Towards a mesoscopic-level canonical circuit definition for visual cortical processing

Georg Layher
Institute of Neural Information Processing
Ulm University
Ulm, Germany
georg.layher@uni-ulm.de

Tobias Brosch
Institute of Neural Information Processing
Ulm University
Ulm, Germany
tobias.brosch@uni-ulm.de

Heiko Neumann
Institute of Neural Information Processing
Ulm University
Ulm, Germany
heiko.neumann@uni-ulm.de

ABSTRACT
The mammalian cortex is organized into different layers which are characterized by different cell clusterings and prominent lateral fiber connections. As a primary organizational principle driving signal inputs enter mainly at layer IV, feedforward output activations leave at superficial, while modulating feedback signals leave at deep layers. Likewise, modulatory input signals from other areas mainly enter in superficial layers. Based on such compartmental structure we suggest an abstract formulation of composite structural elements which form building blocks to define canonical elements for columnar computation in cortex. There is evidence that the brain makes use of an operational set of canonical computations, like, e.g., sensory signal filtering, reentrant response gain enhancement, noise suppression, and normalization. As a further abstraction, we define a dynamical three-stage model of processing in a cortical column for processing that allows to investigate their dynamic response properties. Some examples of the analysis of the dynamics are presented together with some simulation results that highlight properties of visual processing in model cortices. Finally, we demonstrate how learning mechanisms that adapt the connection weights can be incorporated in such a scheme capable to form feature representations and functional sub-networks in an adaptive fashion.

Keywords
visual cortex, canonical circuit model, cortical dynamics, cortical column, unsupervised learning

1. INTRODUCTION
Evidence suggests that the primate cortex employs a set of canonical operations that serve as structured components for a modular computational design of brain function. Such components are identified, for example, for the driving feedforward input signal filtering for feature detection [19, 20], the activity gain control via reentrant signals that deliver contextual information [37], and activity normalization in the visual pathway [24]. The signal flows of feedforward and feedback processing define a system of counterstreams [44] which are combined at the level of individual cortical columns [26, 27]. Different theoretical frameworks have been defined for the recurrent stream interaction, namely predictive coding and biased competition. Based on such counterstream interactions, the interactive effects of contextual (down-) modulation are observed throughout the cortex. These effects have been conceptualized already in several previous studies to arrive at specific roles of such contextual interaction, namely activity normalization to generate feature selectivity in vision [8, 7, 25] as well as in other sensory modalities, decision-making and cognitive control [38].

In this paper, we show that such functional principles can be linked to patterns of cortical circuit elements that define chunks which are composed into larger circuits. Such component circuits are depicted in Fig. 1 which will be detailed in Section 2. Based on these computational elements we derive a simplified canonical circuit model that provides an abstract view of the columnar computations over different compartments. The model scheme consists of three hierarchically organized stages which are formally described by first-order dynamic equations to characterize the rate of change in activation over a spatially organized feature representation. This, in turn, allows to investigate the dynamics of such systems and qualitative changes of their behavior.

2. COMPARTMENTAL STRUCTURE OF VISUAL CORTEX AND DEFINITION OF A CANONICAL CIRCUIT MODEL
2.1 Layered structure and compartments
The structure of mammalian cortices appears to be organized into different layers organized into cortical columns [32]. Six layers have been identified that differ in appearance of cell types and their densities, the pattern of lateral connectivity, and the connection of input and output from/to different areas.

Based on experimental findings, we suggest that the layered structure can be described in terms of compartments which allows to link the collection of cells and lateral interactions to a function related to input processing and feature extrac-
Connection types: \(\text{\textbullet} \) excitatory (driving) \(\text{\textbullet} \) inhibitory \(\text{\textbullet} \) excitatory (modulating)

Figure 1: Component circuit elements defined over different compartments in visual cortex. The vertical columnar structure that runs orthogonal to the compartments assigns a spatial localization to the computations and the localized interactions operating upon the feature maps. The different patterns are defined by (a) the driving feedforward signal input entering mainly in the input compartment with the feature selective filtering (denoted by \(F \)) and the subsequent forward projection to the superficial compartment cell representations, (b) lateral interaction between filter responses to link related activities in the feature maps and generate output that is fed to other areas, (c) resulting superficial cell activities project to the deep compartment at the same position (within a column) to drive cells which, in turn, compete with cells in a larger spatial pool of cells (defined over a neighborhood in the space-feature domain(s)) and send modulatory feedback connections to different areas (situated lower in the hierarchy), (d) cells in the superficial and deep compartments receive modulatory excitatory input signals which are integrated from dendritic terminations in the superficial compartments, (e) deep compartment cells also modulate activations that arrive in the input compartment and close an intra-cortical loop of activation.

Driving feedforward signals mainly enter in the input compartment where the driving input signals from previous stages mainly terminate. The superficial and the deep level compartments build the other two substructures. In each of these compartments lateral interactions between cells serve to implement different types of functional links between activities in the space-feature domain. The vertical organization into columns allows to localize the resulting feature representation in space (Fig. 1).

Cells in the superficial and the deep compartments receive modulatory input signals which are integrated from terminations in the superficial compartment. Recipient cells reach out with their distal dendrites up to the upper section of the superficial compartment where their dendritic terminations contact the input fibers from other areas which are situated higher up in the hierarchy. These connections are mainly modulatory such that only paired signal activation from feedforward input and correlated feedback lead to response amplifications [27] (Fig. 1(d)). Together with the divisive pool inhibition defined in (c) this implements a mechanism of selective amplification while reducing activities at other locations in the space-feature domain (biased competition principle). Deep compartment cells not only send modulatory feedback projections to lower areas but also branch to close an intra-cortical loop by amplifying the activities generated by the filtering in the input compartment [30] (Fig. 1(e)). In order to prevent activities to grow without bounds we suggest that inhibitory cells within these compartments balance these filter activations. The definition follows the recent observation that a dense architecture of interneuron connectivity defines a canonical feature in the design of cortical microcircuits [36].

2.2 Mesoscopic level model of a canonical columnar cortical circuit

In the proposed abstraction of the model architecture, we have combined circuit elements (a) to (d) to define a three-stage mesoscopic level columnar model. Our model architecture utilizes representations consisting of two-dimensional sheets of visuotopically arranged model columns implemented as excitatory-inhibitory (E-I) pairs of single-voltage compartments (point-like) entities [18]. Model columns interact by lateral connectivity, feeding input signals as well as ascending and descending connections to and from other model areas. The 1st order dynamics of the membrane potential \(v \) for such model cells is captured by

\[
C_m \dot{v} = -\alpha v + (E^{ex} - v)g_{ex} + (E^{in} - v)g_{in},
\]

where we assume resting state \(E^{\text{leak}} = 0 \) with leak conductance \(g_{\text{leak}} = \alpha \), excitatory and inhibitory input conductances \(g_{ex} \) and \(g_{in} \), respectively, and \(C_m \) the membrane capacitance. A sketch of the specification of the canonical model cascade is depicted in Fig. 2(a).
The first stage of the columnar model cascade (Fig. 2(a) I) combines the driving feedforward input signal integration and filtering F that generates distributed and sampled feature representations (circuit patterns (a) and (b) shown in Fig. 1). These representations are spatially integrated to form a space-feature map in which the activation strength denotes the likelihood for the presence of a specific feature in the sensory map representation. The resulting activities communicate via lateral recurrent connections. For example, co-aligned contrast cells with similar orientation preference mutually strengthen their activities according to the saliency of connected contour or boundary outlines [23, 2, 31, 33, 16]. For clarity of the schematic outline we have omitted in Fig. 2(a) to explicitly depict a layer of inhibitory cells which are fed by the excitatory cells in the superficial compartment (which was made explicit in Fig. 1(b)).

The activation that is fed to the next stage of the canonical columnar circuit is calculated by

$$A_{i\theta}^{FF+lat} \propto \left(s_{i\theta} + \gamma_{lat} \cdot \left(\sum_{k \phi} g_r(r_{k \phi}) \cdot \Lambda_{ik,\theta\phi}^r \right) \right),$$

with i and θ denoting the locations in the spatial and the feature domain, respectively; $s_{i\theta}$ defines the filter responses and $g_r(r_{k \phi})$ is the firing-rate of a lateral cell (with $g(\cdot)$ as the sigmoidal firing-rate function); the lateral connectivity is defined by a kernel $\gamma_{lat} \cdot \Lambda_{ik,\theta\phi}^r$ to specify the selective weighting in the spatial and the feature domain (c.f. [3]).

The second stage of the columnar model cascade (Fig. 2(a) II) formalizes the influence of excitatory reentry signals, e.g., feedback signals from areas higher up in the processing hierarchy. Such signals enter the superficial compartment level [1] and preferentially contact the apical dendrites of pyramidal cells in layers 2/3 and 5 (compare the ionized sketch in Fig. 1(d)). It has been demonstrated that signals of the feedforward sensory stream are combined with reentrant signal stream activation at the level of individual columns and even individual pyramidal cells [27]. The latter can also arise from disinhibitory feedback interaction [4]. Since the cells in superficial compartments directly project to the cells in the deep compartment in their respective column we have lumped the excitatory influence of the reentrant signals on the feeding activity and formally represent them by a single computational stage. Evidence suggests that the influence of the reentry is modulatory and enhances coincident feedforward input [21]. In order to account for this asymmetry in the role of the bottom-up/reentrant pathways [42] we utilize a tonic bias that can be combined with a reentrant signal net_{mod} (that can originate from, for example, areas higher up in the processing hierarchy; impact modulated by λ)

$$A_{i\theta}^{modFF} \propto A_{i\theta}^{FF+lat} \cdot (1 + \lambda \cdot net_{mod}^{mod}),$$

which yields the combined contingency table as depicted in Fig. 2(a) II. A similar mechanism has been proposed to model the effects of synchronizing activities across multiple areas (by linking fields, [10]) and selective attention [40].

Finally, the third stage of the columnar model cascade (Fig. 2(a) III) summarizes the output computation of the columnar circuit. Most importantly, this stage realizes a competitive interaction between target cells and a large spatial pool.
of surrounding cells with different feature selectivities. We suggest that the circuit pattern depicted in Fig. 1(c) enables a division of the target activations by the pool activity via shunting inhibitory interaction. This implements the nonlinear response normalization of the overall local energy (over the surround pool of responses) as reported in [17, 6]. The generic pool integration is formalized by a weighted integration of activities over a spatial neighborhood and the feature domain(s) such that

\[A^\text{pool}_{i\theta} \propto \sum_{k, \phi} g_r(r_{k, \phi}) \cdot \Lambda_{i\theta, k\phi}, \]

with the firing-rate function \(g_r(\cdot) \) and \(\Lambda_\theta \) denotes a kernel of weights that considers spatial distances \((i-k)\) as well distance metrics in the feature domain \((\theta - \phi)\). Such a model definition allows the parametric shaping of tuned and untuned feature selectivities for the pool integration [25].

The output that is generated to feed to subsequent stages (driving) and those activations that are sent back to previous stages in the cortical hierarchy (modulating) is generated in different compartments, as sketched in Fig. 1 [30]. From a functional point of view on cortical computation we only need to distinguish the influence different signals have at their termination contacts. Therefore, we define only one single output signal via the firing-rate of cells in a model at their termination contacts. Therefore, we define only one output signal via the firing-rate of cells in a model column. The interaction from the grid of inhibitory cells is assumed to incorporate shunting inhibition in accordance to the basic dynamics denoted in Eq. 1. We assume that the integrated pool activation exerts a mainly divisive inhibition on the target response (see Fig. 2(a) III). The compartmen- tization of the columnar circuit model allows the influence of inhibitory activity across different cortical layers, as, e.g., utilized in the dynamic attention model proposed by [45].

2.3 Canonical circuit model and its analysis

In order to define the dynamics of the canonical circuit model from the components as specified in Eqs. 2, 3, and 4, we arrive at a 1st order 2-D system

\[\tau_r \dot{r}_\theta = - \alpha_r \tau_r + (\beta_r - r) \cdot P^\text{exc}_{i\theta} - (\delta + r \tau_s) \cdot s^\text{in}_{i\theta} - \eta \cdot g_p(p_i), \]

\[\tau_p \dot{p}_\theta = - \alpha_p \tau_p + \beta_p \cdot A^\text{pool}_{i\theta} + (I_c) + \sum_{k, \phi} g_r(r_{k, \phi}) \cdot \Lambda_{i\theta, k\phi} + (I_c), \]

with excitatory net input defined by the initial filtering and the lateral recurrent integration

\[P^\text{exc}_{i\theta} = \Lambda^\text{modFF} \]

\[= \left(s^\text{in}_{i\theta} + \gamma \text{lat.} \cdot \sum_k g_r(r_k) \cdot \Lambda_{i\theta, k\phi} \right) \cdot \left(1 + \lambda \cdot n_{c} \right). \]

\(g_p(r, \cdot) \) denote gain functions that map the potentials \(p_i \) and \(r_{\theta} \) to output firing-rates. The constants \(\tau_r, \tau_p > 0 \) define the membrane constants for an excitatory unit and the inhibitory pool, respectively. \(\Lambda^\text{+/−} \) denote the input weights to define the lateral interaction and the extent of the pool (e.g. with Gaussian weights). An additional input \(I_c \) is considered for the pool inhibition to later account for unspecific raises or lowering of the inhibitory gain. The parameters \(\alpha, \beta, \delta, \eta, \gamma, \lambda \geq 0 \) are constants to denote the activity decay, the saturation levels, the relative strength of the pool inhibition and the FB strength [see 3 for more details].

The dynamic properties of the model architecture have been analyzed in order to evaluate different influences of specific components in the model definition. In order to do so, we investigated a reduced columnar model composed of an excitatory-inhibitory (E-I) pair for a single feature [47]. The components of such E-I pair are shown in Fig. 2(b) in which the core component is located within the dashed box in the center. The excitatory \(E \) component is represented by \(r \) activations in Eq. 5 while the inhibitory \(I \) component is represented by the pool activation \(p \). In order to account for the influence laterally connected model cortical columns have, self-excitation is included for the \(E \)-cell component as well as for the \(I \)-cell component. Additional inhibitory action can be considered by the extra input denoted by \(I_c \) (see Fig. 2(b)).

3. ANALYSIS OF DYNAMIC PROPERTIES AND COMPUTATIONAL EXAMPLES

3.1 Analysis of dynamic properties

We investigate the dynamic properties of the model framework by reducing it to a single local with \(s^\text{in}_i = 0 \) and with \(P^\text{exc} = s + \gamma \text{SE} \cdot g_r(r) \) where the modulatory input \(1 + \lambda \cdot n_{c} \) effectively scales \(s \) and \(\gamma \text{SE} \cdot g_r(r) \). We thus omitted here the scaling term which yields the 2D system in the plane (compare [3])

\[\tau_r \dot{r} = f(r, p, s + \gamma \text{SE} \cdot g_r(r)) - \eta \cdot g_p(p), \]

\[\tau_p \dot{p} = g(p, r, s + \gamma \text{SE} \cdot g_r(r)) - \eta \cdot g_p(p). \]

This simplified 2D system was the basis to investigate the stability properties of such columnar circuit. An important characterization of the dynamic circuit properties was found to depend on the lateral integration of excitatory activity in the \(r \)-layer, which, in the single dimension analysis, is expressed by the self-excitation \(\gamma \text{SE} \). If the strength of \(\gamma \text{SE} \) is small given that \(\delta_r f(\bar{r}, \bar{p}) < 0 \) then the system is stable. For moderate \(\gamma \text{SE} \) strength given that \(0 \leq \delta_r f(\bar{r}, \bar{p}) < |\delta_p g(\bar{r}, \bar{p})| \) then the system can be either stable or unstable (which needs to be analyzed case-by-case). If the strength of \(\gamma \text{SE} \) is large given that \(|\delta_p g(\bar{r}, \bar{p})| < \delta_r f(\bar{r}, \bar{p}) \) then the system leads to instabilities (see [3]; with \(\delta_r \equiv \partial_r/\partial a \)). We further investigated the structure of the respective phase plane diagram for given pairs of \(\gamma \text{SE} \) and driving inputs \(s \equiv I \) and \(\eta \). The results of this computational analysis are displayed in Fig. 3. We identified the different zones with the qualitative properties of a single stable equilibrium (green) and regimes with excitatory nullclines that also have a positive slope, i.e. can form inhibition stabilized regimes [35, 22]. In such a regime, increased input can paradoxically lead to smaller responses and has recently been reported to occur in real cortical cells and small networks. In this regime, we identified two cases. First, that of a single stable equilibrium (blue). Second, a case in which three equilibria with two stable equilibria separated by an unstable equilibrium (red) occur. As the excitatory nullclines (red curves in the phase space) get increasingly more pronounced (as in the red region) a bifurcation eventually occurs at the blue-red
boundary. The bifurcation creates a new equilibrium which splits into a pair of unstable and stable equilibria. This is the first time that qualitatively different stability criteria have been identified for such canonical circuit definition and also that bifurcations may occur as a function of intrinsic network properties. The conditions of ISN (inhibition stabilized network) occurrence depend on the particular shape of the excitatory nullclines given by

\[p = \frac{f(r)}{\gamma} = g_p^{-1} \left(-\alpha_p \cdot r + (\beta_p / \gamma) \cdot (s + \gamma_{SE} \cdot g_p(r)) \cdot (1 + \lambda \cdot \text{net}^{\text{mod}}) / r \right) \]

We refer to Fig. 3 for examples of the different nullcline shapes (see [3] for analytical details).

3.2 Example simulation results

The computational properties of larger networks composed of two-dimensional layers of laterally connected canonical columns are shown for different model simulations. First, we demonstrate an example of contour enhancement of an early layer by reentry of a higher-level representation (corresponding to, e.g., visual cortex V1 and V2). The effects of the modulatory enhancement are evaluated by using methods of signal detection theory, namely the \(z \)-measure that considers the differences between the mean activity of the target (contour) against all neurons (scaled by the responses’ standard deviation) and the \(r \)-measure, that is the ratio between such mean values. In the example shown in Fig. 4(a) an improvement of these measures of \((\Delta r, \Delta z) \approx (1.1, 0.5) \) is achieved. In addition, the responses at the contours’ ends are enhanced by the interaction of modulatory feedback and normalization which leads the contours’ representations to be enhanced at the line ends, and the surrounding regions to be suppressed.

In a second example we demonstrate the necessity of a modulatory excitatory enhancement in the case of texture boundary detection for search targets to be detected. The detectability of region boundaries composed of homogeneous texture items depends on the change of gradient along the feature dimension [34]. In case that the orientation change within the background and the target regions is low the boundary is easily detected for small to moderate orientation contrasts based on feedforward processing only. For noisy and cluttered stimuli, however, i.e. when the orientation change is increased within the homogeneous parts (shown here is background noise of 20\(^\circ\)) additional feedback is required to stabilize the boundary formation. The model predicts that \(V4 \rightarrow V2 \) feedback is of particular importance in a cascaded model architecture with model areas V1, V2, and V4, each of which is bidirectionally coupled by driving and reentrant connections and composed of the canonical columnar circuits. If the \(V4-V2 \) recurrency is selectively removed from the model, significant drops in the response ratios occur (see Fig. 4(b)).

4. MECHANISMS OF LEARNING

In the proposed model, the initial stage performs feature selective filtering of the input (Fig. 1). In many cases of modeling, e.g., oriented contrast detection, such filters have been implemented by a convolution operation. If the filter selectivities become more specific, pre-programming might no longer be suitable and a learning mechanism should be employed to let such weighting functions self-organize from exposure of sets of training data (see e.g. [5] for a biologically inspired learning algorithm for recurrent networks). Here, we consider a complementary learning mechanism to build certain selectivities at an input compartment in a model architecture. In other words, we investigate learning the connection weights for the fan-in structure of the filter mechanisms being involved to build feature selective representations. This is combined with learning the fan-out connections afterwards.

A biologically plausible learning mechanism should employ a generically unsupervised scheme which might be augmented
by some mechanisms of self-supervision and/or reinforcement which is controlled by the interaction of the learning systems (as part of an agent) who interacts with its sensory environment. In general, such learning incorporates a mechanism to adapt the connection weights \(\dot{w}_{ij} = F(u, v, w_{ij}, \text{success}) \) which considers correlated pre- and postsynaptic activity, the current weight (as a state variable), and possibly, a measure of a given network activity’s success related to the current task, or goal. In the model mechanism sketched below, we consider adaptation of feedforward as well as feedback connections in a recurrently connected hierarchical model network (c.f. [5]). We consider weight changes that occur at fixed discrete learning steps, formally described as \(w_{ij}^t = w_{ij}^{t-1} + \Delta w_{ij}^t \). The weight adaptation defined by \(F(\cdot) \) does not use an external teacher signal, such as in, e.g., back-propagation [29], but rather operates in an unsupervised fashion using modified correlative learning. To adapt the feedforward connection weights we suggest a biologically plausible competitive learning mechanism which combines two basic principles of learning: (a) a modified version of Hebbian correlation learning [14] and (b) a trace rule of activation in which the Hebbian learning mechanism is stabilized by considering a temporal trace of the pre- or post-synaptic node establishes a smooth graduation of the postsynaptic activity at the fan-in convergence point. Finally, we elucidated how online learning mechanisms, exponential moving average equation used in several learning discretization and proper parameter setting yields the existence of the postsynaptic activity at the fan-in convergence point.

We combine the feedforward learning with learning of the feedback connections. Here, the weight adaptation uses a slightly different format

\[
\Delta w_{ji}^{FB} = \eta_{FB} \cdot z_i^{post} \cdot (u_j^{pre} - w_{ji}^{FB}),
\]

in which the weight in the difference term \(u - w \) tends to approach \(u \) without further scaling by the post-synaptic activation \(v \), i.e. \(w_{ji}^{FB} = u_{ji}^{post} \). In other words, the structure of the fan-out weights approaches the activity distribution \(u_{ji}^{post} \) so that the units with activity \(z_i^{pre} \equiv v_i^{pre} \) memorize an expected pattern of the local driving input signals. The learning constants \(\eta_{FF,FB} \) and the duration of the temporal low-pass, with trace length parameter \(\lambda \), steer the control of establishing neural representations of visual categories. We have empirically observed that a ratio of \(\eta_{FB} / \eta_{FF} < 1 \) stabilizes the learning such that the representation is invariant against strong variations in the input configuration. We have successfully demonstrated the capabilities of such a learning architecture to build form and motion representations as well as sequence-selective representations for the visual analysis of articulated motion sequences [28].

5. CONCLUSIONS

In this contribution we proposed a novel scheme of building blocks to describe the interaction of superficial and deep level compartments of cortical columns. The modular description at an intermediate level of detail enables the efficient and flexible usage of these building blocks. The decomposition into manageable entities additionally allows its mathematical analysis. By reducing the model to an E-I circuit, we showed conditions of stability and response bifurcations (c.f. [47]), regimes of inhibition stabilized net properties and regimes of multiple stable and unstable fixed points. Finally, we elucidated how online learning mecha-
nisms can be incorporated to allow the adaptation of connection weights for the bottom-up weights to the input compartment as well as those connections that allow signals to propagate backwards (from the deep compartment) to the neuronal representations of the incoming activities.

The proposed model circuit has similarities with the laminar architecture proposed by [15, 39] and the columnar microcircuit model proposed by [45]. Unlike the investigations of Grossberg we emphasize different compartments instead of individual layers of cortical structure enabling a compact mathematical description of the dynamics. This let us arrive at the E-I formulation with the qualitative analysis of the network dynamics. The columnar structure and explicit compartmental subdivision of excitatory and inhibitory circuit components corresponds to the work of Diesmann and colleagues [45]. Unlike their work, we put a stronger emphasis on the structural connectivity and different types of interactions (driving vs modulating) in a local population of cells. In addition, the proposed focus on compartments rather than individual layers allowed us to more easily derive an even more abstract dynamical description of the system.

So far, we did not discuss the implications of closing the intra-cortical loop by explicitly incorporating the modulating connections from deep compartment cells to cells in the input compartment. We suggest that such a closed loop (which would incorporate a modulatory feedback connection from the output stage to the filtering stage in the cascade model in Fig. 2(a)) allows to spatially enhance the activations for features at individual locations. In addition, we did not differentiate between different modulating inputs (as indicated in Fig. 1). There is evidence that different cells contact the upper level superficial inputs which originate from different sites in the frontal or from the lateral intraparietal cortex. For example, [45] proposed sharply focused connections to feature selective cells to exert feature-based attention effects. Such different attention signals can be incorporated in the proposed model as well. We suggest that feature attention signals mainly contact cells in the superficial compartment in a spatial and featural neighborhood such that cells with detailed individual feature selectivity can be enhanced. This might then also be the basis for feature-selective attention effects in which composite features need to be emphasized or de-emphasized before the grouping into categories occurs [9]. The subsequent normalization of responses further implements the nonlinear effects of activity normalization observed in several studies [7]. More recent investigations have discussed different selectivities in the featural surround inhibition [25]. In the proposed model framework such variants can be studied as well. Lateral interaction in deep compartments can be parameterized to account for these different versions of normalization.

Furthermore, we have suggested that a variant of Hebbian learning as shown in Eq. 10 allows to establish a kernel of weights that represents the expected input pattern that drives the recipient representation. To stabilize the online learning, we utilized a temporal trace mechanism that operates as a local decaying tag to enable the weight adaptation over a given temporal window. Such functional adaptation mechanism might be useful as well when different representations must be linked during the recurrent interaction in a network. In [11] the mechanism of neuronal group selection has been proposed in which functionally segregated maps can be linked through reentrant signals to enhance the correlation of their representations. Synaptic strengthening during learning is thus confronted with the problem to select the proper features and feature compositions that need to influence other item representations at different stages (corresponding to cortical areas). A neural computational framework as the one proposed here serves as a basis for further investigation of such fundamental questions.

6. ACKNOWLEDGMENTS

This work has been supported in part by grants from the Transregional Collaborative Research Center "A Companion-Technology for Cognitive Technical Systems" SFB/TRR62 funded by the German Research Foundation (DFG) and the "SenseEmotion" project funded by the Federal Ministry of Education and Research (BMBF).

7. REFERENCES

