Constraint Programming
Prof. Dr. Thom Frithwirth, Marc Meister

assignment #10 (winter term 2005)
solutions will be presented Tuesday, 24-Jan-2006, 2 PM, 027/2203
http://wuw.informatik.uni-ulm.de/pm/index.php?7id=112

Warmup

Exercise 1 (Cardinality Constraints).
Extend boole.pl (from assignment #8) to handle cardinality constraints card/4 with semantics
given in the lecture.
a) Implement the rules together with the required auxiliary predicates.
b) Introduce a constraint labeling together with appropriate rule(s) to label variables.
¢) Cardinality constraints can be combined with the existing Boolean constraints, e.g.
card2and @ card(0,1,[X,Y],2) <=> and(X,Y,0).
card2neg @ card(1,1,[X,Y],2) <=> neg(X,Y).

Find similar rules for (at least) xor and nand.

Constraint-system Rational Tree

Exercise 2. Implement the CHR-constraint X eq Y that succeeds iff CET = X=Y.
Clark’s equality theory C'E'T" should be coded “naturally”, i.e., implement the axioms as propa-
gation rules (whenever possible).
Hints:
o £(X1,...,XN)=..[fIX1,...,XN]
e Rules leading to immediate contradiction should go first in the program text.
e For termination reasons pay attention not to have multiple copies of a constraint in the
store.

Queries: Unification examples from assignment #1.

Extend your implementation, s.t. queries like X eq £(Y), Y eq f£(X) can be treated (occur-
check). A simple solution introduces one (or several) rule(s) for variable-substitution.

Exercise 3. The constraint theory CT should define the (purely) syntactic inequality # between
two terms along the lines of CET:

irreflexivity V(z#r — 1)

symmetry V(zy — y#)

compatibility V(z1Zy V... \/‘xn;;éyn — f(x,... ,gcn);;éf(yl, e ,yn))
decomposition V(@1 an)Ef (Y1, un) = TiFn V.V T FYn)
distinctness V(T = f(z1,. s xn)#9(Wi, - ym)) iff #gorn#m

cylicity V(T — x+£t) if t is not a variable and x appears in ¢
The to be implemented CHR-constraint X neq Y should succeed iff CT }= X#Y.
Use the RT-solver implementation from the lecture as blueprint for your implementation. Dis-
junction, needed for compatibility and decomposition, should be implemented by a CHRY cons-
traint one_neq/2 as negated same_args/ constraint. The two arguments of one_neq/2 are lists
of same length and the CHR" should succeed iff at least on pair of list-elements is unequal.

Note: Using disjunction in CHR"-bodies requires a (mandatory) guard in SICStus Prolog:
rule @ Head <=> true | (Goall ; Goal2).

Queries:
(1) 7= X neq £(X)
(2) 7- £(a,X) neq f(X,Y)
(3) 7= £(g(X),a) neq £(Y,X)



