G | B) is applied to H 0, the Propagate transition adds B andalso adds the equation H = H 0 and the guard G, but does not remove H 0.Trivial non-termination is avoided by applying a propagation rule at most on
eto the same
onstraints. A more
omplex operational semanti
s that addressesthese issues
an be found in [Abd97℄. Details on how to eÆ
iently implementthe operational semanti
s given here
an be found in [HoFr00℄. The examples inSe
tion 4 will help to
larify the operational semanti
s.3 CHR Termination OrdersTo prove termination of CHR
omputations, we rely on polynomial interpreta-tions, where the rank of a term or atom is de�ned by a linear positive
ombinationof the rankings of its arguments. In the following we de�ne a s
heme for a
lass ofrankings that we will use in the sequel to prove termination of
onstraint solverswritten in CHR. The basi
 de�nitions follow [dSD94,BaNi98℄.De�nition 4. Let f be a fun
tion or predi
ate symbol of arity n (n � 0). ACHR ranking (fun
tion) de�nes the rank of a term or atom f(t1; : : : ; tn) as anatural number:rank(f(t1; : : : ; tn)) = af0 + af1 � rank(t1) + : : :+ afn � rank(tn)where the afi are natural numbers. For ea
h variable X we impose rank(X) � 0.This de�nition implies that rank(t) � 0 for all rankings in our s
heme and forall terms and atoms t.Instan
es of the ranking s
heme rank spe
ify the fun
tion and predi
atesymbols and the values of the
oeÆ
ients afi .Example 2. The size of a term
an be expressed in this s
heme by:size(f(t1; : : : ; tn)) = 1 + size(t1) + : : :+ size(tn)For example, the size of the term f(a,g(b,
)) is 5. The size of f(a,X) is 2 +size(X) with rank(X) � 0 when no additional
onstraints are introdu
ed forranks of variables. This allows us to
on
lude that the term f(g(X),X) is largerin size than f(a,X) (2 + 2 � size(X) � 2 + size(X)), no matter what term Xstands for.

An expression rank(s)� rank(t) is
alled an order
onstraint, where � 2 f<;�;=; 6=;�; >g. To avoid
lutter, we also write s � t for rank(s) > rank(t). Thenotion of order
onstraints will be used to formalize interargument relations, i.e.relations between the ranks of arguments of
onstraints that are needed to provetermination.Two important properties of termination orders are well-foundedness andstability.De�nition 5. An order is well-founded if there are no in�nite de
reasing
hainsr1; : : : ; rn : : : su
h that ri � ri+1 for all i � 1.De�nition 6. An order � has the stability property if it is
losed under substi-tutions:s � t! �(s) � �(t) for all terms s and t and for all substitutions �,where t
ontains only variables that also appear in s.Linear polynomial orders (de�nable by our ranking fun
tion s
heme) areknown to be well-founded and
losed under substitutions [BaNi98℄.Indu
ed Orders on Sequen
es and Multi-setsIf a ranking does not suÆ
e to prove termination, it
an be used to indu
e anorder on sequen
es of �nite length (tuples) and multi-sets [Der87℄. In this paper,for one
onstraint solver we have to rely on multi-sets to prove its termination(see Se
tion 4.3).De�nition 7. The lexi
ographi
 order on sequen
es is de�ned by:(s1; : : : ; sn) �l (t1; : : : ; tm)i� there exists i with (1 � i � n) su
h that si � ti or i > m and for all j with(1 � j < i) it holds that sj = tj .If the sequen
es have di�erent size, this only matters if the shorter sequen
e isa pre�x of the longer one. In that
ase, the longer sequen
e is larger.De�nition 8. The multi-set order on multi-sets is de�ned by:fs1; : : : ; sng �m ft1; : : : ; tmgi� there exist i 2 f1; : : : ; ng and 1 � j1 < : : : < jk � m with 0 � k su
h that si �tj1 ; : : : ; si � tjk and S �m T or S =m T where S = fs1; : : : ; si�1; si+1; : : : ; sngand T = ft1; : : : ; tmg � ftj1 ; : : : ; tjkg.In words: The smaller multi-set is obtained from the larger one by removing anonempty subset and adding only elements whi
h are smaller than some elementin the subset. Or: Every element in the smaller multi-set must be smaller or equalthan one in the larger multi-set, and there must be at least one element that isstri
tly smaller. Even though the de�nition is
ontrived, there is a simple wayto
ompare multi-sets for total orders: Sort the multi-sets into des
ending orderand
ompare the resulting sequen
es lexi
ographi
ally.

Sequen
es and multi-set orders indu
ed by linear polynomial orders are alsowell-founded and
losed under substitutions [BaNi98℄. When su
h indu
ed or-ders are used, the ranking fun
tion has to be lifted a

ordingly by introdu
ingauxiliary fun
tions that yield sequen
es and multi-sets respe
tively from ranks(see Se
tion 4.3 for an example).4 Proving Termination of Constraint SolversWe are interested in termination of a
tually implemented CHR
onstraint solverprograms. We want to prove termination under any s
heduling of rule appli
a-tions (independent from the sear
h and sele
tion rule). We also want to makesure that a
onjun
tion of terminating queries is itself a terminating query. Thismeans that we embark on a rather stri
t notion of termination.De�nition 9. A CHR program P is
alled terminating for a
lass of queries, ifthere are no in�nite sequen
es of
omputation steps using rules from P startingfrom a query in the
lass.Roughly, a CHR program
an be proved to terminate if we
an prove that inea
h rule, the rank of the head is stri
tly larger than the rank of the body.A ranking for a CHR program will have to de�ne the ranks of CHR andbuilt-in
onstraints. In extension of usual approa
hes, we also have to de�ne therank of a
onjun
tion of
onstraints, sin
e CHR are multi-headed. We will de�nethe rank of any built-in
onstraint to be the smallest element in the order (i.e. 0or fg for multi-sets), sin
e we assume that they always terminate. The rank of a
onjun
tion should re
e
t that
onjun
tions of CHR
onstraints are asso
iativeand
ommutative, but not idempotent. Thus obvious
hoi
es are +, and [formulti-sets, repe
tively.A built-in
onstraint may imply order
onstraints between the ranks of itsarguments (interargument relations), e.g. s=t ! rank(s) = rank(t). We assumethese order
onstraints are given and known to be
orre
t.In this paper, we formalize a termination
ondition for simpli�
ation rules.We
urrently
annot deal with propagation rules in their generality, rather wewill deal with them in a solver-dependent way.De�nition 10. The ranking
ondition of a simpli�
ation rule H <=> G | B isthe formula8 (RC(G;B)! H � B),where RC(G;B) is a
onjun
tion of order
onstraints implied by the built-in
onstraints in the guard and body of the rule.Sin
e rankings are based on linear polynomial orders, H � B does not univer-sally hold if B
ontains lo
al variables not o

urring in H , ex
ept if the order
onstraints RC(G;B) imply an appropriate relationship between the variables.The intuition behind the de�nition of a ranking
ondition is that the built-in
onstraints in the rule will imply order
onstraints RC(G;B) that
an help us

to establish that H � B. There is no need in RC(G;B) to distinguish betweenbuilt-in
onstraints from the guard and from the body, even though they avoidnon-termination for di�erent reasons: If the
onstraints in the guard do nothold, the rule is not appli
able, and neither is any instan
e of it. If the built-in
onstraints in the body do not hold, the appli
ation of the rule leads to anin
onsistent, thus �nal state.To prove termination, goals have to be suÆ
iently known.De�nition 11. A goal A is bounded if the rank of any instan
e of A is boundedfrom above by a
onstant k.Obviously, the rank of a ground (variable-free) term is always bounded. Intu-itively, in bounded goals, variables only appear in positions whi
h are ignoredby the ranking. The use of well-modedness instead of boundedness is not help-ful in programs that de�ne
onstraints, whi
h should allow for arbitrary modesby de�nition, see Example 1. Obviously, boundedness generalizes the notion ofmodes.The following two analogous theorems tell us how to prove CHR termination.Theorem 1. Given a CHR program P without propagation rules and a rankingwhererank((A ^ B)) = rank(A) + rank(B)for any two goals A and B. If the ranking
ondition holds for ea
h rule in P ,then P is terminating for all bounded goals.Proof. Consider a state H 0 ^D. Applying the rule (H <=> G j B) will leadto the state (H = H 0) ^G ^ B ^D.We have to show that rank(H 0 ^D) > rank((H = H 0)^G^B ^D) and thatthe ranks of all states in a
omputation are bounded.We know that rank(G) = 0, rank(H = H 0) = 0, sin
e 0 is the smallestelement in our polynomial order, and that (H = H 0)! rank(H) = rank(H 0).Sin
e RC(G;B)! rank(H) > rank(B), we have thatrank(H 0 ^D) = rank(H 0) + rank(D) = rank(H) + rank(D) >0 + 0 + rank(B) + rank(D) = rank(((H = H 0) ^G ^ B ^D)).To show that the ranks of all states are bounded, note the following: Any rankingis well-founded and has the stability property. Sin
e goals are bounded, the rankof a state is bounded. Due to the ranking
ondition, the boundedness of thesour
e state is propagated to target state, i.e. given a bounded state H 0^D, theappli
ation of any simpli�
ation rule will lead to a state that is bounded again.Thus no in�nite
omputations are possible, hen
e P is terminating.The se
ond Theorem is analogous to the �rst one, ex
ept that we
onsidermulti-set orders.Theorem 2. Given a CHR program P without propagation rules and a multi-set order de�ned by a fun
tion mrank whi
h is indu
ed by a polynomial rankingrank, and su
h that

mrank((A ^ B)) = mrank(A) [mrank(B),where A and B are goals and [denotes multi-set union. If the ranking
onditionholds for ea
h rule in P , then P is terminating for all bounded goals.Proof. Consider a state H 0 ^D. Applying the rule (H <=> G j B) will leadto the state (H = H 0) ^G ^ B ^D.We have to show that mrank(H 0 ^D) � mrank((H = H 0)^G^B ^D) andthat the ranks of all states in a
omputation are bounded.We know that mrank(G) = fg, mrank(H = H 0) = fg, sin
e fg is the smallestelement in the multi-set order, and that (H = H 0)! mrank(H) = mrank(H 0).Sin
e RC(G;B)! mrank(H) � mrank(B), we have thatmrank(H 0 ^D) = mrank(H 0) [mrank(D) = mrank(H) [mrank(D) �fg [fg [mrank(B) [mrank(D) = mrank(((H = H 0) ^G ^ B ^D)).To show that the ranks of all states are bounded, note the following: Any multi-set order indu
ed by a polynomial ranking is well-founded and has the stabilityproperty. Sin
e goals are bounded, the rank of a goal is bounded. Sin
e there isonly a �nite number of goals in a state, the multi-set of its ranks is �nite. Dueto the ranking
ondition, the boundedness of the sour
e state is propagated totarget state. Thus no in�nite
omputations are possible, hen
e P is terminating.We are now ready to prove termination of a
tually implemented CHR
on-straint solvers ranging from Boolean and arithmeti
 to terminologi
al and path-
onsistent
onstraints. For details on the
onstraint solvers analyzed here see[Fru98℄ and the CHR web pages:www.pst.informatik.uni-muen
hen.de/�fruehwir/
hr-intro.html4.1 Boolean Algebra, Propositional Logi
The domain of Boolean
onstraints in
ludes the
onstants 0 for falsity, 1 fortruth and the usual logi
al
onne
tives of propositional logi
, e.g. and, or,neg, imp, exor, modeled here as relations. Synta
ti
al equality = is a built-in
onstraint. As a �rst, simple, but nevertheless useful example for a
onstraintsolver, we
an de�ne an and
onstraint using value propagation, a spe
ial
aseof ar

onsisten
y:and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the
onstraint and(X,Y,Z), when it is knownthat the �rst input argument X is 0,
an be redu
ed to asserting that the outputZ must be 0. Hen
e the query and(X,Y,Z),X=0 will result in X=0, Z=0.

The above rules terminate, sin
e the CHR
onstraints and is not re
ursive.Any ranking that maps and to a positive number suÆ
es to show this. The sameholds for the other
onne
tives.In general, in termination proofs we
an ignore rules whose body
ontainsonly built-in
onstraints.A
onstraint solver is
omplete if
an always redu
e in
onsistent CHR
on-straints to false. To a
hieve
ompleteness for Boolean
onstraints as de�nedhere, sear
h must be employed by trying out values for the variables. In gen-eral, one is happy with in
omplete solvers, be
ause they have polynomial time-
omplexity as opposed to the exponential
omplexity of
omplete algorithms.Completeness has nothing to do with termination, but is mentioned in this pa-per to
hara
terize the
onstraint solvers.Boolean CardinalityThe
ardinality
onstraint
ombinator was introdu
ed in the CLP language

(FD) [vHSD92℄ for �nite domains. We adapted it for Boolean variables. TheBoolean
ardinality
onstraint #(L,U,BL,N) holds if between L and U Booleanvariables in the list BL are equal to 1. N is the length of the list BL. Boolean
ardi-nality
an express e.g. negation #(0,0,[C℄,1), ex
lusive or #(1,1,[C1,C2℄,2),
onjun
tion #(N,N,[C1,...,Cn℄,N), and disjun
tion #(1,N,[C1,...,Cn℄,N).In the following
ode, all
onstraints ex
ept
ardinality # are built-in.% trivial, positive and negative satisfa
tiontriv_sat� #(L,U,BL,N) <=> L=<0,N=<U | true.pos_sat � #(L,U,BL,N) <=> L=N | all(1,BL).neg_sat � #(L,U,BL,N) <=> U=0 | all(0,BL).% positive and negative redu
tionpos_red � #(L,U,BL,N) <=> delete(1,BL,BL1)| 0<U,#(L-1,U-1,BL1,N-1).neg_red � #(L,U,BL,N) <=> delete(0,BL,BL1)| L<N,#(L,U,BL1,N-1).all(T,L) binds all elements of the list L to T. delete(X,L,L1) deletes theelement X from the list L resulting in the list L1. When delete/3 is used in theguard, it will only su

eed if the element to be removed a
tually o

urs in thelist. E.g. delete(1,BL,BL1) will delay if it tries to bind a variable in BL to 1. Itwill only su

eed if there a
tually is a 1 in the list. It will fail, if all elements ofthe list are zeros.Termination. The rules are still simple (single-headed simpli�
ation rules),but some are re
ursive. Sin
e the
ardinality
onstraint is either simpli�ed into abuilt-in
onstraint (satisfa
tion rules) or redu
ed to a
ardinality with a shorterlist (redu
tion rules), this implementation terminates.More formally, our termination proof is based on the length of the list:rank(#(L;U;BL;N)) = length(BL)

The length of a list
an be expressed in our ranking s
heme by:length([℄) = 0length([X jL℄) = 1 + length(L)For example, the length of [a,b,
,d℄ is 4, the length of [a|L℄ is 1 + length(L)with length(L) � 0.Remember that the rank of built-in
onstraints is always 0, but that theymay imply order
onstraints. This is the
ase for delete/3:delete(X;L;L1)! length(L) = length(L1) + 1Finally, the rank of a
onjun
tion is the sum of the ranks of its
onjun
ts:rank((A ^ B)) = rank(A) + rank(B)The interesting
ase for termination are the two redu
tion rules, be
ause theyare re
ursive. From the rulepos_red � #(L,U,BL,N) <=> delete(1,BL,BL1)| 0<U,#(L-1,U-1,BL1,N-1).we get to provelength(BL) = length(BL1) + 1 ! length(BL) > length(BL1).The ranking
ondition holds, and in the same way we prove termination for theneg red rule.Due to the ranking, a goal
onsisting of built-in and
ardinality
onstraintsis bounded if the lengths of the lists in the
ardinality
onstraints are known, i.e.if the lists are
losed. If a list was open(-ended), there
ould be produ
ers of anin�nite list, and then the asso
iated
ardinality
onstraint would not ne
essarilyterminate.4.2 Terminologi
al ReasoningTerminologi
al formalisms (aka des
ription logi
s) [BaHa91℄ are used to repre-sent the terminologi
al knowledge of a parti
ular problem domain on an abstra
tlogi
al level. To des
ribe this kind of knowledge, one starts with atomi

on
eptsand roles, and then de�nes new
on
epts and their relationship in terms of ex-isting
on
epts and roles. Con
epts
an be
onsidered as unary relations similarto types. Roles
orrespond to binary relations over obje
ts. Although there isan established notation for terminologies, we use a more verbose syntax to helpreaders not familiar with the formalism.De�nition 12. Con
ept terms are de�ned indu
tively: Every
on
ept (name)
is a
on
ept term. If s and t are
on
ept terms and r is a role (name), then thefollowing expressions are also
on
ept terms:s and t (
onjun
tion), s or t (disjun
tion), nota s (
omplement),every r is s (value restri
tion), some r is s (exists-in restri
tion).

Obje
ts are
onstants or variables. Let a, b be obje
ts. Then a : s is a membershipassertion and (a; b) : r is a role-�ller assertion. An A-box is a
onjun
tion ofmembership and role-�ller assertions.De�nition 13. A terminology (T-box)
onsists of a �nite set of
on
ept de�ni-tions
 isa s,where
 is a newly introdu
ed
on
ept name and s is a
on
ept term.Sin
e the
on
ept
 is new, it
annot be de�ned in terms of itself, i.e.
on
eptde�nitions are a
y
li
 (non-re
ursive). This also implies that there are
on
eptswithout de�nition, they are
alled primitive.The CHR
onstraint solver for terminologies en
odes the T-box by rules andthe A-box as CHR
onstraints, sin
e we want to solve problems over a giventerminology (T-box). A similar solver is des
ribed in [FrHa95℄.The
onsisten
y test of A-boxes simpli�es and propagates the assertions inthe A-box to make the knowledge more expli
it and looks for obvious
ontradi
-tions (\
lashes") su
h as X : devi
e, X : nota devi
e. This is expressed bythe rule:I : nota S, I : S <=> false:The following simpli�
ation CHR show how the
omplement operator nota
anbe pushed towards to the leaves of a
on
ept term:I : nota nota S <=> I : S.I : nota (S or T) <=> I : nota S and nota T.I : nota (S and T) <=> I : (nota S or nota T).I : nota (every R is S) <=> I : some R is nota S.I : nota some R is S <=> I : every R is nota S.An exists-in restri
tion generates a new variable that serves as a \witness" forthe restri
tion:I : some R is S <=> (I,J) : R, J : S.A value restri
tion has to be propagated to all role �llers:I : every R is S, (I,J) : R ==> J : S.The unfolding rules repla
e
on
ept names by their de�nitions. For ea
h
on
eptde�nition C isa S two rules are introdu
ed:I : C <=> I : S.I : nota C <=> I : nota S.The
onjun
tion rule generates two new, smaller assertions:I : S and T <=> I : S, I : T.

The rules simplify terminologi
al
onstraints until a normal form is rea
hed.The normal form is either false (in
onsistent) or
ontains
onstraints of the formI : C, I : nota C, I : S or T, I : every R is S and (I,J) : R, whereC is a primitive
on
ept name. There are no
lashes and the value restri
tionhas been propagated to every obje
t. To a
hieve
ompleteness, sear
h must beemployed. This is done by splitting I : S or T into two
ases, I : S and I: T.Termination. The only CHR
onstraints that are rewritten by the rules aremembership assertions. Sin
e there are no guards, to show termination it there-fore suÆ
es to show that in ea
h rule, the membership assertions in the bodyare stri
tly smaller than the ones in the head.To prove termination we order
on
ept terms by the following ranking:rank((A ^ B)) = rank(A) + rank(B)rank((I; J) : r) = 0rank(I : s) = rank(s)rank(nota s) = 2 � rank(s)rank(
) = 1 + rank(s) if (
 isa s) existsrank(f(t1; : : : ; tn)) = 1 + rank(t1) + : : :+ rank(tn) otherwiseThe ranking above is well-founded, sin
e
on
ept de�nitions
 isa s are a
y
li
and �nite by de�nition. From the ranking we
an see that goals are boundedif the ranks of all
on
ept terms (like s and
) are known. Sin
e
on
ept termsare ground (variable-free) and �nite by de�nition, their ranks
an always be
omputed.The propagation rule for value restri
tions needs
loser
onsideration. Notethree things: First, the rank of its body is stri
tly smaller than the rank of itshead. Se
ond, sin
e a propagation rule is appli
able only at most on
e to the same
onstraints, it
an only be applied a �nite number of times to a �nite
onjun
tionof
onstraints. Third, the ranking is well-founded and goals are bounded. Forthese reasons, the propagation rule
an only generate a �nite number of smallerand smaller membership assertions.4.3 Linear Polynomial EquationsFor solving linear polynomial equations, a minimalisti
 but powerful variant ofvariable elimination [Imb95℄ is employed in the available CHR
onstraint solvers.De�nition 14. A linear polynomial equation is of the form p+ b = 0 where b isa
onstant and the polynomial p is the sum of monomials of the form ai �xi with
oeÆ
ient ai 6= 0 and xi is a variable. Constants and
oeÆ
ients are numbers.Variables are totally ordered by �. In an equation a1 �x1+ : : :+an �xn+ b = 0,variables appear in stri
tly des
ending order.In
onstraint logi
 programming,
onstraints are added in
rementally. There-fore we
annot eliminate a variable in all other equations at on
e, but rather

onsider the other equations one by one. A simple normal form
an exhibitin
onsisten
y: It suÆ
es if the left-most variable of ea
h equation is the onlyleft-most o

urren
e of this variable. Therefore the two rules below implement a
omplete and rather eÆ
ient solver for linear equations over both
oating pointnumbers (to approximate real numbers) and rational numbers. In the implemen-tation, we write eq for equality on polynomials.empty � B eq 0 <=> number(B) | B=0.eliminate �A1*X+P1 eq 0, A2*X+P2 eq 0 <=>
ompute(P2-P1*A2/A1,P3),A1*X+P1 eq 0, P3 eq 0.The empty rule says that if the polynomial
ontains no more variables, the
on-stant B must be (approximate to) zero. The eliminate rule performs variableelimination. It takes two equations that start with the same variable. The �rstequation is left un
hanged, it is used to eliminate the o

urren
e of the
ommonvariable in the se
ond equation. The auxiliary built-in
onstraint
ompute sim-pli�es a polynomial arithmeti
 expression into a new polynomial. No variable ismade expli
it, i.e. no pivoting is performed. Any two equations with the same�rst variable
an rea
t with ea
h other. Therefore, the solver is highly
on
urrentand distributed.The solver
an be extended by a few rules to
reate expli
it variable bindings,to make impli
it equalities between variables expli
it, to deal with inequationsusing sla
k variables or Fourier's algorithm.Termination. Sin
e in termination proofs we
an ignore rules whose body
ontains only built-in
onstraints, we are only
on
erned with the eliminate rulehere. To prove its termination we order the equations by the following rankingmrank that uses a multi-set order �m on the variables o

urring in goals. Theorder is indu
ed by the order on ranked variables �, the ranking fun
tion rankitself is not de�ned for any predi
ate or fun
tion symbols.mrank((A ^ B)) = mrank(A) [mrank(B)mrank(P eq 0) = mrank(P)mrank(A) = fg if A is a built-in
onstraintmrank(T) = frank(V) j V is a variable in Tg if T is a terma1 �X1 + : : :+ an �Xn + b eq 0! Xi � Xj for all n � i > j � 1 (1)
ompute(E;P)! mrank(E) � mrank(P) (2)The order
onstraint (1) says that the monomials in the equations are orderedby their variables. The order
onstraints (2) says that the built-in
onstraint
ompute does not introdu
e new variables, but may eliminate o

urren
es ofsome.

For better readability, we will now just write the polynomial P instead ofmrank(P) and the variable V instead of rank(V). From the eliminate rule weget that the head rank, the multi-set (fXg [P1 [fXg [P2), must be stri
tlylarger than the body rank (fXg[P1[P3). From the order
onstraint (2) we
anderive that P2[P1 � P3. Hen
e the body rank multi-set
ontains only variablesfrom the head rank multi-set. Due to (1) we know that the variable X does noto

ur in P1; P2 and P3, and that it
omes before all other variables in P1; P2and P3 in the variable order. Therefore the head rank multi-set is stri
tly largerin the multi-set order than the body rank multi-set, be
ause in the former Xo

urs twi
e and in the latter X o

urs only on
e.The order of the monomials by variables in the polynomial equations
orre-sponds to an implementation of the multi-set order by a lexi
ographi
 order asmentioned at the end of se
tion 3.4.4 Path Consisten
yIn this se
tion we analyze termination of
onstraint solvers that implement in-stan
es of the
lassi
al arti�
ial intelligen
e algorithm of path
onsisten
y tosimplify
onstraint satisfa
tion problems [MaFr85℄.De�nition 15. A binary
onstraint network
onsists of a set of variables anda set of (disjun
tive) binary
onstraints between them. The network
an berepresented by a dire
ted
onstraint graph, where the nodes denote variables andthe ar
s are labeled by binary
onstraints. Logi
ally, a network is a
onjun
tionof binary
onstraints.De�nition 16. A disjun
tive binary
onstraint
XY between two variables Xand Y , also written X fr1; : : : ; rng Y , is a �nite disjun
tion (X r1 Y) _ : : : _(X rn Y), where ea
h ri is a relation that is appli
able to X and Y . The ri are
alled primitive
onstraints. The
onverse of a primitive
onstraint r between Xand Y is the primitive
onstraint s that holds between Y andX as a
onsequen
e.For example, A f<g B;A f<;>g B;A f<;=; >g B are disjun
tive binary
on-straints
AB between A and B. A f<g B is the same as A < B, A f<;>g B is thesame as A 6= B. Finally, A f<;=; >g B does not impose any restri
tions on Aand B, the
onstraint is redundant. Usually, the number of primitive
onstraintsis �nite and they are pairwise disjoint. We will assume this in the following.De�nition 17. A network is path
onsistent if for pairs of nodes (i; j) and allpaths i� i1 � i2 : : : in � j between them, the dire
t
onstraint
ij is at least astight as the indire
t
onstraint along the path, i.e. the
omposition of
onstraintsalong the path denoted by
ii1
 : : :

inj . A
onstraint
ij is tighter than a
onstraint dij i�
ij implies dij .It follows from the de�nition of path
onsisten
y that we
an interse
t thedire
t and indire
t
onstraint to arrive at a tighter dire
t
onstraint. Let interse
-tion be denoted by the operator �. A graph is
omplete if there is a pair of ar
s,

one in ea
h dire
tion, between every pair of nodes. If the graph underlying thenetwork is
omplete it suÆ
es to repeatedly
onsider paths of length 2 at most:For ea
h triple of nodes (i; k; j) we repeatedly
ompute
ij :=
ij � (
ik

kj)until a �xpoint is rea
hed. This is the basi
 path
onsisten
y algorithm.Example 3. Given I � K ^ K � J ^ I � J and taking the triple (i; k; j),
ik

kj results in I � J and the result of interse
ting it with
ij is I = J . From(j; i; k) we get J = K (we
an
ompute
ji as the
onverse of
ij). From (k; j; i)we get K = I . Another round of
omputation
auses no more
hange, so the�xpoint is rea
hed with J = K ^ K = I .Let the
onstraint
ij be represented by the CHR
onstraint
(I,J,C) whereI and J are the variables and C is a set of primitive
onstraints representing
ij . The basi
 operation of path
onsisten
y,
ij :=
ij � (
ik

kj),
an beimplemented dire
tly by the rule:path_
onsisten
y �
(I,K,C1),
(K,J,C2),
(I,J,C3) <=>
omposition(C1,C2,C12),interse
tion(C12,C3,C123),C123=\=C3 |
(I,K,C1),
(K,J,C2),
(I,J,C123).The operations
 and � are implemented by built-in
onstraints,
ompositionand interse
tion. Composition of disjun
tive
onstraints
an be
omputedby pairwise
omposition of its primitive
onstraints. Interse
tion for disjun
tive
onstraints
an be implemented by set interse
tion. To a
hieve
ompleteness,sear
h must be employed. This is done by imposing primitive
onstraints
hosenfrom the disjun
tive
onstraints.Termination. To prove termination we rely on the
ardinality of the sets rep-resenting the disjun
tive
onstraints and the properties of set interse
tion:rank((A ^ B)) = rank(A) + rank(B)rank(
(I;K;C)) =
ardinality(C)rank(A) = 0 otherwiseinterse
tion(C1; C2; C3)! rank(C3) � rank(C1)^rank (C3) � rank(C2)interse
tion(C1; C2; C3) ^ C3 6= C2! rank(C3) 6= rank(C2)Sin
e in the guard of the rule, C123=n=C3 is
he
ked to make sure the new
onstraint C123 is di�erent from the old one C3, the
ardinality of C123 must bestri
tly less than that of C3. Hen
e the body is ranked stri
tly smaller than thehead of the rule. Goals are bounded, when C is a known, �nite set of primitive
onstraints. Any solver derived from this generi
 path
onsisten
y solver willterminate, too.

4.5 Interval Constraints, Ar
 Consisten
yThe following rules implement an ar

onsisten
y algorithm for interval
on-straints [BeOl92℄. Ar

onsisten
y
an be seen as spe
ial
ase of path
onsisten
y,where all but one
onstraint is unary instead of binary. The interval
onstraintX in A:B means that X is an integer between the given bounds A and B.% Intervalsin
onsistent � X in A:B <=> A>B | false.interse
tion � X in A:B, X in C:D <=> A=<B| X in max(A,C):min(B,D).% (In)equalitiesle � X le Y, X in A:B, Y in C:D <=> A=<B,B>D |X le Y, X in A:D, Y in C:D.le � X le Y, X in A:B, Y in C:D <=> C=<D,C<A |X le Y, X in A:B, Y in A:D.eq � X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,A=\=C |X eq Y, X in max(A,C):B, Y in max(C,A):D.eq � X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,B=\=D |X eq Y, X in A:min(B,D), Y in C:min(D,B).% Addition X+Y=Zadd � add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>A=<B,C=<D, not((A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)) |add(X,Y,Z),X in max(A,E-D):min(B,F-C),Y in max(C,E-B):min(D,F-A),Z in max(E,A+C):min(F,B+D).To a
hieve
ompleteness, sear
h must be employed. This is done by splittingintervals in two halves or by trying the boundary values of an interval.Termination. We order
onstraints by the size of their intervals:rank((C ^D)) = rank(C) + rank(D)rank(X in A : B) = B �A+ 1 if B � Arank(C) = 0 otherwiseWe will use the inequalities in the guards of the rules dire
tly as order
onstraints.With their help we
an prove that in ea
h rule, at least one interval in the bodyis stri
tly smaller than the
orresponding interval in the head, while the otherintervals remain un
hanged or will be removed.The
onstraints A=<B and C=<D in the guard of a rule ensure that the rank ofthe head of the rule
annot be 0. (In implementations that apply rules in textualorder, these guard
onstraints
an be dropped.) The ranking
ondition for the�rst rule in
onsistent also holds, even though its head rank is 0, sin
e its order
onstraint is in
onsistent: (A > B ^ false)! 0 > 0.

Sin
e the interval bounds are initially known, goals are bounded. Note thatthe intervals of integers are
losed under the interval
omputations used, sin
ethey involve only the arithmeti
 operations max, min and +, -. Terminationfor intervals of rational numbers
an be shown by observing that any problemon rational numbers
an be transformed into an equivalent one on integers bymultiplying all numbers the problem with their greatest
ommon divisor. For
oating point numbers, rounding errors get in the way.5 Con
lusionsWe have shown in this paper that for many known
onstraint solvers imple-mented in CHR it is possible to prove termination by adapting well-foundedorders (linear polynomial interpretations) and interargument relations (order
onstraints) as known from related work in term rewriting systems and logi
programming. One adaption was to extend termination order from atomi
 for-mulas to
onjun
tions of
onstraints.To the best of our knowledge, this is the �rst report on proving terminationof
on
urrent
onstraint logi
 programs and of
onstraint solver implementa-tions. Our results indi
ate that in pra
ti
e, proving termination for
on
urrent
onstraint logi
 programs may not be harder than for other
lasses of logi
 pro-gramming languages,
ontrary to what has been feared in the literature.Our results so far are somewhat unsatisfa
tory, be
ause we give two analogousTheorems whi
h should be abstra
ted into single Theorem a

omodating bothkind of termination orders that we
onsidered (polynomial interpreations andmulti-sets).The solvers we have
onsidered are
hara
terized by the fa
t that re
ursion isdire
t and typi
ally modi�es one argument position of a
onstraint, and the termin that position is suÆ
iently known in reasonable queries, i.e. those queries arebounded.Although we have dealt with termination in the presen
e of propagation rulesin the solver for terminologi
al reasoning, we still have to formalize terminationinvolving propagation rules. In parti
ular, there is a
lass of solvers that we
urrently
annot prove to terminate with the approa
h presented in this pa-per. These solvers are implementations of path and ar

onsisten
y algorithmson in
omplete
onstraint networks. They basi
ally
onsist of the two followingprototypi
al rules:
(I,K,C1),
(K,J,C2) ==>
omposition(C1,C2,C3),
(I,J,C3).
(I,J,C1),
(I,J,C2) <=> interse
tion(C1,C2,C3),
(I,J,C3).These solvers have re
ursion on the same
onstraint through both simpli�
ationand propagation rules. This means that a
onstraint
an be �rst added and thenbe removed during the
omputation. To prove termination, one will have to takeinto a

ount that simpli�
ation is applied suÆ
iently often before propagationand the fa
t that propagation rules are never applied a se
ond time to the same
onstraints.

Future work will also
onsider automation of the termination proofs presentedhere. Another interesting line of future work is to strengthen the ante
edent ofa ranking
ondition by introdu
ing type
onstraints (sin
e ill-typed goals eitherdelay or fail).A
knowledgements. The author would like to thank the anonymous re-viewers for their valuable suggestions.Referen
es[Abd97℄ S. Abdennadher, Operational Semanti
s and Con
uen
e of Constraint Prop-agation Rules, 3rd Intl Conf on Prin
iples and Pra
ti
e of Constraint Programming(CP'97), Linz, Austria, Springer LNCS 1330, pp 252-265, O
tober/November 1997.[AbFr99℄ S. Abdennadher and T. Fr�uhwirth, Operational Equivalen
e of CHR Pro-grams and Constraints, 5th Intl Conf on Prin
iples and Pra
ti
e of Constraint Pro-gramming (CP'99), Alexandra, Virginia, USA, Springer LNCS, 1999.[AFM99℄ S. Abdennadher, T. Fr�uhwirth and H. Meuss, Con
uen
e and Semanti
sof Constraint Simpli�
ation Rules, Journal Constraints Vol. 4(2), Kluwer A
ademi
Publishers, May 1999.[ApPe90℄ K.R. Apt and D. Pedres
hi, Studies in Pure Prolog: Termination, ESPRITComputational Logi
 Symposium, Springer 1990, pp 150-176.[BaHa91℄ F. Baader and P. Hans
hke. A s
heme for integrating
on
rete domainsinto
on
ept languages. 12th International Joint Conferen
e on Arti�
ial Intelligen
e,1991.[BaNi98℄ F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge Uni-versity Press, 1998.[BeOl92℄ F. Benhamou and W.J. Older, Bell Northern Resear
h, Applying intervalarithmeti
 to Integer and Boolean
onstraints, Te
hni
al Report, June 1992.[Bez93℄ M. Bezem, Strong Termination of Logi
 Programs, Journal of Logi
 Program-ming Vol. 15(1,2), pp. 79-98, 1993.[CDJK99℄ H. Comon, M. Din
bas, J.-P. Jouannaud and C. Kir
hner, A Methodolog-i
al View of Constraint Solving, Constraints Journal Vol. 4(4), pp. 337-361, KluwerA
ademi
 Publishers, De
ember 1999.[CMM95℄ L. Colussi, E. Mar
hiori and M. Mar
hiori, On Termination of ConstraintLogi
 Programs, 1st Intl Conf on Prin
iples and Pra
ti
e of Constraint Programming(PPCP'95), Cassis, Fran
e, Springer LNCS 976, 1995.[Der87℄ N. Dershowitz, Termination of Rewriting, Journal of Symboli
 ComputationVol. 3(1+2), pp. 69-116, 1987.[dSD94℄ D. de S
hreye and St. De
orte, Termination of Logi
 Programs: The Never-Ending Story, Journal of Logi
 Programming Vol. 19,20, pp. 199-260, Elsevier, NewYork, USA, 1994.[FrAb97℄ T. Fr�uhwirth and S. Abdennadher, Constraint-Programmierung (in Ger-man), Textbook, Springer Verlag, Heidelberg, Germany, September 1997.[FrBr00℄ T. Fr�uhwirth and P. Brisset, Optimal Pla
ement of Base Stations in Wire-less Indoor Communi
ation Networks, Spe
ial Issue of the IEEE Intelligent SystemsMagazine on Pra
ti
al Appli
ations of Constraint Te
hnology, (M. Walla
e and G.Freuder, Eds.), IEEE Press, Vol. 15(1), pp. 49-53, January/February 2000.[FrHa95℄ T. Fr�uhwirth and P. Hans
hke, Terminologi
al Reasoning with ConstraintHandling Rules, in Prin
iples and Pra
ti
e of Constraint Programming, (P. van Hen-tenry
k and V.J. Saraswat, Eds.), MIT Press, Cambridge, Mass., USA, 1995.

[Fru98℄ T. Fr�uhwirth, Theory and Pra
ti
e of Constraint Handling Rules, Spe
ial Issueon Constraint Logi
 Programming (P. J. Stu
key and K. Marriot, Eds.), Journal ofLogi
 Programming Vol. 37(1-3), pp. 95-138, O
t-De
 1998.[HoFr00℄ C. Holzbaur and T. Fr�uhwirth, A Prolog Constraint Handling Rules Compilerand Runtime System, Spe
ial Issue of the Journal of Applied Arti�
ial Intelligen
e onConstraint Handling Rules (C. Holzbaur and T. Fr"uhwirth, Eds.), Taylor & Fran
is,to appear 2000.[Imb95℄ J.-L. J. Imbert, Linear Constraint Solving in CLP-Languages, in ConstraintProgramming: Basi
s and Trends, (A. Podelski, Ed.), LNCS 910, Mar
h 1995.[JaMa94℄ J. Ja�ar and M. J. Maher, Constraint Logi
 Programming: A Survey, Journalof Logi
 Programming Vol. 19,20, pp. 503-581, 1994.[KKS97℄ M.R.K. Krishna Rao, D. Kapur and R. K. Shyamasundar, Proving Termina-tion of GHC Programs, New Generation Computing, 1997.[MaFr85℄ A. K. Ma
kworth and E. C. Freuder, The Complexity of Some PolynomialNetwork Consisten
y Algorithms for Constraint Satisfa
tion Problems, Journal ofArti�
ial Intelligen
e Vol. 25, pp. 65-74, 1985.[MaSt98℄ K. Marriott and P. J. Stu
key, Programming with Constraints, MIT Press,USA, Mar
h 1998.[MaTe95℄ E. Mar
hiori and F. Teusink, Proving Termination of Logi
 Programs withDelay De
larations, ILPS 95, 1995.[Mah87℄ M. J. Maher, Logi
 Semanti
s for a Class of Committed-Choi
e Programs,4th Intl Conf on Logi
 Programming, Melbourne, Australia, pp 858-876, MIT Press,Cambridge, Mass., USA, 1987.[Mes96℄ F. Mesnard, Inferring Left-terminating Classes of Queries for Constraint Logi
Programs, Joint Intl Conf and Symposium on Logi
 Programming (JICSLP'96), (M.Maher, Ed.), pp 7-21, Bonn, Germany, MIT Press, September 1996.[Nai92℄ L. Naish, Coroutining and the Constru
tion of Terminating Logi
 Programs,Te
hni
al Report 92/5, Dept of Computer S
ien
e, University of Melbourne, Aus-tralia, 1992.[Plu92℄ L. Pl�umer, Automati
 Veri�
ation of GHC-Programs: Termination, Fifth Gen-eration Computer Systems, (FGCS'92), Tokyo, Japan, June 1992.[Rug97℄ S. Ruggieri, Termination of Constraint Logi
 Programs, ICALP 1997, SpringerLNCS 1256, pp. 838-848, 1997.[vHSD92℄ P. van Hentenry
k, H. Simonis and M. Din
bas, Constraint Satisfa
tionUsing Constraint Logi
 Programming, Arti�
ial Intelligen
e, 58(1-3):113{159, De-
ember 1992.

