Proving Termination of Constraint Solver
Programs

Thom Frihwirth

Ludwig-Maximilians-Universitdt Miinchen
Oettingenstrasse 67, D-80538 Munich, Germany
fruehwir@informatik.uni-muenchen.de
www.informatik.uni-muenchen.de/~ fruehwir/

Abstract. We adapt and extend existing approaches to termination in
rule-based languages (logic programming and rewriting systems) to prove
termination of actually implemented CHR constraint solvers.

CHR (Constraint Handling Rules) are a declarative language especially
designed for writing constraint solvers. CHR are a concurrent constraint
logic programming language consisting of multi-headed guarded rules
that rewrite constraints into simpler ones until they are solved.

The approach allows to prove termination of many constraint solvers,
from Boolean and arithmetic to terminological and path-consistent con-
straints. Because of multi-heads, our termination orders must consider
conjunctions, while atomic formulas suffice in usual approaches.

Our results indicate that in practice, proving termination for concurrent
constraint logic programs may not be harder than for other classes of
logic programming languages, contrary to what has been feared in the
literature.

1 Introduction

We adapt and extend existing approaches to termination in rule-based languages
(logic programming and rewriting systems) to prove termination of actually im-
plemented CHR constraint solver programs.

CHR (Constraint handling rules) [Fru98,AFM99] are a high-level language
especially designed for writing constraint solvers. CHR are a committed-choice
concurrent constraint logic programming language consisting of multi-headed
guarded rules that rewrite constraints into simpler ones until they are solved.
CHR define both simplification of and propagation over user-defined constraints.
Simplification replaces constraints by simpler constraints while preserving logi-
cal equivalence. Propagation adds new constraints which are logically redundant
but may cause further simplification. CHR have been used in dozens of projects
worldwide to encode constraint solvers, including new domains such as termi-
nological, spatial and temporal reasoning [Fru98] and new applications domains
such as optimal placement of sender stations [FrBr00].

The study of termination of CHR programs is not only essential for reliable
constraint solvers, termination is a prerequisite for analyzing and deciding con-
fluence [Abd97,AFM99] and operational equivalence [AbFr99] of CHR programs.



Confluence guarantees that the result of a computation will always be the same,
no matter which of the applicable rules are applied.

In logic programming in general, a termination problem can only occur if
recursion is involved. Once recursion is present, the problem is almost at once
undecidable. There is a fair amount of work on sufficient conditions ensuring
termination of (pure) logic programs [dSD94], which started about a decade
ago. The basic idea is to prove that in each rule, the head atom is strictly larger
than every atom occurring in the body of the rule.

Typically, the necessary well-founded orders are adopted from term rewriting
systems (TRS). A commonly used order is called polynomial interpretation which
is known in TRS since more than twenty years [Der87,BaNi98]. The idea is
to map terms and atoms to natural numbers. Instances of this mapping are
also called measure function, norm, ranking or level mapping. To ensure well-
foundedness, programs and queries usually have to be well-moded (and well-
typed) or queries sufficiently known.

The main line of work in termination of logic programs is considered to be
from Apt, Bezem and Pedreschi [ApPe90,Bez93]. Both programs and goals are
characterized in terms of level mappings, a function from ground atoms to natural
numbers. A logic program is recurrent if for every ground instance of each rule,
the level of the head atom is higher than the level of each body atom. A goal is
bounded (rigid) if for every (ground) instance of each atom in the goal there is a
maximum level which is not exceeded. Successive work of the authors refined this
approach: Local variables and the specific left-to-right SLD resolution of Prolog
are taken into account. A program is acceptable if for every ground instance of
each rule the level of the head atom is higher than the level of each body atom
whenever it is not in the model of the program and all the body atoms on the
right are in the model. The model of a program is characterized by suitable
interargument relations that must hold on the atoms. The notion of bounded
goals is extended as well to take the model into account.

There are only a few recent papers on termination for constraint logic pro-
grams [CMM95,Mes96,Rug97], logic programs with coroutining [Nai92,MaTe95]
and concurrent logic programs [Plu92,KKS97]. [Rug97,Mes96,MaTe95,Plu92)
embark on level mappings. The theoretical work [CMMB95] provides necessary
and sufficient conditions for termination based on dataflow graphs, the practical
work [Nai92] discusses informally how terminating procedures can be combined
ensuring overall termination, and [KKS97] can use techniques from TRS directly
since they translate GHC programs into TRS.

To the best of our knowledge, there is no work yet on proving termination of
concurrent constraint logic programs and of constraint solver implementations.

In the literature it is generally agreed that the issue of termination for con-
current constraint languages is even harder than for other logic programs, since
programs with constraints do not go well with the idea of modes and well-
modedness, and since programs with coroutining or concurrency do not have a
statically fixed search and selection rule.



The following example illustrates the behavior of committed-choice languages
with respect to delaying and termination.

Ezample 1. Consider a CHR constraint characterizing even numbers. We use
Prolog syntax, where Variables start with upper case letters, and function and
predicate symbols with lower case letters. Assume that numbers are expressed
in successor notation and that = means syntactical equality. The constraint may
be defined by the single rule:

even(X) <=> X=s(Y) | Y=s(Z), even(Z).

The rule says that if the argument X to even is the successor of some number
Y, then the predecessor of this number Z must be even in order to ensure that
the initial number X is even. The query even(N) delays. The query even (£ (N))
delays as well. To the query even(s(N)) the rule is applicable, the answer is
N=s(N1), even(N1).

It was already discussed in detail in [Nai92] that the conjunction of two
query atoms, that both terminate on its own, need not terminate. Here, the
query even(N), even(s(N)) will not terminate. It leads to even(N), N=s(N1),
even(N1), which is equivalent to even(s(N1)), even(N1), which is just a vari-
ant of the initial query.

For CHR, we not only have concurrency and constraints, but also propagation
rules and multiple heads to consider. Thus we cannot hope to give a definitive
or final answer concerning termination at this point in time. In this paper we
rather concentrate on ensuring termination in practice, in existing constraint
solvers written in CHR.

Overview of the Paper. We will first give syntax and semantics for CHR.
In the next section, we introduce useful termination orders for CHR. Then we
prove termination of actually implemented CHR constraint solvers ranging from
Boolean and arithmetic to terminological and path-consistent constraints. Fi-
nally, we summarize the achievements of the current approach and discuss future
work.

2 Syntax and Semantics

In this section we give syntax and simple semantics for CHR, for more detailed
semantics see [Abd97,AFM99]. We assume some familiarity with (concurrent)
constraint (logic) programming [vHSD92,JaMa94,FrAb97,MaSt98,CDJK99].

A constraint is a predicate (atomic formula) in first-order logic. We dis-
tinguish between built-in (predefined) constraints and CHR (user-defined) con-
straints. Built-in constraints are those handled by a predefined, given constraint
solver. CHR constraints are those defined by a CHR program.

The syntax of CHR is defined by EBNF grammar rules and is reminiscent of
Prolog and GHC. Upper case letters stand for conjunctions of constraints.



Definition 1. A CHR program is a finite set of CHR. There are two kinds of
CHR. A simplification CHR is of the form

[N ’@’] H ’<=>> [G ’|’] B.
and a propaggation CHR is of the form
[N @] H ’>==>> [G ’|’] B.

where the rule has an optional name N, the multi-head H is a conjunction of CHR
constraints. The optional guard G is a conjunction of built-in constraints. The
body B is a conjunction of built-in and CHR constraints. As in Prolog syntax, a
conjunction is a sequence of conjuncts separated by commas.

The declarative semantics of a CHR program P is a conjunction of univer-
sally quantified logical formulas (one for each rule) and a consistent built—in
constraint theory CT which determines the meaning of the built-in constraints
appearing in the program. The theory CT is expected to include an syntacti-
cal equality constraint = and the basic trivial constraints true and false. The
declarative reading of a rule relates heads and body provided the guard is true.
A simplification rule means that the heads are true if and only if the body is
true. A propagation rule means that the body is true if the heads are true.

The operational semantics of CHR programs is given by a state transition
system. With computation steps (transitions, reductions) one can proceed from
one state to the next. A computation is a sequence of computation steps.

Definition 2. A state (or: goal) is a conjunction of built-in and CHR con-
straints. An initial state (or: query) is an arbitrary state. In a final state (or:
answer) either the built-in constraints are inconsistent or no computation step
is possible anymore.

Definition 3. Let P be a CHR program for the CHR constraints and CT be
a constraint theory for the built-in constraints. The transition relation — for
CHR is as follows. All variables occurring in states stand for conjunctions of
constraints. £ denotes the variables occurring in the rule chosen from P.

Simplify

HAND— (H=H)YANGABAD

if (H<=>G|B)inP and CT =D — 3z(H =H' ANG)
Propagate

HAD+— (H=H)YANGABANH' AD

if (H==>G|B)in P and CT =D — 3z(H = H' AG)

By equating two atomic constraints, c(t1,...,tn) = ¢(s1,...,8,) syntactically,
we mean (t; = s1)A...A(tn, = sn). By (H1A...AH,) = (H{A...AH)}) we mean
(Hy = H{)A...AN(H, = H]). Conjuncts can be permuted since conjunction is
assumed to be associative and commutative.



When we use a rule from the program, we will rename its variables using new
symbols. A rule is applicable to CHR. constraints H' whenever these atomic
constraints match (are an instance of) the head atoms H of the rule and the
guard G is entailed (implied) by the built-in constraint store. The matching is
the effect of the existential quantification in 3Z(H = H') [Mah87]. Matching
and entailment checks are performed by the constraint solver for the built-in
constraints. Any of the applicable rules can be applied, but it is a committed
choice, it cannot be undone.

If an applicable simplification rule (H <=> G | B) is applied to the CHR
constraints H', the Simplify transition removes H' from the state, adds B and
also adds the equation H = H' and the guard G to the state. If a propagation
rule (H ==> G | B) is applied to H', the Propagate transition adds B and
also adds the equation H = H' and the guard G, but does not remove H'.
Trivial non-termination is avoided by applying a propagation rule at most once
to the same constraints. A more complex operational semantics that addresses
these issues can be found in [Abd97]. Details on how to efficiently implement
the operational semantics given here can be found in [HoFr00]. The examples in
Section 4 will help to clarify the operational semantics.

3 CHR Termination Orders

To prove termination of CHR computations, we rely on polynomial interpreta-
tions, where the rank of a term or atom is defined by a linear positive combination
of the rankings of its arguments. In the following we define a scheme for a class of
rankings that we will use in the sequel to prove termination of constraint solvers
written in CHR. The basic definitions follow [dSD94,BaNi98].

Definition 4. Let f be a function or predicate symbol of arity n (n > 0). A
CHR ranking (function) defines the rank of a term or atom f(ty,...,¢,) as a
natural number:

rank(f(t1,...,tn)) = ag +al s« rank(t1) + ... + af * rank(t,)

where the a{ are natural numbers. For each variable X we impose rank(X) > 0.

This definition implies that rank(t) > 0 for all rankings in our scheme and for
all terms and atoms ¢.

Instances of the ranking scheme rank specify the function and predicate
symbols and the values of the coefficients af .

Example 2. The size of a term can be expressed in this scheme by:
size(f(t1,...,tn)) = 1+ size(t1) + ... + size(t,)

For example, the size of the term f (a,g(b,c)) is 5. The size of £(a,X) is 2 +
size(X) with rank(X) > 0 when no additional constraints are introduced for
ranks of variables. This allows us to conclude that the term f (g(X),X) is larger
in size than f(a,X) (2 + 2 % size(X) > 2 + size(X)), no matter what term X
stands for.



An expression rank(s) ® rank(t) is called an order constraint, where ® € {<
, <, =,#,>,>}. To avoid clutter, we also write s = ¢ for rank(s) > rank(t). The
notion of order constraints will be used to formalize interargument relations, i.e.
relations between the ranks of arguments of constraints that are needed to prove
termination.

Two important properties of termination orders are well-foundedness and
stability.

Definition 5. An order is well-founded if there are no infinite decreasing chains
T1,...yTn ... such that r; = r;y 1 for all i > 1.

Definition 6. An order = has the stability property if it is closed under substi-
tutions:

s =1t — o(s) > o(t) for all terms s and ¢ and for all substitutions o,
where t contains only variables that also appear in s.

Linear polynomial orders (definable by our ranking function scheme) are
known to be well-founded and closed under substitutions [BaNi98].

Induced Orders on Sequences and Multi-sets

If a ranking does not suffice to prove termination, it can be used to induce an
order on sequences of finite length (tuples) and multi-sets [Der87]. In this paper,
for one constraint solver we have to rely on multi-sets to prove its termination
(see Section 4.3).

Definition 7. The lexicographic order on sequences is defined by:
(81,...,Sn) 1 (tl,...,tm)

iff there exists 4 with (1 <4 < n) such that s; > t; or i > m and for all j with
(1 <j <) it holds that s; = t;.

If the sequences have different size, this only matters if the shorter sequence is
a prefix of the longer one. In that case, the longer sequence is larger.

Definition 8. The multi-set order on multi-sets is defined by:

{81,...,Sn} -m {tl,...,tm}

iff thereexisti € {1,...,n}and 1 < j; <... < jr <m with 0 < k such that s; >
tiyyeooy8i > tj, and S >p, T or S =, T where S = {s1,...,8i—1,8i41,...,5n}
and T = {tl,...,tm} - {tjn""tjk}'

In words: The smaller multi-set is obtained from the larger one by removing a
nonempty subset and adding only elements which are smaller than some element
in the subset. Or: Every element in the smaller multi-set must be smaller or equal
than one in the larger multi-set, and there must be at least one element that is
strictly smaller. Even though the definition is contrived, there is a simple way
to compare multi-sets for total orders: Sort the multi-sets into descending order
and compare the resulting sequences lexicographically.



Sequences and multi-set orders induced by linear polynomial orders are also
well-founded and closed under substitutions [BaNi98]. When such induced or-
ders are used, the ranking function has to be lifted accordingly by introducing
auxiliary functions that yield sequences and multi-sets respectively from ranks
(see Section 4.3 for an example).

4 Proving Termination of Constraint Solvers

We are interested in termination of actually implemented CHR constraint solver
programs. We want to prove termination under any scheduling of rule applica-
tions (independent from the search and selection rule). We also want to make
sure that a conjunction of terminating queries is itself a terminating query. This
means that we embark on a rather strict notion of termination.

Definition 9. A CHR program P is called terminating for a class of queries, if
there are no infinite sequences of computation steps using rules from P starting
from a query in the class.

Roughly, a CHR program can be proved to terminate if we can prove that in
each rule, the rank of the head is strictly larger than the rank of the body.

A ranking for a CHR program will have to define the ranks of CHR and
built-in constraints. In extension of usual approaches, we also have to define the
rank of a conjunction of constraints, since CHR are multi-headed. We will define
the rank of any built-in constraint to be the smallest element in the order (i.e. 0
or {} for multi-sets), since we assume that they always terminate. The rank of a
conjunction should reflect that conjunctions of CHR constraints are associative
and commutative, but not idempotent. Thus obvious choices are +, and U for
multi-sets, repectively.

A built-in constraint may imply order constraints between the ranks of its
arguments (interargument relations), e.g. s=t — rank(s) = rank(t). We assume
these order constraints are given and known to be correct.

In this paper, we formalize a termination condition for simplification rules.
We currently cannot deal with propagation rules in their generality, rather we
will deal with them in a solver-dependent way.

Definition 10. The ranking condition of a simplification rule H <=> G | B is
the formula

vV (RC(G,B) — H » B),

where RC(G, B) is a conjunction of order constraints implied by the built-in
constraints in the guard and body of the rule.

Since rankings are based on linear polynomial orders, H >~ B does not univer-
sally hold if B contains local variables not occurring in H, except if the order
constraints RC(G, B) imply an appropriate relationship between the variables.

The intuition behind the definition of a ranking condition is that the built-in
constraints in the rule will imply order constraints RC(G, B) that can help us



to establish that H > B. There is no need in RC(G, B) to distinguish between
built-in constraints from the guard and from the body, even though they avoid
non-termination for different reasons: If the constraints in the guard do not
hold, the rule is not applicable, and neither is any instance of it. If the built-
in constraints in the body do not hold, the application of the rule leads to an
inconsistent, thus final state.

To prove termination, goals have to be sufficiently known.

Definition 11. A goal A is bounded if the rank of any instance of A is bounded
from above by a constant k.

Obviously, the rank of a ground (variable-free) term is always bounded. Intu-
itively, in bounded goals, variables only appear in positions which are ignored
by the ranking. The use of well-modedness instead of boundedness is not help-
ful in programs that define constraints, which should allow for arbitrary modes
by definition, see Example 1. Obviously, boundedness generalizes the notion of
modes.

The following two analogous theorems tell us how to prove CHR termination.

Theorem 1. Given a CHR program P without propagation rules and a ranking
where

rank((A A B)) = rank(A) + rank(B)

for any two goals A and B. If the ranking condition holds for each rule in P,
then P is terminating for all bounded goals.

Proof. Consider a state H' A D. Applying the rule (H <=> G | B) will lead
to the state (H = H') AGABAD.

We have to show that rank(H' AD) > rank((H = H') AGA B A D) and that
the ranks of all states in a computation are bounded.

We know that rank(G) = 0, rank(H = H') = 0, since 0 is the smallest
element in our polynomial order, and that (H = H') — rank(H) = rank(H'").

Since RC (G, B) — rank(H) > rank(B), we have that

rank(H' A D) = rank(H') + rank(D) = rank(H) + rank(D) >
0+ 0 + rank(B) + rank(D) = rank(((H = H') NG A B A D)).

To show that the ranks of all states are bounded, note the following: Any ranking
is well-founded and has the stability property. Since goals are bounded, the rank
of a state is bounded. Due to the ranking condition, the boundedness of the
source state is propagated to target state, i.e. given a bounded state H' A D, the
application of any simplification rule will lead to a state that is bounded again.
Thus no infinite computations are possible, hence P is terminating.

The second Theorem is analogous to the first one, except that we consider
multi-set orders.

Theorem 2. Given a CHR program P without propagation rules and a multi-
set order defined by a function mrank which is induced by a polynomial ranking
rank, and such that



mrank((A A B)) = mrank(A) U mrank(B),

where A and B are goals and U denotes multi-set union. If the ranking condition
holds for each rule in P, then P is terminating for all bounded goals.

Proof. Consider a state H' A D. Applying the rule (H <=> G | B) will lead
to the state (H = H') AGABAD.

We have to show that mrank(H' A D) D mrank((H = H') AG A B A D) and
that the ranks of all states in a computation are bounded.

We know that mrank(G) = {}, mrank(H = H') = {}, since {} is the smallest
element in the multi-set order, and that (H = H') — mrank(H) = mrank(H').

Since RC(G, B) — mrank(H) D mrank(B), we have that

mrank(H' A D) = mrank(H') U mrank(D) = mrank(H) U mrank(D) D
{} U {} U mrank(B) U mrank(D) = mrank(((H = H') A\G A B A D)).

To show that the ranks of all states are bounded, note the following: Any multi-
set order induced by a polynomial ranking is well-founded and has the stability
property. Since goals are bounded, the rank of a goal is bounded. Since there is
only a finite number of goals in a state, the multi-set of its ranks is finite. Due
to the ranking condition, the boundedness of the source state is propagated to
target state. Thus no infinite computations are possible, hence P is terminating.

We are now ready to prove termination of actually implemented CHR con-
straint solvers ranging from Boolean and arithmetic to terminological and path-
consistent constraints. For details on the constraint solvers analyzed here see
[Fru98] and the CHR web pages:

www.pst.informatik.uni-muenchen.de/~fruehwir/chr-intro.html

4.1 Boolean Algebra, Propositional Logic

The domain of Boolean constraints includes the constants 0 for falsity, 1 for
truth and the usual logical connectives of propositional logic, e.g. and, or,
neg, imp, exor, modeled here as relations. Syntactical equality = is a built-in
constraint. As a first, simple, but nevertheless useful example for a constraint
solver, we can define an and constraint using value propagation, a special case
of arc consistency:

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and (X,Y,Z) <=> X=1 | Y=Z.
and (X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,Z) <=> Z=1 | X=1,Y=1.
and(X,Y,Z) <=> X=Y | Y=Z.

For example, the first rule says that the constraint and (X,Y,Z), when it is known
that the first input argument X is 0, can be reduced to asserting that the output
Z must be 0. Hence the query and (X,Y,Z) ,X=0 will result in X=0, Z=0.



The above rules terminate, since the CHR. constraints and is not recursive.
Any ranking that maps and to a positive number suffices to show this. The same
holds for the other connectives.

In general, in termination proofs we can ignore rules whose body contains
only built-in constraints.

A constraint solver is complete if can always reduce inconsistent CHR. con-
straints to false. To achieve completeness for Boolean constraints as defined
here, search must be employed by trying out values for the variables. In gen-
eral, one is happy with incomplete solvers, because they have polynomial time-
complexity as opposed to the exponential complexity of complete algorithms.
Completeness has nothing to do with termination, but is mentioned in this pa-
per to characterize the constraint solvers.

Boolean Cardinality

The cardinality constraint combinator was introduced in the CLP language

cc(FD) [vHSD92] for finite domains. We adapted it for Boolean variables. The

Boolean cardinality constraint #(L,U,BL,N) holds if between L and U Boolean

variables in the list BL are equal to 1. N is the length of the list BL. Boolean cardi-

nality can express e.g. negation #(0,0, [C],1), exclusive or #(1,1, [C1,C2],2),

conjunction #(N,N, [C1,...,Cn],N), and disjunction #(1,N, [C1,...,Cn],N).
In the following code, all constraints except cardinality # are built-in.

% trivial, positive and negative satisfaction
triv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.
pos_sat @ #(L,U,BL,N) <=> L=N | all(1,BL).
neg_sat @ #(L,U,BL,N) <=> U=0 | all(0,BL).

% positive and negative reduction
pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1)| O<U,#(L-1,U-1,BL1,N-1).
neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1)| L<N,#(L,U,BL1,N-1).

all(T,L) binds all elements of the list L to T. delete(X,L,L1) deletes the
element X from the list L resulting in the list L1. When delete/3 is used in the
guard, it will only succeed if the element to be removed actually occurs in the
list. E.g. delete(1,BL,BL1) will delay if it tries to bind a variable in BL to 1. It
will only succeed if there actually is a 1 in the list. It will fail, if all elements of
the list are zeros.

Termination. The rules are still simple (single-headed simplification rules),
but some are recursive. Since the cardinality constraint is either simplified into a
built-in constraint (satisfaction rules) or reduced to a cardinality with a shorter
list (reduction rules), this implementation terminates.

More formally, our termination proof is based on the length of the list:

rank(#(L,U, BL, N)) = length(BL)



The length of a list can be expressed in our ranking scheme by:

length([]) =0
length([X|L]) = 1 + length(L)

For example, the length of [a,b,c,d] is 4, the length of [alL] is 1 + length(L)
with length(L) > 0.

Remember that the rank of built-in constraints is always 0, but that they
may imply order constraints. This is the case for delete/3:

delete(X, L, L1) — length(L) = length(L1) + 1
Finally, the rank of a conjunction is the sum of the ranks of its conjuncts:
rank((A A B)) = rank(A) + rank(B)

The interesting case for termination are the two reduction rules, because they
are recursive. From the rule

pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1)| O<U,#(L-1,U-1,BL1,N-1).
we get to prove
length(BL) = length(BL1) + 1 — length(BL) > length(BL1).

The ranking condition holds, and in the same way we prove termination for the
neg._red rule.

Due to the ranking, a goal consisting of built-in and cardinality constraints
is bounded if the lengths of the lists in the cardinality constraints are known, i.e.
if the lists are closed. If a list was open(-ended), there could be producers of an
infinite list, and then the associated cardinality constraint would not necessarily
terminate.

4.2 Terminological Reasoning

Terminological formalisms (aka description logics) [BaHa91] are used to repre-
sent the terminological knowledge of a particular problem domain on an abstract
logical level. To describe this kind of knowledge, one starts with atomic concepts
and roles, and then defines new concepts and their relationship in terms of ex-
isting concepts and roles. Concepts can be considered as unary relations similar
to types. Roles correspond to binary relations over objects. Although there is
an established notation for terminologies, we use a more verbose syntax to help
readers not familiar with the formalism.

Definition 12. Concept terms are defined inductively: Every concept (name) ¢
is a concept term. If s and ¢ are concept terms and r is a role (name), then the
following expressions are also concept terms:

s and t (conjunction), s or t (disjunction), nota s (complement),
every r is s (value restriction), some r is s (exists-in restriction).



Objects are constants or variables. Let a, b be objects. Then a : s is a membership
assertion and (a,b) : r is a role-filler assertion. An A-box is a conjunction of
membership and role-filler assertions.

Definition 13. A terminology (T-box) consists of a finite set of concept defini-
tions

c isa s,
where ¢ is a newly introduced concept name and s is a concept term.

Since the concept ¢ is new, it cannot be defined in terms of itself, i.e. concept
definitions are acyclic (non-recursive). This also implies that there are concepts
without definition, they are called primitive.

The CHR constraint solver for terminologies encodes the T-box by rules and
the A-box as CHR constraints, since we want to solve problems over a given
terminology (T-box). A similar solver is described in [FrHa95].

The consistency test of A-boxes simplifies and propagates the assertions in
the A-box to make the knowledge more explicit and looks for obvious contradic-
tions (“clashes”) such as X : device, X : nota device. This is expressed by
the rule:

I : nota S, I : S <=> false.

The following simplification CHR, show how the complement operator nota can
be pushed towards to the leaves of a concept term:

: notanota S <=> I : S.

: nota (S or T) <=> I : nota S and nota T.

: nota (S and T) <=> I : (nota S or nota T).

: nota (every R is S) <=> I : some R is nota S.
: nota some R is S <=> I : every R is nota S.

o H

[4

An exists-in restriction generates a new variable that serves as a “witness” for

the restriction:
I : someRis S <=> (I,J) : R, J : S.

A value restriction has to be propagated to all role fillers:
I: everyRis S, (I,J) : R ==> J : S.

The unfolding rules replace concept names by their definitions. For each concept
definition C isa S two rules are introduced:

I :C <= T1I:8S.
I : notaC <=> I : nota S.

The conjunction rule generates two new, smaller assertions:

I : Sand T <=> I : S, I : T.



The rules simplify terminological constraints until a normal form is reached.
The normal form is either false (inconsistent) or contains constraints of the form
I :C,I:notaC,I:SorT, I: everyR is Sand (I,J) : R, where
C is a primitive concept name. There are no clashes and the value restriction
has been propagated to every object. To achieve completeness, search must be
employed. This is done by splitting I : S or Tinto two cases, I : Sand I: T.

Termination. The only CHR constraints that are rewritten by the rules are
membership assertions. Since there are no guards, to show termination it there-
fore suffices to show that in each rule, the membership assertions in the body
are strictly smaller than the ones in the head.

To prove termination we order concept terms by the following ranking:

rank((A A B)) = rank(A) + rank(B)
rank((I,J) :r) =0
rank(I : s) = rank(s)
rank(nota s ) = 2 x rank(s)

rank(c) = 1+ rank(s) if (¢ isa s) exists

mnk(f(tl, coytn)) =14 rank(ty) + ... + rank(t,) otherwise

The ranking above is well-founded, since concept definitions ¢ isa s are acyclic
and finite by definition. From the ranking we can see that goals are bounded
if the ranks of all concept terms (like s and ¢) are known. Since concept terms
are ground (variable-free) and finite by definition, their ranks can always be
computed.

The propagation rule for value restrictions needs closer consideration. Note
three things: First, the rank of its body is strictly smaller than the rank of its
head. Second, since a propagation rule is applicable only at most once to the same
constraints, it can only be applied a finite number of times to a finite conjunction
of constraints. Third, the ranking is well-founded and goals are bounded. For
these reasons, the propagation rule can only generate a finite number of smaller
and smaller membership assertions.

4.3 Linear Polynomial Equations

For solving linear polynomial equations, a minimalistic but powerful variant of
variable elimination [Imb95] is employed in the available CHR constraint solvers.

Definition 14. A linear polynomial equation is of the form p+ b = 0 where b is
a constant and the polynomial p is the sum of monomials of the form a; x z; with
coefficient a; # 0 and x; is a variable. Constants and coefficients are numbers.
Variables are totally ordered by . In an equation ay xz1 +...+ap*x, +b =0,
variables appear in strictly descending order.

In constraint logic programming, constraints are added incrementally. There-
fore we cannot eliminate a variable in all other equations at once, but rather



consider the other equations one by one. A simple normal form can exhibit
inconsistency: It suffices if the left-most variable of each equation is the only
left-most occurrence of this variable. Therefore the two rules below implement a
complete and rather efficient solver for linear equations over both floating point
numbers (to approximate real numbers) and rational numbers. In the implemen-
tation, we write eq for equality on polynomials.

empty @ B eq 0 <=> number(B) | B=0.

eliminate @

A1%X+P1 eq 0, A2*X+P2 eq 0 <=>
compute (P2-P1*A2/A1,P3),
A1xX+P1 eq 0, P3 eq O.

The empty rule says that if the polynomial contains no more variables, the con-
stant B must be (approximate to) zero. The eliminate rule performs variable
elimination. It takes two equations that start with the same variable. The first
equation is left unchanged, it is used to eliminate the occurrence of the common
variable in the second equation. The auxiliary built-in constraint compute sim-
plifies a polynomial arithmetic expression into a new polynomial. No variable is
made explicit, i.e. no pivoting is performed. Any two equations with the same
first variable can react with each other. Therefore, the solver is highly concurrent
and distributed.

The solver can be extended by a few rules to create explicit variable bindings,
to make implicit equalities between variables explicit, to deal with inequations
using slack variables or Fourier’s algorithm.

Termination. Since in termination proofs we can ignore rules whose body
contains only built-in constraints, we are only concerned with the eliminate rule
here. To prove its termination we order the equations by the following ranking
mrank that uses a multi-set order >, on the variables occurring in goals. The
order is induced by the order on ranked variables -, the ranking function rank
itself is not defined for any predicate or function symbols.

mrank
mrank
mrank
mrank

(A A B)) = mrank(A) U mrank(B)

P eq 0) = mrank(P)

A) ={}if A is a built-in constraint

T) = {rank(V) | V is a variable in T'} if T is a term

NN N N

ar* X1+ ... +ap*x X, +beq0— X; > X foralln>i>j>1 (1)
compute(E, P) — mrank(E) D mrank(P) (2)

The order constraint (1) says that the monomials in the equations are ordered
by their variables. The order constraints (2) says that the built-in constraint
compute does not introduce new variables, but may eliminate occurrences of
some.



For better readability, we will now just write the polynomial P instead of
mrank(P) and the variable V instead of rank(V'). From the eliminate rule we
get that the head rank, the multi-set ({X} U Py U {X} U P2), must be strictly
larger than the body rank ({X}UP; UP3). From the order constraint (2) we can
derive that P, UP; O P3. Hence the body rank multi-set contains only variables
from the head rank multi-set. Due to (1) we know that the variable X does not
occur in P;, P, and P3, and that it comes before all other variables in Py, P>
and Pj in the variable order. Therefore the head rank multi-set is strictly larger
in the multi-set order than the body rank multi-set, because in the former X
occurs twice and in the latter X occurs only once.

The order of the monomials by variables in the polynomial equations corre-
sponds to an implementation of the multi-set order by a lexicographic order as
mentioned at the end of section 3.

4.4 Path Consistency

In this section we analyze termination of constraint solvers that implement in-
stances of the classical artificial intelligence algorithm of path consistency to
simplify constraint satisfaction problems [MaFr85].

Definition 15. A binary constraint network consists of a set of variables and
a set of (disjunctive) binary constraints between them. The network can be
represented by a directed constraint graph, where the nodes denote variables and
the arcs are labeled by binary constraints. Logically, a network is a conjunction
of binary constraints.

Definition 16. A disjunctive binary constraint cxy between two variables X
and Y, also written X {ry,...,r,} Y, is a finite disjunction (X r Y)V ...V
(X r, Y), where each r; is a relation that is applicable to X and Y. The r; are
called primitive constraints. The converse of a primitive constraint r between X
and Y is the primitive constraint s that holds between Y and X as a consequence.

For example, A {<} B, A {<,>} B, A {<,=,>} B are disjunctive binary con-
straints cap between A and B. A {<} Bisthesameas A < B, A {<,>} B is the
same as A # B. Finally, A {<,=,>} B does not impose any restrictions on A
and B, the constraint is redundant. Usually, the number of primitive constraints
is finite and they are pairwise disjoint. We will assume this in the following.

Definition 17. A network is path consistent if for pairs of nodes (7, ) and all
paths ¢ — ¢y — i ...7, — 7 between them, the direct constraint ¢;; is at least as
tight as the indirect constraint along the path, i.e. the composition of constraints
along the path denoted by ¢, ® ... ® ¢;,;. A constraint c;; is tighter than a
constraint d;; iff ¢;; implies d;;.

It follows from the definition of path consistency that we can intersect the
direct and indirect constraint to arrive at a tighter direct constraint. Let intersec-
tion be denoted by the operator &. A graph is complete if there is a pair of arcs,



one in each direction, between every pair of nodes. If the graph underlying the
network is complete it suffices to repeatedly consider paths of length 2 at most:
For each triple of nodes (i, k, j) we repeatedly compute ¢;; := ¢;; & (cir, ® ck;)
until a fixpoint is reached. This is the basic path consistency algorithm.

Ezample 3. Given I < K A K < J A I > J and taking the triple (4, k, ),
cir, ® c; results in I < J and the result of intersecting it with ¢;; is I = J. From
(4,1, k) we get J = K (we can compute c¢j; as the converse of ¢;;). From (k, j, )
we get K = I. Another round of computation causes no more change, so the
fixpoint is reached with J = K A K = 1.

Let the constraint ¢;; be represented by the CHR constraint ¢(I,J,C) where
I and J are the variables and C is a set of primitive constraints representing
¢ij. The basic operation of path consistency, c¢;; := ¢;ij ® (cix @ cxj), can be
implemented directly by the rule:

path_consistency @

c(1,K,Cl), c(X,J,C2), c(I,J,C3) <=>
composition(C1,C2,C12),intersection(C12,C3,C123),
C123=\=C3 |
c(I,k,C1), c(X,J,C2), c(1,J,C123).

The operations ® and @ are implemented by built-in constraints, composition
and intersection. Composition of disjunctive constraints can be computed
by pairwise composition of its primitive constraints. Intersection for disjunctive
constraints can be implemented by set intersection. To achieve completeness,
search must be employed. This is done by imposing primitive constraints chosen
from the disjunctive constraints.

Termination. To prove termination we rely on the cardinality of the sets rep-
resenting the disjunctive constraints and the properties of set intersection:

rank((A A B)) = rank(A) 4+ rank(B)
rank(c(I,K,C)) = cardinality (C)
rank(A) = 0 otherwise

intersection(C1,C2,C3) — rank(C3) < rank(C1)Arank(C3) < rank(C2)
intersection(C1,C2,C3) A C3 # C2 — rank(C3) # rank(C2)

Since in the guard of the rule, C123=\=C3 is checked to make sure the new
constraint C123 is different from the old one C3, the cardinality of C123 must be
strictly less than that of C3. Hence the body is ranked strictly smaller than the
head of the rule. Goals are bounded, when C' is a known, finite set of primitive
constraints. Any solver derived from this generic path consistency solver will
terminate, too.



4.5 Interval Constraints, Arc Consistency

The following rules implement an arc consistency algorithm for interval con-
straints [BeO192]. Arc consistency can be seen as special case of path consistency,
where all but one constraint is unary instead of binary. The interval constraint
X in A:B means that X is an integer between the given bounds A and B.

% Intervals
inconsistent @ X in A:B <=> A>B | false.
intersection @ X in A:B, X in C:D <=> A=<B| X in max(A,C):min(B,D).

% (In)equalities

le @ X le Y, X in A:B, Y in C:D <=> A=<B,B>D |
X le Y, X in A:D, Y in C:D.

le @ X 1le Y, X in A:B, Y in C:D <=> C=<D,C<A |
Xle Y, X in A:B, Y in A:D

eq @ X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,A=\=C |
X eq VY, X in max(A,C):B, Y in max(C,A):D.

eq @ X eq Y, X in A:B, Y in C:D <=> A=<B,C=<D,B=\=D |
XeqV, X in A:min(B,D), Y in C:min(D,B).

% Addition X+Y=Z
add @ add(X,Y,Z), X in A:B, Y in C:D, Z in E:F <=>
A=<B,C=<D, not((A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D)) |
add(X,Y,2),
X in max(A,E-D):min(B,F-C),
Y in max(C,E-B) :min(D,F-A),
Z in max(E,A+C) :min(F,B+D).

To achieve completeness, search must be employed. This is done by splitting
intervals in two halves or by trying the boundary values of an interval.

Termination. We order constraints by the size of their intervals:

rank((C A D)) = rank(C) + rank (D)
rank(X in A:B)=B—-A+1if B> A
rank(C) = 0 otherwise

We will use the inequalities in the guards of the rules directly as order constraints.
With their help we can prove that in each rule, at least one interval in the body
is strictly smaller than the corresponding interval in the head, while the other
intervals remain unchanged or will be removed.

The constraints A=<B and C=<D in the guard of a rule ensure that the rank of
the head of the rule cannot be 0. (In implementations that apply rules in textual
order, these guard constraints can be dropped.) The ranking condition for the
first rule inconsistent also holds, even though its head rank is 0, since its order
constraint is inconsistent: (4 > B A false) — 0 > 0.



Since the interval bounds are initially known, goals are bounded. Note that
the intervals of integers are closed under the interval computations used, since
they involve only the arithmetic operations max, min and +, -. Termination
for intervals of rational numbers can be shown by observing that any problem
on rational numbers can be transformed into an equivalent one on integers by
multiplying all numbers the problem with their greatest common divisor. For
floating point numbers, rounding errors get in the way.

5 Conclusions

We have shown in this paper that for many known constraint solvers imple-
mented in CHR it is possible to prove termination by adapting well-founded
orders (linear polynomial interpretations) and interargument relations (order
constraints) as known from related work in term rewriting systems and logic
programming. One adaption was to extend termination order from atomic for-
mulas to conjunctions of constraints.

To the best of our knowledge, this is the first report on proving termination
of concurrent constraint logic programs and of constraint solver implementa-
tions. Our results indicate that in practice, proving termination for concurrent
constraint logic programs may not be harder than for other classes of logic pro-
gramming languages, contrary to what has been feared in the literature.

Our results so far are somewhat unsatisfactory, because we give two analogous
Theorems which should be abstracted into single Theorem accomodating both
kind of termination orders that we considered (polynomial interpreations and
multi-sets).

The solvers we have considered are characterized by the fact that recursion is
direct and typically modifies one argument position of a constraint, and the term
in that position is sufficiently known in reasonable queries, i.e. those queries are
bounded.

Although we have dealt with termination in the presence of propagation rules
in the solver for terminological reasoning, we still have to formalize termination
involving propagation rules. In particular, there is a class of solvers that we
currently cannot prove to terminate with the approach presented in this pa-
per. These solvers are implementations of path and arc consistency algorithms
on incomplete constraint networks. They basically consist of the two following
prototypical rules:

c(1,K,C1), c(X,J,C2) ==> composition(C1,C2,C3), c(I,J,C3).
c(1,J,C1), c(I,J,C2) <=> intersection(C1,C2,C3), c(I,J,C3).

These solvers have recursion on the same constraint through both simplification
and propagation rules. This means that a constraint can be first added and then
be removed during the computation. To prove termination, one will have to take
into account that simplification is applied sufficiently often before propagation
and the fact that propagation rules are never applied a second time to the same
constraints.



Future work will also consider automation of the termination proofs presented
here. Another interesting line of future work is to strengthen the antecedent of
a ranking condition by introducing type constraints (since ill-typed goals either
delay or fail).

Acknowledgements. The author would like to thank the anonymous re-
viewers for their valuable suggestions.

References

[Abd97] S. Abdennadher, Operational Semantics and Confluence of Constraint Prop-
agation Rules, 3rd Intl Conf on Principles and Practice of Constraint Programming
(CP’97), Linz, Austria, Springer LNCS 1330, pp 252-265, October /November 1997.

[AbFr99] S. Abdennadher and T. Frithwirth, Operational Equivalence of CHR Pro-
grams and Constraints, 5th Intl Conf on Principles and Practice of Constraint Pro-
gramming (CP’99), Alexandra, Virginia, USA, Springer LNCS, 1999.

[AFM99] S. Abdennadher, T. Frithwirth and H. Meuss, Confluence and Semantics
of Constraint Simplification Rules, Journal Constraints Vol. 4(2), Kluwer Academic
Publishers, May 1999.

[ApPe90] K.R. Apt and D. Pedreschi, Studies in Pure Prolog: Termination, ESPRIT
Computational Logic Symposium, Springer 1990, pp 150-176.

[BaHa91] F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. 12!* International Joint Conference on Artificial Intelligence,
1991.

[BaNi98] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge Uni-
versity Press, 1998.

[BeO192] F. Benhamou and W.J. Older, Bell Northern Research, Applying interval
arithmetic to Integer and Boolean constraints, Technical Report, June 1992.

[Bez93] M. Bezem, Strong Termination of Logic Programs, Journal of Logic Program-
ming Vol. 15(1,2), pp. 79-98, 1993.

[CDJK99] H. Comon, M. Dincbas, J.-P. Jouannaud and C. Kirchner, A Methodolog-
ical View of Constraint Solving, Constraints Journal Vol. 4(4), pp. 337-361, Kluwer
Academic Publishers, December 1999.

[CMM95] L. Colussi, E. Marchiori and M. Marchiori, On Termination of Constraint
Logic Programs, 1st Intl Conf on Principles and Practice of Constraint Programming
(PPCP’95), Cassis, France, Springer LNCS 976, 1995.

[Der87] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation
Vol. 3(1+2), pp. 69-116, 1987.

[dSD94] D. de Schreye and St. Decorte, Termination of Logic Programs: The Never-
Ending Story, Journal of Logic Programming Vol. 19,20, pp. 199-260, Elsevier, New
York, USA, 1994.

[FrAb97] T. Frithwirth and S. Abdennadher, Constraint-Programmierung (in Ger-
man), Textbook, Springer Verlag, Heidelberg, Germany, September 1997.

[FrBr00] T. Frithwirth and P. Brisset, Optimal Placement of Base Stations in Wire-
less Indoor Communication Networks, Special Issue of the IEEE Intelligent Systems
Magazine on Practical Applications of Constraint Technology, (M. Wallace and G.
Freuder, Eds.), IEEE Press, Vol. 15(1), pp. 49-53, January/February 2000.

[FrHa95] T. Frithwirth and P. Hanschke, Terminological Reasoning with Constraint
Handling Rules, in Principles and Practice of Constraint Programming, (P. van Hen-
tenryck and V.J. Saraswat, Eds.), MIT Press, Cambridge, Mass., USA, 1995.



[Fru98] T. Frithwirth, Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming (P. J. Stuckey and K. Marriot, Eds.), Journal of
Logic Programming Vol. 37(1-3), pp. 95-138, Oct-Dec 1998.

[HoFr00] C. Holzbaur and T. Frithwirth, A Prolog Constraint Handling Rules Compiler
and Runtime System, Special Issue of the Journal of Applied Artificial Intelligence on
Constraint Handling Rules (C. Holzbaur and T. Fr”uhwirth, Eds.), Taylor & Francis,
to appear 2000.

[Imb95] J.-L. J. Imbert, Linear Constraint Solving in CLP-Languages, in Constraint
Programming: Basics and Trends, (A. Podelski, Ed.), LNCS 910, March 1995.

[JaMa94] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey, Journal
of Logic Programming Vol. 19,20, pp. 503-581, 1994.

[KKS97] M.R.K. Krishna Rao, D. Kapur and R. K. Shyamasundar, Proving Termina-
tion of GHC Programs, New Generation Computing, 1997.

[MaFr85] A. K. Mackworth and E. C. Freuder, The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Journal of
Artificial Intelligence Vol. 25, pp. 65-74, 1985.

[MaSt98] K. Marriott and P. J. Stuckey, Programming with Constraints, MIT Press,
USA, March 1998.

[MaTe95] E. Marchiori and F. Teusink, Proving Termination of Logic Programs with
Delay Declarations, ILPS 95, 1995.

[Mah87] M. J. Maher, Logic Semantics for a Class of Committed-Choice Programs,
4th Intl Conf on Logic Programming, Melbourne, Australia, pp 858-876, MIT Press,
Cambridge, Mass., USA, 1987.

[Mes96] F. Mesnard, Inferring Left-terminating Classes of Queries for Constraint Logic
Programs, Joint Intl Conf and Symposium on Logic Programming (JICSLP’96), (M.
Mabher, Ed.), pp 7-21, Bonn, Germany, MIT Press, September 1996.

[Nai92] L. Naish, Coroutining and the Construction of Terminating Logic Programs,
Technical Report 92/5, Dept of Computer Science, University of Melbourne, Aus-
tralia, 1992.

[Plu92] L. Pliimer, Automatic Verification of GHC-Programs: Termination, Fifth Gen-
eration Computer Systems, (FGCS’92), Tokyo, Japan, June 1992.

[Rug97] S. Ruggieri, Termination of Constraint Logic Programs, ICALP 1997, Springer
LNCS 1256, pp. 838-848, 1997.

[VHSD92] P. van Hentenryck, H. Simonis and M. Dincbas, Constraint Satisfaction
Using Constraint Logic Programming, Artificial Intelligence, 58(1-3):113-159, De-
cember 1992.



