
INSTITUT F�UR INFORMATIKLehr- und Forschungseinheit f�urProgrammier- und ModellierungssprachenOettingenstra�e 67, D{80538 M�unchen
Implementing Constraint Solvers:Theory and PracticeSlim Abdennadher, Thom Fr�uhwirth, Holger Meuss
appeared in Proc. Forum de la Recherche en Informatique'96 (FRI'96), Tunis, Tunisia,July 1996http://www.pms.informatik.uni-muenchen.de/publikationenForschungsbericht/Research Report PMS-FB-1996-14, July 1996



Implementing Constraint Solvers: Theoryand PracticeSlim Abdennadher, Thom Fr�uhwirth, Holger MeussComputer Science Department, University of MunichOettingenstr. 67, 80538 Munich, GermanyfSlim.Abdennadher,Thom.Fruehwirth,Holger.Meussg@informatik.uni-muenchen.dePhone: 0049 89 21782216 Fax: 0049 89 21782211AbstractOur research is based on Constraint Handling Rules (CHR), a powerfullanguage for writing constraint solvers. We investigate con
uence of CHR pro-grams. This property guarantees that a CHR program will always computethe same result for a given set of constraints independent of which rules areapplied. We give a decidable, su�cient and necessary syntactic condition forcon
uence.Finally we present an application utilizing CHR o�ering rent advice: Thecity government of Munich regularly publishes a booklet called the \Mietspie-gel" (MS). The MS basically contains a verbal description of an expert system.It allows to calculate the estimated fair rent of a 
at. With our computeri-zed version, \The Munich Rent Advisor", we extended the functionality andapplicability of the MS so that the user need not answer all questions of theform. The key to computing with partial information was to use constrainttechnology.1 IntroductionLogic Programming (LP) originates from the discovery that a fragment of predicatelogic can be given a procedural interpretation thus forming the basis for programminglanguages like Prolog. The major advantage of such languages is that they can bedeclaratively interpreted in logic. Problems are solved by the built-in logic engineusing chronological backtracking search. In Constraint Solving (CS), e�cient special-purpose algorithms are employed to solve problems involving distinguished relationsreferred to as constraints. Constraint Logic Programming (CLP) [7] is a new classof programming languages combining the declarativity of LP with the e�ciency ofCS. However most CLP languages are not extensible: Constraint solving is usuallyhard-wired in a built-in constraint solver written in a low-level language. They donot allow for user-de�ned constraints. 1



Constraint handling rules (CHR) [4, 8] are a high-level language extension to writeconstraint systems. CHR support rapid prototyping of application-oriented constraintsystems by providing executable speci�cations and e�cient implementations due toan optimizing compiler. CHR allows for specialization, modi�cation and combinationof constraint solvers.CHR is essentially a committed-choice language consisting of guarded rules that re-write constraints into simpler ones until they are solved. There are two kinds of CHR:Simpli�cation CHR rewrite constraints to simpler constraints while preserving logicalequivalence (e.g. X>Y,Y>X <=> false). Propagation CHR add new constraints whichare logically redundant but may cause further simpli�cation (e.g. X>Y,Y>Z ==> X>Z).Repeatedly applying the rules incrementally solves constraints (e.g. A>B,B>C,C>Aleads to false). With multiple heads and propagation rules, CHR provide two featu-res which are essential for non-trivial constraint handling. Due to space limitations,we cannot give a formal account of syntax and semantics of CHR in this paper.2 Con
uence of CHR programsIn contrast to the family of the general-purpose concurrent constraint languages (CC)[11] and the ALPS [9] framework, CHR allow \multiple heads", i.e. conjunctions ofatoms in the head of a rule. Multiple heads are a feature that is essential in solvingconjunctions of constraints. With single-headed CHR rules alone, unsatis�ability ofconstraints could not always be detected (e.g X<Y,Y<X) and global constraint satis-faction could not be achieved.Nondeterminacy in CHR arises when two or more rules can �re. It is obviously desira-ble that the result of a computation in a solver will always be the same, semanticallyand syntactically, no matter which CHR rules are applied. This property of constraintsolvers will be called con
uence.We introduced in [2] a decidable, su�cient and necessary syntactic condition forcon
uence. Although con
uence is in general undecidable, it turns out to be decidablefor terminating programs (i.e. there are no in�nite computation sequences): Let Pbe a terminating CHR program, then P is con
uent i� P is locally con
uent. Thecondition for local con
uence can be expressed in terms of critical pairs as known fromterm rewrite systems [5]. We adopted and extended the terminology and techniquesof conditional term rewriting systems (CTRS) [5]. A straightforward translation ofresults in the �eld of CTRS was not possible, because the CHR formalism gives rise tophenomena not appearing in CTRS. These include the existence of global knowledge(the built{in constraint store) and local variables.To show a CHR program P is locally con
uent, we need to know that for all constraintsC, if C can be simpli�ed in two di�erent ways, then these two di�erent results cansubsequently be simpli�ed into the same constraint. The possibility for a constraintto be simpli�ed in two di�erent ways is when the two heads of CHR rules overlap, i.e.they share at least one constraint. This is called an overlap, and the pair of constraintsresulting form this is called critical pair. Critical pairs re
ect choice points between2



di�erent reduction sequences. So, we have the result that P is locally con
uent if allits critical pairs can be joined (i.e. simpli�ed into the same constraint).Con
uence turns out to be important with regard to both theoretical and practicalaspects: We show in [2] that con
uence implies correctness of a program. By cor-rectness we mean that the declarative semantic of a CHR program is a consistenttheory. Furthermore we show how to strengthen the declarative reading of a CHRprogram if it is con
uent. A practical application of our de�nition of con
uence liesin program analysis, where we can identify non{con
uent parts of CHR programs byexamining the critical pairs. Programs with non{con
uent parts essentially representan ill-de�ned constraint solving algorithm.Our work extends previous approaches to the notion of determinacy in the �eld of CClanguages: Maher investigates in [9] a class of 
at committed choice logic languages(ALPS). He de�nes the class of deterministic ALPS programs as those programswhose guards are mutually exclusive. The class of deterministic ALPS programs isless expressive than con
uent CHR programs. Saraswat de�nes for the CC frameworka similar notion of determinacy [11], which is also more restrictive than con
uence.The notion of deterministic programs is less expressive and too strict for the CHRformalism.Our approach is orthogonal to the work in program analysis in [10] and [6], wherea di�erent, less rigid notion of con
uence is de�ned: A CC program is con
uent, ifdi�erent process schedulings (i.e. di�erent orderings of decisions at nondeterministicchoice points) give rise to the same set of possible outcomes.3 The Munich Rent AdvisorThe \Mietspiegel"(MS), which is published by the government of Munich, allows tocalculate the estimated fair rent of 
ats. The results of these calculations are typicallyused in civil court cases. The calculations are based on size, age and location of the
at and a series of detailed questions about the 
at and the house it is in. Some ofthese questions are hard to answer. However to be able to calculate the rent estimateby hand, all questions must be answered.Equipped with pencil, paper and calculator, one may need a weekend to �gure out theestimated rent. Usually, the calculation is performed by hand in about half on hourby an expert from the City of Munich or from one of the renter's associations. TheMS is derived from a statistical model compiled from sample data using statisticalmethods such as regression analysis. Due to the underlying statistical approach, thereis the problem of inherent imprecision which is ignored in the paper version of theMS.In just two man weeks we developed a computerized prototype called \The MunichRent Advisor" [1, 3], MRA, that brought the calculation time down to few minu-tes. Using constraints the MRA can account for the statistical imprecision and alsocompute the estimated rent even in the presence of partial answers.3



Our approach was to �rst implement the tables, rules and formulas of the \Mietspie-gel" with high-level and declarative programming in ECLiPSe [4], ECRC's advancedconstraint logic programming platform, as if the provided data was precise. Becauseof the declarativity of ECLiPSe it was easy to express the contents of the MS. Thenwe added constraints to capture the imprecision due to the statistical method andincompleteness in case the user gives no or partial answers. Finally, we consideredthe formulas of the rent calculation as constraints that re�ne the rent estimate bypropagation from the constrained input variables. While it would have been di�-cult to model the required constraints in a given black-box constraints system, itwas relatively straightforward using constraint handling rules (CHR). It was enoughto modify an existing �nite domains solver written in CHR that is part of the CHRECLiPSe library.The Munich Rent Advisor (MRA) is accessible through the internet service, and morespeci�cally through World-Wide-Web (WWW). Using the internet, there is no needfor the user to acquire speci�c software.In about four man-weeks, we developed the form in the Hyper Text Markup Language(HTML). The WWW-front-end is the graphical user-interface that should be han-dable without experienced computer-knowledge. For reason of simplicity we chosein a �rst step not to rely on advanced developments like applets in HotJava. Toprocess the answers from the questionnaire and return its result, we wrote a sim-ple special-purpose web-server directly in ECLiPSe using its C-sockets for internetcommunication.References[1] Abdennadher, S., Blenninger, P., and Fr�uhwirth, T. Rent estimates withconstraints over the internet. In V�emes Journ�ees Francophones de Programmation enLogique et programmation par Contraintes (1996).[2] Abdennadher, S., Fr�uhwirth, T., and Meuss, H. On con
uence of constrainthandling rules. In Second International Conference on Principles and Practice of Cons-traint Programming (CP96) (Cambridge, Massachusetts, USA, August 1996), SpringerLNCS.[3] Abdennadher, S., and Fr�uhwirth, T. The Munich Rent Advisor. Submitted to1st Workshop on Logic Programming Tools for internet Applications, 1996.[4] Brisset, P., Fr�uhwirth, T., Lim, P., Meier, M., Provost, T. L., Schimpf, J.,and Wallace, M. ECLiPSe3.4 Extensions User Manual. ECRC Munich Germany,July 1994.[5] Dershowitz, N., Okada, N., and Sivakumar, G. Con
uence of conditional re-write systems. In 1st CTRS (1988), LNCS 308, pp. 31{44.[6] Falaschi, M., Gabbrielli, M., Marriott, K., and Palamidessi, C. Con
uencein concurrent constraint programming. In Proceedings of AMAST '95, LNCS 936(1995), Alagar and Nivat, Eds., Springer.4



[7] Fr�uhwirth, T., Herold, A., Kchenhoff, V., Provost, T. L., Lim, P., Mon-froy, E., and Wallace, M. Constraint Logic Programming - An Informal Intro-duction. Springer LNCS 636, September 1992, ch. Logic Programming in Action.[8] Fr�uhwirth, T. Constraint handling rules. In Constraint Programming: Basics andTrends (March 1995), A. Podelski, Ed., LNCS 910.[9] Maher, M. J. Logic Semantics for a Class of Committed-Choice Programs. In FourthInternational Conference on Logic Programming (Melbourne, Australia, May 1987),pp. 858{876.[10] Marriott, K., and Odersky, M. A con
uent calculus for concurrent constraintprogramming with guarded choice. In Principles and Practice of Constraint Pro-gramming, Proceedings First International Conference, CP'95, Cassis, France (Berlin,September 1995), U. M. F. Rossi, Ed., Springer, pp. 310{327.[11] Saraswat, V. A. Concurrent Constraint Programming. MIT Press, Cambridge, 1993.

5


