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Abstract. Graphical Processing Units (GPUs) consist of hundreds of
small cores, collectively operating to provide massive computation ca-
pabilities. The aim of this work is to utilize this technology to execute
Constraint Handling Rules (CHR) which are inherently parallel. A trans-
lation scheme is defined to transform a subset of CHR rules to C/C++,
then to use a GPU to fire the rules on all combinations of constraints. As
proof of concept, the scheme was performed on several CHR examples.
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1 Introduction

In recent years, graphics hardware has incurred a rapid increase in terms of
performance. Its use has evolved from merely rendering graphics to offering a
powerful platform for parallel computations. It has facilitated high performance
computing to be readily available on a typical desktop, shipped as the common
graphics processing units (GPUs). The powerful technology has become abun-
dant at a relatively low price, hence it is tempting for researchers to harness this
power for general-purpose computing to tackle intensive computations.

Furthermore, the introduction of CUDA (Compute Unified Device Archi-
tecture) by NVIDIA, a leading GPU manufacturer, gave rise to a new era of
computing. CUDA allows users to seamlessly run C, C++ and Fortran code on
a GPU, without requiring to resort to assembly language. CUDA has helped
unleash the power of GPUs to be easily available to wide range of users [6].
Several works have emerged making use of this computing potential, like several
number crunching algorithms [1], graph algorithms [4] and various others.

Constraint Handling Rules (CHR) is a committed-choice rule-based program-
ming language having a well-established formal basis. The abstract semantics of
CHR is inherently parallel, it involves multi-set rewriting over a multi-set of con-
straints [2]. CHR rules can be applied in parallel even to overlapping multi-sets
of constraints, if they are removed by at most one rule. Thus it supports a very
fine-grained form of parallelism.

A first abstract operational semantics for parallel CHR has been proposed
by Thom Frühwirth [3]. Early prototypes for parallel execution of CHR have
been developed based on shared-transaction memory (STM) by Edward Lam
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and Martin Sulzmann [5, 7]. Experimental evaluation of these systems revealed
a significant boost and often linear speedup over sequential executions. However,
these prototypes showed that conflicts occur with the STM-based approach; this
results in a slow down of the execution. More recently, Andrea Triossi [8, 9] has
developed a framework for compiling CHR to specialized hardware circuits. A
code fragment of CHR is compiled into a low level hardware description language,
to generate a specialized digital circuit on a Field Programmable Gate Array
(FPGA) for each specific CHR code fragment. The hardware blocks then enable
a parallel execution model for the compiled CHR fragment.

In this work, we aim to develop a prototype whilst exploiting the power
of graphics processing units to simulate the execution of a subset of CHR by
experimenting with different potential execution schemes. A translation scheme
from CHR to CUDA is defined in such a manner that the output CUDA code is
run in parallel, hence investigating the potential speed up of a parallel execution
of the CHR rules.

2 CHR Overview

Constraint Handling Rules (CHR) is a high-level, concurrent, committed-choice,
constraint logic programming language [2]. It consists of guarded rules that per-
form conditional transformation of multi-sets of constraints, known as a con-
straint store, until a fixed point is reached. CHR utilizes built-in constraints
which are predefined by the host language, and other user-defined CHR con-
straints. A CHR constraint is a predicate having a name and a certain number
of arguments. A CHR program typically consists of a finite set of rules, which
can be generally represented with a simpagation rule as follows:

rule name @ heads kept \ heads removed <=> guard | built ins, body constraints.

The rule name is an optional unique identifier given to a rule. heads kept,
heads removed, body constraints are a conjunction of one or more CHR con-
straints, where the constraints are kept, removed or added respectively. The
rule operates by matching the heads kept and heads removed with constraints
in the constraint store, then checks for the guard validity. If it holds then the
heads removed are removed from the store, and replaced with the built ins and
the body constraints. Additionally there are propagation and simplification rules,
which do not remove and do not keep any constraints respectively.

3 CUDA

CUDA offers a data parallel programming model that is supported on NVIDIA
GPUs [10]. In this model, the host program launches a sequence of kernels,
where a kernel is a hierarchy of threads. Threads are grouped into blocks, and
blocks are grouped into a grid. The sizes of grids, blocks and threads is hardware
dependent but a block typically contains 512 threads.
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Each thread has a unique local index in its block (threadIdx), and each block
of dimension (blockDim) has a unique index in the grid (blockIdx). The three
indexes given are built-in 3-component vectors to access their values. Threads in
a single block will be executed on a single multiprocessor, sharing the software
data cache, and can synchronize and share data with threads in the same block.
Threads in different blocks may be assigned to different multiprocessors concur-
rently, to the same multiprocessor concurrently, or may be assigned to the same
or different multiprocessors at different times, depending on how the blocks are
scheduled dynamically.

Thus a kernel is executedN times in parallel byN different CUDA threads. A
kernel is defined using C/C++ functions and characterized with the __global__
declaration specifier indicating that it is callable from the host only. The number
of threads per block and the number of blocks per grid is specified using the
<<<...>>>> statement. Other functions which are callable from the device only
are indicated with __device__ specifier.

4 Translation Scheme

The approach presented in this paper involves translating CHR rules into an
imperative form, which can then be easily transformed into CUDA code to run on
a graphics card. The CUDA code is run in parallel to simulate the parallel firing
of the CHR rules. A subset of the CHR language is used, which includes only
simplification rules and simpagation rules that do not introduce more constraints
than those removed. This subset is a necessity due to the limited memory of the
graphics card.

The CUDA code defines a structure for every CHR constraint, to store the
information associated with it. The constraint store is then modeled and stored
as an array of fixed length consisting of the structures. The dynamic nature of
CHR constraints could be captured more clearly with a dynamic data structure
such as a list structure, however this would not be practical on the graphics
card. The GPU can not allocate memory in kernel calls because it does not
contain a memory management unit. Moreover despite developments to support
this feature in the future, there would still be an overhead introduced due to
synchronization issues. Moreover, the total number of constraints possible in the
lifetime of a program has to be known in advance, due to memory limitations
of the GPU. For the scope of this work, a compromise was reached by choosing
the subset of CHR that ensures an easy prediction of the number of constraints
incurred by a program.

4.1 CHR Constraint Representation

Constraints represent data in a program and can be introduced and removed
from the constraint store by CHR rules. Every constraint is a distinguished
predicate of first order logic, having a name and a number of arguments. With
the CHR Prolog implementation, every CHR constraint used has to be declared
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with a chr_constraint/1 declaration by the constraint specifier. In its ex-
tended form, a constraint specifier is constraint name(type1, . . . , typen), where
constraint name is the constraint’s functor, n its arity and the typei are argu-
ment specifiers. An argument specifier is a mode, followed by a type. Similar
to the work done in [11], for every constraint a C/C++ structure is defined
having the same name as the functor and with a listing of the arguments of
the constraint using the provided types. Additional meta-data about the con-
straint can also be stored within the structure. Thus for a CHR constraint
constraint name(type1, . . . , typen), the corresponding C/C++ structure can be
defined accordingly:

typedef struct {
type1 var1;
. . .
typen varn;
boolean isRemoved;

} constraint name;

The variables vari are used to store the arguments of the constraint. Addition-
ally every constraint structure generated should contain a boolean isRemoved
variable, which indicates the presence of the constraint in the store. It should be
changed during the computation if the constraint was removed from the store.

As an example, a CHR constraint to describe a candidate number for the
computation of a minimum can be expressed as: min(+int). Using the previ-
ously mentioned translation scheme, it can be transformed into the following
MIN structure:

typedef struct {
int value;
bool isRemoved;

} MIN;

The constraint store which contains N candidate minimum constraints is mod-
eled as an array named min_store as follows: MIN min_store [N].

4.2 CHR Rule Representation

The CHR subset chosen, should ensure that the body includes at most as many
added constraints as the removed ones. Generic simpagation rules are taken as
expressed in section 2. The subset chosen ensures that the number of constraints
removed is at most equal to the added body constraints, thus:

|heads removed| ≥ |body constraints|

A CHR rule can be translated into a function in C/C++, by mapping it to the
following form:
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void rule name (calling heads kept, calling heads removed) {
if(head constraints are not marked as removed

&& matching of variables in heads holds
&& guard holds) {

equivalent built-ins, setting body constraints
}

}
The name for a rule is optional in CHR but it is needed in C/C++ as a unique

identifier for each function. The parameter list contains a listing referencing the
structures of the equivalent head constraints. Constraints are fired only if they
are actually present in the constraint store, thus first a check must be performed
to check that they have not been marked as removed. Then when firing the rule,
variables may exist in common between the head constraints and matching is
performed. Thus in the translated C/C++ code matching of the variables must
be explicitly ensured. Lastly before the rule fires, the guard must be checked if
it holds and this must also be performed in the translated code. The guard is
a typical condition and contains only built-in constraints which are expressed
as straight forward C/C++ built-ins. The body consists of built-in constraints
and overwrites existing constraints or deletes them by changing their isRemoved
status variable.

Added constraints are actually overwritten in the place of removed head
constraints. This is done by modifying their respective structure variables, to
match the newly produced constraint. Head constraints that are removed and
not overwritten, must have their isRemoved variable changed.

For example to calculate the minimum of a multi-set of numbers ni expressed
as min(n1),. . . min(nk), a simpagation rule that takes two min candidates and
removes the one with the larger value is given as:

minimum @ min(A) \ min(B) <=> A=<B | true.

The equivalent C/C++ function using the previously mentioned translation
scheme is shown below. No variable matching is done in the rule, however both
constraints are first checked for being present in the store. The guard is also
checked, if all holds then the constraint with the larger value is removed from
the store.

void minimum(MIN &a, MIN &b) {
if(!a.isRemoved && !b.isRemoved && a.value <= b.value)

b.isRemoved = true;
}

4.3 CHR Rule Firing

The translation scheme involves transforming the query constraints into the
specified structure format and then placing them in an indexed array. The rule
is fired on every possible combination of constraints. This exhaustive method
can be optimized and changed according to the problem to be solved.
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For the running minimum example, it is sufficient to apply the exhaustive
firing. This means that the rule is fired for each pair of constraints; for an array
min_store of N constraints, N2 pairs are constructed.

The MIN constraints are stored in an indexed array and for each constraint
pair the rule-function is called. Using the exact same constraint in the rule does
not make any sense since a constraint is only present once in the store and
should not be fired against itself unless it is present twice in the store, therefore
a further if statement is needed. At the end of the loops the result will be a
single non-removed constraint in the array which contains the smallest value.
Encapsulating this functionality into a fire function is shown below:

void fire_minimum(MIN *min_store, int N) {
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; j += 1)

if (i != j)
minimum(min_store[i], min_store[j]);

}

4.4 Mapping to CUDA

After translating a CHR program into a C/C++ program it can be mapped with
little effort into a CUDA program. Every CHR rule was mapped into a C/C++
function, which is now defined to be called by a thread from a device, and thus
is redefined by adding the __device__ declaration specifier. The function is
redefined to the following:

__device__ void minimum(MIN &a, MIN &b) {
if(!a.isRemoved && !b.isRemoved && a.value <= b.value)
b.isRemoved = true;

}

The calls to the rule-firing functions, which were shown in the previous section
as nested loops, will now be run in parallel. This straightforward translation with
nested for-loops is perfectly suitable for the massive parallelism of CUDA. The
outer loop is now considered as a block and each block can be designed to have
512 threads working on its content. With this thread layout a large amount of
data can be processed.

An alternative approach to parallelize both loops is possible, but the amount
of data has to be significantly smaller and a greater overhead is incurred leading
to a slow down. The topic of work distribution between the threads remains a
subject of future investigations.

The loop-firing function is now declared with __global__. The loops are
reduced by one dimension, which now is replaced by the index of the handling
thread (calculated from one-dimension of the 3-component indexes). For the
minimum example, this now becomes:
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__global__ void fire_minimum(int *min_store, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
for (int j = 0; j < N; j += 1)
if(i != j)
minimum(min_store[i], min_store[j]);

}

In the CUDA code’s main body, the number of threads is initialized. Assum-
ing we have defined an array, min_store, of N minimum constraints, and a
block_size equal to 512, then the initialization of the worker threads and as-
signing them to the firing function is done as given below:

int num_blocks = N / block_size + (N % block_size == 0 ? 0 : 1);
fire_minimum <<< num_blocks, block_size >>> (min_store, N);

A CUDA kernel launch is asynchronous and returns immediately. Thus to ensure
synchronization between the worker threads, cudaThreadSynchronize() should
be called to block execution until the device has completed all preceding tasks.
This would ensure that all worker threads fire a single rule synchronously, and
update the needed constraints before launching another kernel round.

5 Dynamic Detection Enhancement: Floyd-Warshall

As a proof of concept, several different algorithms were investigated and trans-
lated using the proposed scheme. These algorithms were the Sieve of Eratos-
thenes, GCD calculation and Floyd-Warshall. Due to the limited space of this
short paper, the latter one will only be presented here. It sheds light on the
need for an enhancement to the initial translation scheme to allow for dynamic
detection of re-firing of rules due to new constraints that have been added.

The Floyd-Warshall algorithm finds the length of the shortest paths between
all pairs of vertexes in a weighted graph. An edge can be represented by a CHR
constraint edge(?int,?int,?int), with the first two parameters expressing a
connection between two connected integer indexed nodes in a graph and the third
parameter describing the weight of the edge. The Floyd-Warshall algorithm can
be expressed in a single CHR rule:

floydw @ edge(I, K, D1), edge(K, J, D2) \ edge(I , J, D3)
<=> D3 > D1 + D2
| D4 is D1 + D2, edge(I, J, D4).

The edge constraints are stored in an array named edges_store; each one is
modeled using the following structure:

typedef struct {
int from, to, weight;
bool isRemoved;

} EDGE;



Parallel Execution of CHR on a GPU 89

The number of constraints in the program life cycle is equal to the number of
input constraints, as the rule only overwrites an existing constraint. The floydw
rule is transformed into the following CUDA function:

__device__ void floydw (EDGE &a, EDGE &b, EDGE &c) {
if(!a.isRemoved && !b.isRemoved && !c.isRemoved

&& a.from == c.from && a.to == b.from && b.to == c.to
&& c.weight > a.weight + b.weight)

c.distance = a.distance + b.distance;
}

Since the rule tries the matching of three heads, it follows that the rule firings
require three nested for-loops. Similar to the previous example this gets reduced
to two for-loops, and the resulting in the CUDA code is shown below:

__global__ void fire_floydw(EDGE *edges_store, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
for (int j = 0; j < N; j += 1)
for (int k = 0; k < N; k += 1)
if (k != j && k != i && j != i)
floydw(edges_store[i], edges_store[j], edges_store[k]);

}

However in this example an existing constraint is overwritten and a new con-
straint has been introduced into the constraint store. This new constraint must
be tried in a potential rule application. Thus it is not sufficient to fire the rule
on every triplet combination, rather the firings must be performed exhaustively
until no changes have been done.

Thus a boolean flag (update) is introduced which detects if a new constraint
has been added. The flag is changed inside the body of the if-statement of the
floydw function. Inside a loop, the CUDA threads are initialized and call the
kernel fire function. This takes place several times until no new constraint is
added to the store. A simplified CUDA code snippet for this would look like:

int update = 1;
while (update) {

update = 0; ...
fire_floydw <<< n_blocks, block_size >>> (edges_store, N);
cudaThreadSynchronize(); ...

}

6 Conclusion

Constraint Handling Rules is a declarative multi-headed guarded rule-based pro-
gramming language, which is parallel by nature. Graphics processing units have
gained popularity nowadays, and have emerged as a cheap and powerful compu-
tation power for parallel executions; their uses have exceeded the rendering of
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graphics and have become desirable for various computationally expensive tasks.
In this work, we described a means to model the parallel execution of CHR onto
a graphics processor. Due to the limited memory of graphical units, a subset of
CHR was chosen which ensures that the maximal number of CHR constraints
present in the constraint store throughout the course of the program is known
beforehand. The scheme translates CHR constraints to C/C++ structures, de-
fines an array of these structures to denote the constraint store and each rule
into a function that performs the firing action. The firing of rules is simulated
by nested for-loops that fire rules on all combinations of constraints available in
the store.

The work presented is still in progress, requiring several extensions, bench-
marks and generalizations. Benchmarks to access the value of the gained speed
up which the translation incurred is missing. Furthermore, an automatic CHR-
to-CUDA translator that produces the output CUDA code would be greatly
advantageous. Another criterion which further needs optimization is the rule fir-
ings methodology and threads work load distribution. The process used in this
work was a naive one which exhaustively tries all combinations of constraint
pairs, this could be altered and optimized. Benchmarks for the various options
for rule firings would then be an interesting open topic to access.
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