
ARTS/DExVal
Derivation of Meaningful

Experiments for Validation
• Prof. A. Haeberer, PUC-Rio

• Prof. M. Wirsing, LMU Munich

• Dr. A. Ciarlini, PUC-Rio

• Dr. T. Fruehwirth, LMU Munich

ARTS

• Formal basis for software development,
funded partially by Siemens, Brazil

ARTS

CODE
GENERATION INTERFACE

VALIDATION
AND TESTING

...

MODEL
CHECKERS

DEXVAL

Validation and Testing

• Critical

• Expensive

• Revealing maximum number of bugs

• Meaningful experiments

Model Checking

• Verification of properties

• Modal temporal logic

• Prop. holds or there is a counterexample

• Approximation
– Infinite state machines → Finite state machines

– Continuous variables → Discrete variables

– State explosion

The Goal

• Verification and derivation of properties of
concurrent transition systems

• Continuous variables and non-linear
expressions

• Expressiveness: variables at different times

The Approach

• Symbolical execution

• Constraint Logic Programming

• User descriptions → all paths and
corresponding derived properties

• E.g. Constraints on output → constraints on
input

Hybrid Automata

• Continuous activities

• Discrete transitions

• Components
– Variables

– States: name, invariant and iteration

– Transitions: source and target states, guarded
actions, events

Hybrid System

• Timed hybrid automata
– Synchronization: machine clock

– Modifications according to last state

• Coordination: sharing of variables and
events

• Simultaneous modifications

• Variable modified by only one automaton

Constraint Logic Programming

• Logic programming
– Declarative rules defining relations

– Search for all solutions using backtracking

– Non-deterministic

• Constraint solving
– Eff icient algorithms

– Solving sets of distinguished relations

– Deterministic

Constraint Logic Programming

• LP + CS:
– Expressiveness and eff iciency

– LP sends constraints to CS

– Constraints solved in parallel

– Inconsistency → cut branch

– Ex:
• X+Y<5 and Y>0

• X=6 → fail

DExVal Tool
• Input:

– Automata
– Initial and final states (not mandatory)
– Properties:Values or ranges(input, intermediate

and output)

• Output: Paths and corresponding constraints
relating selected variables

• Using output for testing
 OUT>100 →→ 10<IN<20
 OUT≤≤ 100 →→ (IN≤≤10) ∨∨ (IN≥≥20)
 Better testing IN=1,10,15,20,30 than IN=12,13,14,15,16

Examples of Properties
• Si nce X >Y, Z =1

• For all stat es, X has a
hi gher value than its value
in the previ ous s t ate

• If , at some t ime, X>Y, then
at most 5 cl ocks l ater Z=1

• Obs: Ex i sten t ial and
uni vers al qu antif i cati on

Implementation

• Preparation stage
– Data structure → variables’ history

– Translation of descriptions into constraints

• Symbolic execution
– search for paths

– addition of new constraints corresponding to
invariants, iterations and transitions

Implementation

• Production of answers
– Projection on selected variables

– Printing
• States at each clock

• Remaining constraints resulting from execution and
projection

Boiler Example

Boiler Automaton

 Initial temperature for taking a shower without
turning on the heater

 INPUT:
 CONSTRAINTS: heater:1=0, pump:1=1, water_volume:1=10.0,
 shower:1=1,
 all(X,shower:X=1), all(X,heater:X=0)
 INITIAL STATES: pump_on, heater_maintain,
 boiler_normal_heater_off
 FINAL STATES: (not specified)
 CLOCKS: 5
 PROJECT: temperature:1 (i.e. initial temperature)

 OUTPUT:
 Clock Pump Heater Boiler
 1 on maintain normal_heater_off
 2 on maintain normal_heater_off
 3 on maintain normal_heater_off
 4 on maintain normal_heater_off
 5 on maintain normal_heater_off
 temperature:1 > 47.18

 Behaviour of the shower for the continuous
increase of the water level

 INPUT:
 CONSTRAINTS: heater:1=0, pump:1=1, temperature:1=30.0,
 water_volume:1=6.0,
 all(X,water_volume:(X+1)>water_volume:X) (increase water)
 INITIAL STATES: pump_on, heater_maintain,

boiler_normal_heater_off
 FINAL STATES: (not specified)
 CLOCKS: 5
 PROJECT: shower:X, water_volume:X (i.e. at all clocks)

 OUTPUT:
 Clock Pump Heater Boiler
 1 on maintain normal_heater_off
 2 on turning_on normal_heater_on
 3 on maintain normal_heater_on
 4 on maintain normal_heater_on
 5 on maintain normal_heater_on
 shower:[1..4]=0, shower:5=Var,
 water_volume:1=6.0, water_volume:2=8.0, water_volume:3=10.0,
 water_volume:4=12.0, water_volume:5=14.0

Summary

• We are concerned with validation and
testing

• Meaningful experiments

• Derivation of properties

• Symbolic execution

• DExVal tool based on CLP

Future work

• Integration with ARTS’ graphical interface

• Tailoring the behaviour of the constraint
solver:
– Non-linear constraints

– Non-determinism: disjunction and existential
quantification

• Meaningful experiments:
– Methodology

– Real applications

