Constraint Programming
Prof. Dr. Thom Frühwirth, Marc Meister

assignment \#10 (winter term 2005)
solutions will be presented Tuesday, 24-Jan-2006, 2 PM, o27/2203
http://www.informatik.uni-ulm.de/pm/index.php?id=112

Warmup

Exercise 1 (Cardinality Constraints).
Extend boole.pl (from assignment \#8) to handle cardinality constraints card/4 with semantics given in the lecture.
a) Implement the rules together with the required auxiliary predicates.
b) Introduce a constraint labeling together with appropriate rule(s) to label variables.
c) Cardinality constraints can be combined with the existing Boolean constraints, e.g.

```
card2and @ card(0,1,[X,Y],2) <=> and(X,Y,0).
card2neg @ card(1,1,[X,Y],2) <<> neg(X,Y).
```

Find similar rules for (at least) xor and nand.

Constraint-system Rational Tree

Exercise 2. Implement the CHR-constraint X eq Y that succeeds iff $C E T \equiv \mathrm{X} \doteq \mathrm{Y}$.
Clark's equality theory $C E T$ should be coded "naturally", i.e., implement the axioms as propagation rules (whenever possible).

Hints:

- $f(X 1, \ldots, X N)=\ldots[f \mid X 1, \ldots, X N]$
- Rules leading to immediate contradiction should go first in the program text.
- For termination reasons pay attention not to have multiple copies of a constraint in the store.
Queries: Unification examples from assignment \#1.
Extend your implementation, s.t. queries like X eq $f(Y)$, Y eq $f(X)$ can be treated (occurcheck). A simple solution introduces one (or several) rule(s) for variable-substitution.
Exercise 3. The constraint theory $C T$ should define the (purely) syntactic inequality $\dot{\neq \text { between }}$ two terms along the lines of $C E T$:

```
irreflexivity
symmetry
compatibility
decomposition
distinctness
cylicity
```

```
\(\forall(x \neq x \rightarrow \perp)\)
\(\forall(x \neq y \rightarrow y \dot{\neq} x)\)
\(\forall\left(x_{1} \dot{=} y_{1} \vee \ldots \vee x_{n} \dot{\neq} y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \dot{\neq f}\left(y_{1}, \ldots, y_{n}\right)\right)\)
\(\forall\left(f\left(x_{1}, \ldots, x_{n}\right) \dot{\neq f}\left(y_{1}, \ldots, y_{n}\right) \rightarrow x_{1} \neq y_{1} \vee \ldots \vee x_{n} \dot{\neq} y_{n}\right)\)
\(\forall\left(\top \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \neq g\left(y_{1}, \ldots, y_{m}\right)\right) \quad\) if \(f \neq g\) or \(n \neq m\)
\(\forall(T \rightarrow x \neq t)\) if \(t\) is not a variable and \(x\) appears in \(t\)
```

The to be implemented CHR-constraint X neq Y should succeed iff $C T \equiv \mathrm{X} \neq \mathrm{Y}$.
Use the RT-solver implementation from the lecture as blueprint for your implementation. Disjunction, needed for compatibility and decomposition, should be implemented by a CHR ${ }^{\vee}$ constraint one_neq/2 as negated same_args/ constraint. The two arguments of one_neq/2 are lists of same length and the CHR^{\vee} should succeed iff at least on pair of list-elements is unequal.
Note: Using disjunction in CHR^{\vee}-bodies requires a (mandatory) guard in SICStus Prolog:
rule @ Head << true | (Goal1 ; Goal2).

Queries:

(1) ?- X neq $f(X)$
(2) ?- $f(a, X)$ neq $f(X, Y)$
(3) ?- $f(g(X), a)$ neq $f(Y, X)$

