
Universität Ulm | 89069 Ulm | Germany Faculty of Engineering
and Computer Science
Institute of Software Engineering
and Compiler Construction

A Rule-Based Implementation of ACT-R
Using Constraint Handling Rules
Master Thesis
University of Ulm

Daniel Gall
daniel.gall@uni-ulm.de

Reviewers:
Prof. Dr. Dr. Thom Frühwirth
Prof. Dr. Slim Abdennadher

Consultant:
Prof. Dr. Dr. Thom Frühwirth

2013

“A Rule-Based Implementation of ACT-R Using Constraint Handling Rules”
September 5, 2013

c© 2013 Daniel Gall

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
cbna

Typesetting: PDF-LATEX 2ε
Graphics created with: TikZ
LATEX Template: Guido de Melo
Printed by: Kommunikations- und Informationszentrum (kiz), University of Ulm

http://creativecommons.org/licenses/by-nc-sa/3.0/

Abstract

Computational Cognitive Modeling is a research field at the interface of computer science
and the cognitive sciences. It enables researchers to build detailed cognitive models upon
a cognitive architecture which provides some general assumptions about human cognition
to simulate human behaviour. By conducting the same experiments with humans and an
executable computational cognitive model, the plausibility of a model can be verified.

ACT-R is a cognitive architecture which is widely used in the field of computational
cognitive modeling. It is a production-rule system whose models are expressed by a
set of declarative knowledge elements – the data – and a set of rules. The rules match
the data and, if applied, have effects on the data. Constraint Handling Rules (CHR) is a
high-level rule-based formalism and programming language which offers a lot of analysis
tools for its programs.

This work first presents some fundamental aspects of ACT-R and then introduces a
translation of ACT-R models to CHR programs. The implementation of ACT-R using
Constraint Handling Rules shows that cognitive models can be expressed very elegantly
in CHR. Since CHR provides a lot of analysis tools and its rules have a defined declarative
semantics, this approach may support the verification of cognitive models. Additionally,
the translation of the models is automated by a compiler, so it is not compulsory for
modelers to learn a whole new language and legacy models may be translated to
CHR.

iii

Contents

1 Introduction 1
1.1 Motivation and Goal . 3
1.2 Related Work . 4
1.3 Overview . 5

2 Description of ACT-R 7
2.1 Procedural and Declarative Knowledge 7

2.1.1 Modular organization . 8
2.1.2 Declarative Knowledge . 9

Buffers . 11
2.1.3 Procedural Knowledge . 11

Description of Procedural Actions 12
Chunks as Central Data Structure 13
Process of Rule Selection and Execution 13

2.1.4 Goal Module . 14
Working memory . 14

2.1.5 Other Modules . 15
The Outside World . 15
The Imaginal Module . 16

2.1.6 Example: Counting . 16
2.1.7 Serial and Parallel Aspects of ACT-R 18

2.2 Subsymbolic layer . 19
2.2.1 Activation of Chunks . 19

Base-Level Activation . 20
Activation Spreading . 21
Latency of Retrieval . 23

2.2.2 Production Utility . 24
2.3 Learning . 26

2.3.1 Symbolic Layer . 26
Fact Learning . 26
Skill acquisition . 26

2.3.2 Subsymbolic Layer . 27

v

Contents

2.4 Experiment Environment . 27

3 Constraint Handling Rules 29

4 Implementation of ACT-R in CHR 33
4.1 Declarative and Procedural Knowledge 33
4.2 Chunk Stores . 34

4.2.1 Formal Representation of Chunks 34
4.2.2 Representation of Chunks in CHR 36

Distinction of Elements and Chunks 38
Simple Implementation of the Default Methods 38
Checking Consistency and Type-Consistency 43

4.3 Procedural Module . 43
4.3.1 Buffer System . 43

Destructive Assignment and Consistency 44
Buffer States . 45

4.3.2 Production Rules . 46
The Left Hand Side of a Rule . 46
The Right Hand Side of a Rule . 47
Direct Translation of Buffer Tests 48
Translation of Actions . 50
Translation of Buffer Queries . 52

4.3.3 The Production Rule Grammar . 52
The Order of Rule Applications . 53
Bound and Unbound Variables . 56
Duplicate Slot Tests . 57
Slot Modifiers . 59
Empty Slots . 62
Outputs . 62

4.4 Modular Organization . 63
4.4.1 Prolog Modules . 64
4.4.2 Interface for Module Requests . 65
4.4.3 Requests by the Buffer System . 65
4.4.4 Components of the Implementation 67

4.5 Declarative Module . 69
4.5.1 Global Method for Adding Chunks 69
4.5.2 Retrieval Requests . 69

Chunk Patterns . 69
Finding Chunks . 70

4.5.3 Chunk Merging . 73

vi

Contents

4.6 Initialization . 76
4.7 Timing in ACT-R . 77

4.7.1 Priority Queue . 77
Objects . 78
Representation of the Queue . 78
Adding Events at Second Position 81

4.7.2 Scheduler . 82
Current Time . 82
Interface to the Scheduler . 82
Recognize-Act Cycle . 82

4.8 Lisp Functions . 86
4.8.1 General Translation . 86
4.8.2 Configuration Variables . 87

The Observer Pattern . 87
4.9 Subsymbolic Layer . 88

4.9.1 Activation of Chunks . 88
Base-Level Learning . 88
Configuration of the Retrieval . 98

4.9.2 Conflict Resolution and Production Utility 99
Conflict Resolution . 99
Computing the Utility Values . 102
Configuration of the Conflict Resolution 104
Public Methods of the Conflict Resolution 104

4.10 Compiler . 104
4.10.1 Basic Idea . 105
4.10.2 Compiling . 105

Tokenizer . 105
Parser . 109
Translation Component . 109

4.10.3 Limitations of the Current Implementation 110

5 Example Models 111
5.1 The Counting Model . 111
5.2 Modeling a Taxonomy of Animals and Their Properties 126

6 Conclusion 129

Bibliography 131

A CD Content 135

vii

Contents

B Executable Examples 137
B.1 Rule Order . 137
B.2 Subsymbolic Layer . 139
B.3 Semantic Model . 144

viii

1 Introduction

Computational psychology or computational cognitive modeling is a research field in the
cognitive sciences. Among the other approaches – mathematical and verbal-conceptual
modeling – “computational modeling appears to be the most promising approach in many
ways and offers the flexibility and the expressive power that no other approaches can
match” [Sun08, p. vii]. It explores human cognition by implementing detailed computa-
tional models that enable computers to execute them and simulate human behaviour
[Sun08, p. 3]. By conducting the same experiments with humans and with simulations of
the suggested underlying cognitive models, the plausibility of models can be checked and
models can be improved gradually. This approach is illustrated in figure 1.1. Furthermore,
an important benefit of computational models is that they are – as a matter of principle
– detailed and have a clear semantics, in order to be executed by a computer. Hence,
the problem of being imprecise about a model definition, as it may appear with verbal
modeling, can be overcome.

experiment

human
subjects

cognitive
model

match?

update
model

no

predictions

Figure 1.1: A typical workflow in computational cognitive modeling. After a model has
been created, an experiment is designed to test the predictions of the model.
The experiment is performed by humans and the cognitive model. Afterwards
the results are checked and the model can be adapted. [Abo]

1

1 Introduction

However, psychology is experiencing a movement towards specialization [And+04], i.e.
there are a lot of independent, highly specialized fields that lack a more global view, which
impedes cognitive modeling where a very detailed and complete view is necessary for
execution:

“In 1972, [. . . it] seemed to me, also, that the cognitive revolution was already
well in hand and established. Yet, I found myself concerned about the theory
psychology was developing. [. . .] I tried to make that point by noting that what
psychologists mostly did for theory was to go from dichotomy to dichotomy.”
[New90, pp. 1 sq.]

Newell suggested in his book from 1990 [New90], that for developing consistent models
of cognition it is necessary to create a theory that tries to put all those highly specialized
components together [And+04, p. 1036]. He therefore introduced the term cognitive
architecture [And07, p. 5], which today can be defined as “a specification of the structure
of the brain at a level of abstraction that explains how it achieves the function of the
mind” [And07, p. 7]. A cognitive architecture provides the ability to create models for
specific cognitive tasks [TLA06, p. 29] by offering “representational formats together with
reasoning and learning mechanisms to facilitate modeling” [TLA06, p. 29]. Nevertheless,
a cognitive architecture should also constrain modeling – ideally it should only allow
“cognitive models that are cognitively plausible” [TLA06, p. 29]. The relation of cognitive
models and architecture is illustrated in figure 1.2.

Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture, that “is capable
of interacting with the outside world, has been mapped onto brain structures, and is
able to learn to interact with complex dynamic tasks” [TLA06, p. 29], so its theory is
well-investigated. It also is one of the most popular cognitive architectures in the field
[RT05] and provides an implementation that allows modelers to execute their models by
a computer and hence offers a platform for computational cognitive modeling as defined
above.

2

1.1 Motivation and Goal

subset of
psychology
experiments

general
assumptions about
human cognition

assumptions about
a particular domain

cognitive
archi-

tecture

cognitive
model

Figure 1.2: Cognitive models usually are built upon a cognitive architecture by adding
domain specific knowledge to the context of the architecture. The cognitive
architecture contains general knowledge derived from psychological experi-
ments. [Abo]

1.1 Motivation and Goal

This work is the first step towards a full-featured implementation of ACT-R using Con-
straint Handling Rules and hence towards a computational cognitive modeling platform
based entirely on logical rules. Constraint Handling Rules (CHR) is a high-level rule-
based programming language with several very well-defined operational and declarative
semantics [Frü09, pp. 49 sqq.], so the meaning of a CHR program is logically defined.
Additionally, there are a lot of methods to analyze CHR programs [Frü09, pp. 96 sqq.] and
there are a lot of helpful properties of CHR programs, like the anytime and online property
[Frü09, pp. 83 sqq.]. The declarativity of CHR programs does not affect the efficiency,
so every algorithm which can be implemented efficiently in an imperative language can
also be implemented efficiently in CHR and the constant slow-down of CHR compared
to a C program is very low using high-optimizing compilers [Frü09, p. 94].

Since models are expressed by production rules in ACT-R, the idea to implement such
models in CHR seems likely, because, at a first glance, the semantics of a CHR rule
does not seem to be very different from an ACT-R production rule, so a lot of work like

3

1 Introduction

the efficient implementation of the matching process can be saved. Due to the clear
semantics and the several analysis methods, the analysis and the inspection of the logical
implications of a cognitive model is enhanced by this work. The testing of confluence
and operational equality is decidable for CHR programs, so these properties can now
be determined automatically for ACT-R models [Frü10, p. 4]. The declarative semantics
facilitates the investigation of the correctness and the implications and predictions of a
cognitive model. Furthermore, by translating the concepts of ACT-R to CHR, it is possible
to compare those concepts with many other rule-based formalisms like term rewriting
systems, functional programming or other production rule systems like OPS5 and to
transfer ideas from one system to another[Frü09, pp. 141 sqq.].

In ACT-R, models are usually defined with ground variables. Since CHR provides the
ability of executing abstract programs with unknown variables [Frü10, p. 4], this work
allows to run ACT-R models where not all of the variables are known. Additionally, CHR
programs work incrementally, so the execution of an ACT-R model can be stopped and
intermediate results can be obtained by inspecting the constraint store. This property
also allows to add new knowledge to the model while it is executed [Frü09, p. 176].

The aim of this work is to implement the basic concepts of ACT-R and stick as closely
as possible to the theory using the original implementation as a reference. Hence, a
goal is to find translation schemes of ACT-R production rules to CHR rules and the
implementation of the underlying cognitive architecture in CHR. Thereby, the fundamental
concepts of ACT-R are identified and distinguished from ad hoc artifacts as much as
possible. However, the implementation is capable of executing original ACT-R models
and therefore the fundamental, simplistic view of the theory is gradually refined in the
work and each detail is motivated individually to show for which purposes it is necessary
to introduce a technical detail.

1.2 Related Work

There are several implementations of the ACT-R theory in different languages. First
of all, there is the official ACT-R implementation in Lisp [Acta] often referred to as the
vanilla implementation. There are a lot of extensions to this implementation, which partly
have been included to the original package in later versions like the ACT-R/PM extension
that has been included in ACT-R 6.0 [Botb, p. 264]. The implementation comes with
an experiment environment which offers a graphical user interface to load, execute and
observe models which communicates through a network interface with the ACT-R core.

4

1.3 Overview

Stewart and West have built an implementation in Python, which also had the aim to
simplify and harmonize parts of the ACT-R theory by finding the central components of the
theory [SW06; SW07]. The authors describe another approach of implementing ACT-R
without sticking too much to the classic implementations. For instance, the architecture
has been reduced to only two components (the procedural and the declarative module
which will be described in section 2) and build the rest of the architecture by using those
two modules and combining them in different ways. Additionally, there is no possibility to
translate traditional ACT-R models automatically to Python code. Hence, the focus of the
work was different from the aims in this work.

Furthermore, there are two different implementations in Java: jACT-R [Jacb] and ACT-R:
The Java Simulation & Development Environment [Javb]. The latter one is capable of
executing original ACT-R models and offers an advanced graphical user interface. The
focus of the project was to make ACT-R more portable with the help of Java, since Lisp’s
“extensibility for different task implementations and different hardware platforms has been
lagging compared to more modern languages” [Java]. In jACT-R, the focus was to offer
a clean and exchangeable interface to all the components, so different versions of the
ACT-R theory can be mixed [Jaca] and models are defined using XML. Due to the modular
design defining various interfaces which can be exchanged, jACT-R is highly adaptable
to personal needs. However, since Java is the host language, there is no expected gain
in declarativity and model analysis for both implementations.

There are approaches to implement psychological models using declarative and logic pro-
gramming languages. In [PS07] Pereira and Saptawijaya present computational models
for cognitive reasoning in the context of moral dilemmas using prospective logic programs.
Balduccini and Girotto show in [BG10] how psychological knowledge can be formalized
and reasoning over this knowledge can be achieved using answer set programming.
However, both approaches are detached from a broadly distributed cognitive architecture
like ACT-R. Nevertheless, in [BG10, p. 726] it is emphasized, that for psychological
“theories of a more qualitative or logical nature [. . .] are not easy to formalize in” the way
of neural-networks or similar approaches, but need a more abstract approach.

1.3 Overview

This work is divided in several parts. First of all, an important task was the identification
of the fundamental parts of the ACT-R theory. Hence, a description of the theory is given
in chapter 2. Chapter 3 gives a very brief introduction to Constraint Handling Rules.
The result of the implementation of ACT-R in CHR is described in chapter 4, which first

5

1 Introduction

formalizes some of the parts of the ACT-R theory before it suggests how to implement the
afore described concepts in Constraint Handling Rules. Afterwards, the work of chapter 4
is demonstrated in some example models in section 5. Chapter 6 summarizes the work
and gives an outlook to future work.

The work is accompanied by a CD with the source code and a digital version of the text
(see appendix A). The current version of both the source code and the text can also be
downloaded at GitHub:

Source Code https://github.com/danielgall/chr-actr/

Thesis https://github.com/danielgall/master-thesis/

For the matter of archiving, the versions of the submission date of the thesis are both
tagged with thesis in the repository.

6

https://github.com/danielgall/chr-actr/
https://github.com/danielgall/master-thesis/

2 Description of ACT-R

Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture, that allows to
implement cognitive models that are executable by a computer to produce experimental
results that can be compared to experimental data from experiments that have been
conducted with humans.

Because of the underlying theory which is the basis for the ACT-R cognitive architecture,
modeling is facilitated, since the underlying concepts have not to be modelled again and
again. On the other hand, it constrains the modeling process to, ideally, only plausible
models. When talking about ACT-R, one can refer to the theory or the implementation.
The theory gives a view which abstracts from implementational details that may be
concerned when talking about implementation which is a specific instantiation of the
theory [Actb, unit 1, p. 1]. In this work, implementation always refers to the vanilla Lisp
implementation that can be downloaded from [Acta].

In this chapter, a short overview over the theory of ACT-R is given. First, the description
is informal to provide a general image of how ACT-R works. Then, some important parts
of the system are defined more formally in chapter 4, as soon as it is needed in the
implementation. All of the information in this chapter refers to the theory. Implementation
is discussed in chapter 4. A lot of the information in this chapter is based on [And07;
And+04; TLA06], where a much more comprehensive discussion of the ACT-R theory
including complex examples, referrings to the neuro-biology and the reasons why this
particular modeling of human cognition has been chosen. In this work, only the basic
concepts of ACT-R are presented.

2.1 Procedural and Declarative Knowledge

A central idea of ACT-R is the distinction between declarative and procedural knowledge.
The declarative knowledge consists of simple facts, whereas the procedural knowledge
contains information on what to do with those facts.

7

2 Description of ACT-R

2.1.1 Modular organization

This approach leads to a modular organization of ACT-R with modules for each purpose
needed to simulate human cognition. Figure 2.1 provides an overview of some of
the default modules of ACT-R. For example, the declarative module stores the factual
information (the declarative knowledge), the visual module perceives and processes the
visual field, the procedural module holds the procedural information and controls the
computational process.

goal
module

goal buffer

imaginal
module

imaginal
buffer

declarative
module

declarative
buffer

procedural
module

visual
module

visual
buffer

manual
module

manual
buffer

environment

Figure 2.1: The modular organization of ACT-R. Each module has an associated buffer
which can communicate with the procedural module. The perceptual/motor
modules can interact with the external world. [And+04, fig. 1]

Each module is independent from the other modules and computations in the modules
can be performed parallel to other modules, for instance: The declarative module can

8

2.1 Procedural and Declarative Knowledge

search a specific fact while the visual module processes the visual field. Additionally,
within one module computations are executed massively parallel, e.g., the visual module
can process the entire visual field at once to determine the location of a certain object,
which implies the processing of a huge amount of data at a time.

However, each module can perform its computation only locally and has no access to
computations of other modules. To communicate, modules have associated buffers,
where they can put a limited amount of information – one primitive knowledge element
– and the procedural module can access each of these buffers. The information in a
buffer could be one single fact retrieved from declarative memory or one visual object
from the visual field perceived by the visual module. Information between modules is
exchanged by the procedural module taking information from one buffer and putting it into
another (with an optional computation on the way). This leads to a serial bottleneck in
the computation, since every communication between modules has to go its way through
the procedural module.

In figure 2.2 the general functionality of ACT-R is illustrated: The computational process
is controled by the recognize-act-cycle: The procedural information is stored as rules that
have a condition and an action. The condition refers to the so-called working memory,
which basically is the content of all the buffers. In the recognize-phase of the cycle, a
suitable rule that matches the current state of the working memory is searched. If the
condition of a rule holds, it fires and performs its actions – this is the act-phase of the
cycle. Those actions can cause changes on the buffers, so the next rule may match the
current state in the next recognize-part of the cycle. In the following sections, some of
the modules and their precise interaction will be described in more detail.

2.1.2 Declarative Knowledge

The declarative module organizes the factual knowledge as an associative memory.
I.e., it consists of a set of concepts that are connected to each other in a certain way.
Such elementary concepts are represented in form of chunks that can be seen as basic
knowledge elements. They can have names, but those names are not critical for the
description of the facts and just for readability in the theory. So, the definition of a chunk
is based only on its connections. However, in implementations, chunk names are used
as unique identifiers for chunks.

Chunks can have slots that are connected to other chunks or primitive elements. Such
an element can be regarded as a chunk without any slots. For instance, the fact 5 + 2 = 7
can be modeled as a chunk that is connected to the numbers 5, 2 and 7 (see figure 2.3).

9

2 Description of ACT-R

procedural module

procedural
memory

pattern
matching

production
execution

declarative
module

buffers

visual
module environment manual

module

Figure 2.2: Modules and communication in ACT-R. The procedural module is the heart of
the computational system and consists of a procedural memory containing
all the production rules, a pattern matching unit and an execution unit. The
pattern matching unit checks if the current content of the buffers match the
condition of a rule in the procedural memory. If a rule matches, it is executed
by the execution unit. The execution may lead to buffer changes or requests.
Additionally, the other modules may change the content of their buffers by
a request which may lead to new rules matching the current content of the
buffer. The procedural module can only apply one rule at a time. [Abo]

Notice that in the figure each slot has an individual name. This is necessary to distinguish
the connections of the chunks, otherwise the summands would be indistinguishable from
the sum in the example.

Thus, chunks are defined by their name and the values of their slots. When talking about
chunk descriptions, often the term slot-value pairs is used especially for partial chunk
descriptions, i.e. descriptions which do not have a value for all possible slots. This simply
refers to an arbitrary chunk that has the specified values in its slots (and the others are
ignored).

Each chunk is associated with a chunk-type that determines the slots a chunk can have.
A chunk-type consists of a name which serves as unique identifier chunk-types and a
list of slots the chunks of this type offer. For example, the fact in figure 2.3 has the type
addition-fact. All chunks of this type must provide the slots arg1, arg2 and sum. For the

10

2.1 Procedural and Declarative Knowledge

addition-fact5 2

7

arg1 arg2

sum

Figure 2.3: A chunk of type addition-fact and slots arg1, arg2 and sum which models the
fact 5 + 2 = 7. The slots are connected to the primitive elements 5, 2 and
7. Chunks are illustrated as ellipses, whereas primitive elements are simple
text. A simple arrow () signifies that the chunk at the start of the arrow has
the value at the end of the arrow in the slot with the name of the label of the
arrow.

chunk-types there is no upper limit of slots they can define. However, it is suggested to
limit the number of slots to Miller’s Number of 7± 2, for the reason of plausibility [SW07,
p. 230].

Buffers

As mentioned before, modules communicate through buffers by putting a limited amount
of information into their associated buffers. More precisely, each buffer can hold only one
chunk at a time.

For example, the declarative module has the retrieval buffer associated with it, which
can hold one specific declarative chunk. The declarative module can put chunks into
the buffer that can be processed by the procedural module, which is described in the
next section. Note that the chunks in the buffers are copies of the original chunks in the
module. Hence, changes applied to a chunk in the buffer do not affect the original chunks
in the requested module [Actb, unit 1, pp. 18 sq.].

2.1.3 Procedural Knowledge

Procedural Knowledge in ACT-R is formulated as a set of condition-action rules. Each
rule defines in its condition-part the circumstances under which it can be applied. Those
conditions refer to the current chunks in the respective buffer. The condition-part of a rule
defines which kind of chunk with which slot values must be present in which buffer for the
rule to fire. For example, one rule in the process of adding the numbers 5 and 2 could

11

2 Description of ACT-R

have the conditions that there is a chunk of type addition-fact in the retrieval buffer with 5
and 2 in its argument-slots and specify certain actions if this is the case.

If the chunks in the buffers match all the conditions stated in a rule, it can be applied
(“fired”), which leads its action-part to be performed. Possible actions are changes of
some of the values in the chunk of a buffer, the clearing of a buffer or a buffer request,
which leads the corresponding module to put a certain chunk into the requested buffer.
Buffer requests are also stated in form of a (partial) chunk description1 where chunk-type
and slots encode the query of the request. So all the arguments and even the task which
should be performed by the module are specified through a chunk representation. The
actual semantics of a request depends on the module. For example, the declarative
module will search a chunk that matches the chunk in the description of the request.
One production rule, for instance, in the process of adding the numbers 5 and 2 could
be, if the wrong addition-fact chunk is stored in the retrieval buffer, a retrieval request
will be performed, which states that the declarative module should put a chunk into the
retrieval buffer, that has 5 and 2 in its argument slots and is of type addition-fact. After
the successful performance of the request, a chunk with 5 and 2 in its argument slots
will be stored in the retrieval buffer, that also has a value for the sum. The actions are
described in more detail in the following section.

Although the term module is used for the procedural system, it differs a lot from the other
modules: In contrast to other modules, the procedural module has no own buffers, but
can access the buffers of all the other modules. “It really is just a system of mapping
cortical buffers to other cortical buffers” [And07, p. 54].

The procedural system can only fire one rule at once and it takes 50 ms for a rule to
fire [And07, p. 54]. After firing the selected rule, the next recognize cycle starts and a
suitable rule will be detected and caused to fire. During this time, other modules may
perform requests triggered by the action of the last rule. Sometimes, rules have to wait
for results of certain modules and they cannot fire before those results are available.
Those two facts illustrate how the procedural module can become a serial bottleneck in
the computation process.

Description of Procedural Actions

In this section, the actions that can be performed by a production rule are described
in more detail than before. The information in this section has been taken from [Botb,

1A partial chunk description is just a chunk description that does not specify all slots that are available as
defined in the chunk-type.

12

2.1 Procedural and Declarative Knowledge

pp. 168 sqq.] and is – in this degree of detail – not part of the theory, but focuses more
on the implementation to give a more detailed understanding of the concepts needed in
chapter 4.

Buffer Modification: An in-place operation, that overwrites the slot values of a chunk in
a buffer with the specified values in the action of the rule.

Buffer Request: A buffer request will cause the corresponding module to calculate some
kind of result that will be placed into the requested buffer. The input values of this
computation are given as chunks with a type and slot-value pairs specified in the
request. For instance, the declarative module could search for a chunk that has the
specified values in its slots.
The execution of the request is independent from the execution of production rules
and after the request has been stated by the procedural module, it can begin with
the next recognize-cycle while the requested module calculates its result.
Before the request is performed, the corresponding buffer will be cleared.

Buffer Clearing: If a buffer is cleared, its containing chunk will be placed into the declar-
ative memory from where it can be retrieved later on. The clearing of a buffer with
the implicit storing of the chunk in the declarative memory is an implementational
detail which is very important for further considerations.

Chunks as Central Data Structure

As may have become obvious in the previous sections, chunks are the central data
structures in ACT-R. They are used to model factual knowledge in the declarative memory,
but are also used for communication: Requests are stated as chunks that encode the
input of the request, for instance a chunk pattern for a result chunk the declarative
memory should retrieve. The result of a request is a chunk placed into a buffer and even
the procedural system, which technically is separated from the declarative knowledge,
tries to match the chunks in the buffers in the condition part. Additionally, the action of a
rule is specified by slot-value pairs that are basically just partial chunk descriptions.

Process of Rule Selection and Execution

As stated above, the procedural module can execute only one rule at a time. If no rule
has been selected to fire – so no rule is in progress – the procedural module is free and
therefore can select a matching rule according to the recognize-act-cycle as soon as it is
available. If a rule has been selected, the module is busy and cannot choose another

13

2 Description of ACT-R

rule to fire. As mentioned before, the module has to wait 50 ms between selection and
firing of a rule. Then all in-place actions of the rule like modifying or clearing a buffer are
performed. Afterwards, the requests are stated and the module is free. However, the
requested modules most likely will take a certain time to perform the request. During this
time the procedural module can select and fire the next matching rule nevertheless.

If at a certain time the procedural module is free, but there are no matching rules, the
module waits until the system reaches a state where a rule matches. This is possible,
since requests can take a certain time in which the procedural module is free and cannot
find a matching rule. If the request has been performed, it usually causes a change of
buffers. When the content of a buffer has changed, this could provoke the next rule to
match and fire.

2.1.4 Goal Module

An essential part of human cognition is the ability to keep track of the current goal
to achieve and to subordinate all actions to the goal [And+04, p. 1041]. For complex
cognitive tasks, several rules have to be applied in series and intermediate results must be
stored (without changing of the environment). Another important aspect is that complex
tasks may consist of several subgoals which have to be achieved to accomplish the
main goal. For instance, if one wants to add two multi-digit numbers, he would add the
columns and remember the results as intermediate results in each step. In ACT-R, the
goal module with its goal buffer is used for this purpose: It is able to keep track of the
current goal, introduce subgoals and remember intermediate results in its buffer.

Working memory

The goal module and buffer are often referred to as working memory [And+04, p. 1041],
but actually, as stated in [ARL96], it also can have another meaning: The usual definition
in production systems is that everything which is present to the production rules and can
match against them is part of the working memory. With this definition, all chunks in the
buffers form the working memory.

In this work, the term working memory will be used in this second meaning, since it
discusses the topic from a computer science view and the second definition is related to
production rule systems. When talking about the content of the goal buffer, this will be
remarked explicitly.

14

2.1 Procedural and Declarative Knowledge

2.1.5 Other Modules

In figure 2.1 some more modules are shown. In the following, a short description of some
of those modules is given.

The Outside World

Since human cognition is embodied, there must be a way to interact with the outside
world to simulate human cognition in realistic experiments. Therefore, ACT-R offers
perceptual/motor modules like the manual module for control of the hands, the visual
module for perceiving and processing the visual field or the aural module to perceive
sounds in the environment. Like with every other module, communication is achieved
through the buffers of those modules. In the following, the visual module is described to
exemplify the functionality of perceptual modules.

The Visual Module The visual system of ACT-R separates vision into two parts: visual
location and visual objects [And+04, p. 1039]. There are two buffers for those purposes:
the visual-location buffer and the visual buffer, which represents the visual objects [Actb,
unit 2]. In the visual module it is not encoded how the light falls on the retina, but a more
attentional approach has been chosen [And+04, p. 1039].

Requests to the visual-location buffer specify a series of constraints in form of slot-value
pairs and the visual module puts a chunk representing the location of an object meeting
those constraints into the visual-location buffer. Possible constraints are properties of
objects like the color or the spatial location. The visual system can process such requests
in parallel, i.e. that the whole visual field is processed massively parallel and, for example,
the time of finding one green object surrounded by blue objects is constant, regardless of
the number of blue objects. If more than one object meets the constraints, one of them
will be chosen at random [And+04, p. 1039; And07, p. 68].

Requests to the visual-object system specify a visual location and the visual module will
move its attention to that location, create a new chunk representing the object at that
location and put that chunk into the visual buffer [Actb, unit 2, chapter 2.5.3].

These two kinds of requests to the visual module are summarized in table 2.1. The
visual system and its capabilities are described in detail in [Actb, unit 2] where also the
implementational details of the system are regarded.

15

2 Description of ACT-R

Table 2.1: Requests to the visual module

Visual location buffer Visual (object) buffer
Input Object Constraints Visual location
Output Visual location Visual object

The Imaginal Module

The imaginal module, described in [Actb, unit 2], is capable of creating new chunks. This
is useful, if for instance the visual module produces a lot of new information in sequence
(like reading a sequence of letters), but the visual-object buffer can hold only one chunk
at once. To solve this problem, all the information could be stored in the slots of the
goal chunk. However, since a goal chunk with a large amount of slots seems to be
unplausible2 and the number of read instances would have to be known in advance due
to the static chunk-type definition, a better way to deal with this problem is to create new
knowledge elements.

This task can be achieved by using the imaginal module: On a request, it creates a new
chunk of the type and with the slots stated in the request and puts it into its imaginal
buffer. Since the chunk in a buffer is stored in the declarative memory when the buffer
is cleared,3 an unlimited amount of data can be produced and remembered by stating
retrieval requests later on.

It is important to mention that it takes the imaginal module .2 ms to create a chunk. This
amount of time is constant, but can be set by the modeler. Additionally, the imaginal
module can only produce one chunk at a time.4

2.1.6 Example: Counting

The first ACT-R example model deals with the process of counting. This model relies on
count facts a person has learned, e.g. “the number after 2 is 3”. To model this in ACT-R, a
chunk-type for those facts has to be defined: A chunk of type count-fact has the slots first
and second. The chunks in figure 2.4 of this type model the facts that 3 is the successor
of 2 and 4 is the successor of 3.

2As described in section 2.1.2, one should stick to 7± 2 slots for each chunk.
3see section 2.1.3
4like every module can only handle one request at a time

16

2.1 Procedural and Declarative Knowledge

b: count-fact

2

3 c: count-fact

4

first

second first

second

Figure 2.4: Two count facts with names b and c which model the counting chain 2, 3, 4.

The next step is to define the goal chunk stored in the goal buffer. In this chunk it
somehow has to be encoded that the current goal is to count. This can be modeled in
ACT-R by the chunk-type. To track the current number in the counting process as an
intermediate result, the goal chunk could have a slot which always holds the current
number that has been counted to. This leads to a goal chunk as illustrated in figure 2.5,
where the current number is 2.

goal-chunk: count2
current-number

Figure 2.5: The goal-chunk of type count with the current number 2.

In this example we assume that the model starts with this goal chunk in the goal buffer
and the first count fact has been retrieved:

goal buffer: goal-chunk of type count
current-number 2

retrieval buffer: b of type count-fact
first 2
second 3

This notation indicates that the goal buffer holds a chunk with the name goal-chunk of
the type count, which has the slot current-number with the value 2 (the same is valid
analogously for the retrieval buffer). Now the rule to implement counting can be defined
as:

count-rule
IF the goal is to count, the current number is n

AND the retrieval buffer holds a chunk of type count-fact
with the first value n and the second value m

THEN set the current number in the goal to m

AND send a retrieval request for a chunk that has m in
its first slot

17

2 Description of ACT-R

The rule matches the initial state: In the goal there is a chunk of type count, that indicates
that the goal is to count, the current number n is 2. In the retrieval buffer, there is a
count-fact with the first number n = 2 and the second number m = 3.

After applying this rule, the current number will be 3 and the next fact in the retrieval buffer
will be a count-fact with the first value 3 and a value in the second slot, which will be the
next number in the counting process. This illustrates the functionality of module requests:
In the request a (potentially partial) chunk definition is stated and the corresponding
module puts the result of the request in a fully defined chunk of some appropriate type
into its buffer. For the declarative module, the request specifies the chunk-type and some
slot values which describe the chunk that the module should be looking for. The result is
a fully described chunk of that type with values for all slots, that describe an actual chunk
from the declarative memory. As mentioned before, the chunks in the buffers are copies
of the chunks of the requested modules. The count-rule will be applicable as long as
there are count-facts in the declarative memory.

In this example, the rules have been defined in a very informal way. In the following
chapters which deal with implementation, a formalization of such rules will be discussed,
that defines clearly what kinds of rules are allowed. Furthermore, it introduces a formalism
to describe such rules uniquely and less verbosely. The following chapters will refer to
this example and refine it gradually.

The example also uses the concept of variables, which will be introduced more formally
in chapter 4 when talking about implementation. Variables allow rule conditions to act like
patterns that can match various system states instead of defining a rule for each state,
since computation is the same regardless of the actual values in the buffers.

2.1.7 Serial and Parallel Aspects of ACT-R

In the previous sections there were some remarks on the serial and parallel aspects
of ACT-R. According to [And07, p. 68], four types of parallelism and seriality can be
distinguished:

Within-Module Parallelism: As mentioned above, one module is able to explore a big
amount of data in parallel. For example, the visual module can inspect the whole
visual field or the declarative module performs a massively parallel search over all
chunks.

Within-Module Seriality: Since modules have to communicate, they have a limited
amount of buffers and each of those buffers can only hold one chunk. For example,
the visual module only can concentrate on one single visual object at one visual

18

2.2 Subsymbolic layer

location, the declarative module only can have one single concept present, the
production system can fire only one rule at a time, . . .

Between-Module Parallelism: Modules are independent of each other and their com-
putations can be performed in parallel.

Between-Module Seriality: However, if it comes to communication, everything must be
exchanged via the procedural module that has access to all the buffers. Sometimes,
the production system has to wait for a module to finish, since the next computation
relies on this information. So, modules may have to wait for another module to
finish its computation before they can start with theirs triggered by a production rule
that states a request to those modules.

The procedural module is the central serial bottleneck in the system, since the whole
communication between modules is going through the production system and the whole
computation process is controlled there. The fact that only one rule can fire at a time
leads to a serial overall computation. Another serial aspect is that some computations
need to wait for the results of a module request. If no other rule matches in the time while
the request is performed, the whole system has to wait for this calculation to finish. After
the request, the module puts the result in its buffer and the rule waiting for this result can
fire and computation is continued.

2.2 Subsymbolic layer

The previously discussed aspects of the ACT-R theory are part of the so-called symbolic
layer. This layer only describes discrete knowledge structures without dealing with more
complex questions like:

• How long does it take to retrieve a certain chunk?
• Forgetting of chunks
• If more than one rule matches, which one will be taken?

Therefore, ACT-R provides a subsymbolic layer that introduces “neural-like activation
processes that determine the availability of [. . .] symbolic structures” [AS00].

2.2.1 Activation of Chunks

The activation Ai of a chunk i is a numerical value that determines if and how fast a
chunk can be retrieved by the declarative module. Suppose there are, for example, two

19

2 Description of ACT-R

chunks that encode addition facts for the same two arguments (let them be 5 and 2), but
with different sums (6 and 7). This could be the case, if, e.g., a child learned the wrong
fact about the sum of 5 and 2. When stating a module request for an addition fact that
encodes the sum of 5 and 2, somehow one of the two chunks has to be chosen by a
certain method, since they are both matching the request. This is determined by the
activation of the chunks: The chunk with the higher activation will be chosen.

Additionally, a very low chunk activation can prevent a chunk from being retrieved: If the
activation Ai is less than a certain threshold τ , the chunk i cannot be found. At last,
activation determines also how fast a chunk is being retrieved: The higher the activation,
the shorter the retrieval time.

Base-Level Activation

The activation Ai of a chunk i is defined as:

Ai = Bi + Γ (2.1)

where Bi is the base-level activation of the chunk i. Γ is a context component that will be
described later on. Equation (2.1) is a simplified variant of the Activation Equation which
is completed in equation (2.3).

The base-level activation is a value associated with each chunk. It depends on how often
a chunk has been practiced and when this practice has been performed. A chunk is
practiced when it is retrieved. Hence, Bi of chunk i is defined as:

Bi = ln

 n∑
j=1

t−dj

 (2.2)

where tj is the time since the jth practice, n the number of overall practices of the chunk
and d is the decay rate that describes how fast the base-level activation decreases if a
chunk has not been practiced (how fast a chunk will be forgotten). Usually, d is set to 0.5
[And+04, p. 1042]. Equation (2.2) is called Base-Level Learning Equation as it defines
the adaptive learning process of the base-level value.

This equation is the result of a rational analysis by Anderson and Schooler. It reflects
the log odds that a chunk will reappear depending on when it has appeared in the past
[TLA06, p. 33]. This analysis led to the power law of practice [And+04, p. 1042]. In
[AS00, pp. 8–11] equation (2.2) is motivated in more detail by describing the power law

20

2.2 Subsymbolic layer

of learning/practice, the power law of forgetting and the multiplicative effect of practice
and retention with some data. Shortly, it states that if a particular fact is practiced, there
is an improvement of performance which corresponds to a power law. At the same time,
performance degrades with time corresponding to a power law. Additionally, they state
that if a fact has been practiced a lot, it will not be forgotten for a longer time.

Activation Spreading

In ACT-R, the basic idea of activation is that it consists of two parts: The base-level
component described above, and a context component. Every chunk in the current
context has a certain amount of activation that can spread over the declarative memory
and enhance activation of other chunks that are somehow connected to those chunks in
the context. The activation equation (2.1) is extended as follows:

Ai = Bi +
∑
j∈C

WjSji + ε (2.3)

where Wj the attentional weighting of chunk j, Sji the associative strength from chunk j
to chunk i and C is the current context , usually defined as the set of all chunks that are in
a buffer [And+04, p. 1042; TLA06, p. 33; Actb, unit 5]. The chunks in the current context
are often referred to as sources of activation. ε is a noise value “generated according to
a logistic distribution” [Actb, unit 4, p. 4]. Figure 2.6 illustrates the addition-fact 5 + 2 = 7
with the corresponding quantities introduced in the last equation.

addition-fact
Bi

5

Wj

2

Wj

7

arg1

Sji

arg2

Sji

sum Sji

Figure 2.6: The addition-fact chunk from figure 2.3 with subsymbolic quantities. The
special arrows () in this figure indicate the direction of the activation
spreading: The chunks j are at the start () of the arrow, the chunk which
receives the activation is at the end (). The elements 5 and 2 are supposed
to be in the working memory and therefore have a value for the attentional
weighting Wj . The chunk itself has a base-level activation Bi. The Sji values
are the associative strengths from the elements to the chunk. [And+04, fig. 5]

The values for Wj determine how much activation can spread from a single source of
activation in the current context. A source of activation is a chunk in the goal buffer or

21

2 Description of ACT-R

in all buffers, depending on the version of the ACT-R theory [And+04, p. 1042; TLA06,
p. 33; Actb, unit 5, p. 1]. To limit the total amount of source of activation, Wj is set to 1

n ,
where n is the number of sources of activation. With this equation, the total amount of
activation that can spread over declarative memory is limited, since the more chunks are
in the current context, the less important a particular connection between a chunk from
the context with a chunk from declarative memory becomes.

Strength of Association and Fan effect In equation (2.3) the strength of association
Sji from a chunk j to a chunk i is used to determine the activation of a chunk i. In the
ACT-R theory, the value of Sji is determined by the following rule: If chunk j is not a value
in the slots of chunk i and j 6= i, then Sji is set to 0. Otherwise Sji is set to:

Sji = S − ln(fanj) (2.4)

where fanj is the number of facts associated to term j [AS00, p. 1042]. In more detail:
“fanj is the number of chunks in declarative memory in which j is the value of a slot
plus one for chunk j being associated with itself” [Actb, unit 5, p. 2]. Hence, equation
(2.4) states that the associative strength from chunk j to i decreases the more facts are
associated to j.

This is due to the fan effect: The more facts a person studies about a certain concept, the
more time he or she needs to retrieve a particular fact of that concept [AR99, p. 186]. This
has been demonstrated in an experiment presented in [AR99], where every participant
studied facts about persons and locations like for example:

• A hippie is in the park.
• A hippie is in the church.
• A captain is in the bank.

For every person the participants studied either one, two or three facts. Afterwards, they
were asked to identify targets, that are sentences they studied, and foils, i.e. sentences
constructed from the same persons and locations, but that were not in the original set
of sentences. “The term fan refers to the number of facts associated with a particular
concept” [AR99, p. 186]. Figure 2.7 represents an example chunk network of the studied
sentences with their fan, Sji and Bi values.

The result of the experiment was, that the more facts are associated with a certain
concept, the higher the retrieval time for a particular fact about that concept was. In
the ACT-R theory, this result has been integrated in the calculation of the strengths of
association: In equation (2.4) the associative strength decreases with the number of

22

2.2 Subsymbolic layer

fireman 1 – 1 bank

3 – 1 store

hippie 3 – 3 park

doctor 1 – 3

fanhippie

Bi

Figure 2.7: The ellipses represent chunks which encode one fact like “a hippie is in the
park” (red highlighted chunk i). The words are primitive elements. The special
arrows show the direction of activation spreading from an element to a chunk.
The numbers in the chunks signify the fan of the associated element, e.g. the
fan of the element hippie is 3. The associative strength of the element hippie
to the highlighted chunk i is Shippie,i = S− ln(fanhippie) = S− ln(3). [And+04,
fig. 6]

associated elements. The value S is a model-dependent constant, but in many models
estimated about 2 [And+04, p. 1042]. Modelers should take notice of setting S high
enough that all associative strengths in the model are positive [Actb, unit 5, p. 3]. Figure
2.8 illustrates the activation spreading process with respect to the associative strengths.

Latency of Retrieval

As mentioned before, the activation of a chunk affects if the chunk can be retrieved
(depending on a threshold and the activation values of the other matching chunks). In
addition, activation also has an effect on the time it takes to retrieve a particular chunk.
This time is called latency and is calculated as follows:

Ti = F · e−Ai (2.5)

where Ti is the latency of retrieving chunk i, Ai the activation of this chunk, as defined in
equation (2.3), and F the latency factor, which is usually estimated to be

F ≈ 0.35eτ (2.6)

23

2 Description of ACT-R

source1 chunk1

goal

slot1

slot2

chunk2

source2 chunk3

W1

S1,1

S1,2

S1,3

W2

S2,1

S2,2

S2,3

Figure 2.8: The goal buffer holds a chunk with two slots wich therefore are sources of
activation. The special arrows signify the spreading of activation from those
sources to the chunks in the declarative memory. The attentional weighting
values W1 and W2 determine how much of the overall amount of activation
spreads from each single source. If there are only those two sources, the
Wi are set to 1

2 . From each source the activation may spread to the chunks
in the declarative memory. The amount of spreading activation depends on
the connection between the source chunk and the chunk in the memory. If
the source chunk does not appear in the slots of a chunk, the value of the
associative strength from the source j to the chunk i is Sji = 0. Otherwise, if
the source appears in the slots of a chunk, the associative strength depends
on the fan value of the source chunk – the higher the fan of the source, the
lower the associative strength. I.e. if the source chunk appears in the slots of
many chunks, the value of the associative strength will be lower than if the
connection is exclusive. [Actb, unit 5]

where τ is the retrieval threshold as mentioned in section 2.2.1, but F can also be set
individually by the modeller. Nevertheless, in [And+04, p. 1042] it is stated that the
relationship of the retrieval threshold and the latency factor in equation (2.5) seems to be
suitable for a lot of models.

2.2.2 Production Utility

For the production system, there is the subsymbolic concept of production utilities to deal
with competing strategies. For instance, if a child learns to add numbers, it may have
learned different strategies to compute the result: One could be counting with the fingers

24

2.2 Subsymbolic layer

and the other could be just retrieving a fact for the addition from declarative memory. If
the child has the goal to add two numbers, it somehow has to decide which strategy to
choose, since both of them match the context.

In ACT-R, the production utility is a number attached to each production rule in the
system. Just like with activation of chunks, the production rule with the highest utility will
be chosen, if there is more than one matching rule. The utilities can be set statically by
the modeler, but they can also be learned automatically by practice.

In the current version of the ACT-R theory, a reinforcement learning rule based on the
Rescorla-Wagner learning rule [RW72] has been introduced. The utility Ui of a production
rule i is defined as:

Ui(n) = Ui(n− 1) + α (Ri(n)− Ui(n− 1)) (2.7)

where α is the learning rate which is usually set around .2 and Ri(n) is the reward the
production rule i receives at its nth application [And07, pp. 160–161]. This leads the utility
of a production rule being gradually adjusted to the average reward the rule receives
[Actb, pp. 6–7].

Usually, rewards can occur at any time and it is not clear which production rule will be
strengthened by the reward. In How can the human mind occur in the physical universe?
Anderson describes an example, where a monkey receives a squirt of juice a second
after he presses a button [And07, p. 161]. Now, the question is, which production rule is
rewarded, since between the reward and the firing of a rule there always is a break. In
ACT-R, every production that has been fired since the last reward event will be rewarded,
but the more time lies between the reward and the firing of the rule, the less rewarded
the particular rule gets. The reward for a rule is defined as the amount of external reward
minus the the time from the rule to the reward. This implies, that the reward has to be
measured in units of time, e.g., how much time is a monkey willing to spend to get a
squirt of juice? [And07, p. 161]

In implementations of ACT-R, rewards can be triggered by the user at any time or can be
associated with special production rules that model the successful achievement of a goal
(they check if the current state is a wanted state and then trigger a reward, so every rule
that has led to the successful state will be rewarded). It is important to mention that by
definition, rules can also get a negative reward if their selection was too long ago. If one
wants to penalize all rules since the last reward, a rule that distributes a reward of 0 can
be triggered, which leads all rules applied before being rewarded with a negative amount
of reward, so their utility value decreases and they become less likely to fire [Actb, unit 6,
p. 8].

25

2 Description of ACT-R

2.3 Learning

Learning in ACT-R can be divided into four categories depending on the involvement of
the symbolic or subsymbolic layer and the declarative or the procedural module. Table 2.2
names the four types that are described in this section.

Table 2.2: ACT-R’s Taxonomy of Learning [And07, pp. 92–95]

Declarative Procedural
Symbolic Fact learning Skill acquisition
Subsymbolic Strengthening Conditioning

2.3.1 Symbolic Layer

Symbolic learning somehow influences the objects of the symbolic layer – i.e. chunks
and production rules – in a way that new objects are created or objects are merged.
Those learning possibilities are described very briefly in the following, but are not yet
part of the implementation discussed in this work. However, it may become part of the
implementation in future work.

Fact Learning

Fact learning is the creation of new chunks. In ACT-R, the imaginal module is capable of
this as described in section 2.1.5 on page 16. The chunks usually are created because
of external input from the environment, but it is also possible to create a chunk that holds
the result of a production rule application. Furthermore, due to buffer modification chunks
can be altered and may be stored in the declarative module by buffer clearing which
basically creates a new chunk. In this case, the input may come from the external world
or is the result of of a production rule application [Whi, p. 7].

Skill acquisition

In [TL03], Taatgen and Lee present the method of production rule compilation as a method
of skill acquisition, i.e. the creation of new production rules. “Production compilation

26

2.4 Experiment Environment

combines two mechanisms [. . .] – proceduralization and composition – into a single
mechanism” [TL03, p. 62]. Proceduralization is based on the idea, that some rules
containing variables are applied very often on the same values for the variables. If this is
the case, a new rule can be introduced, which replaces the variables with ground values
[Whi, p. 7]. Composition takes two production rules which are performed in sequence
very often and creates a new rule which performs all the steps of those rules at once.
Since each application of a rule takes a certain time, this can speed up the computation
process [Whi, p. 7].

2.3.2 Subsymbolic Layer

The concepts introduced in section 2.2 are a kind of learning: The practice of particular
facts strengthens the chunks encoding this fact and chunks that are not practiced are
forgotten over time.5 Additionally, associative weights are learned from the current context.
These processes adapt to the problems a particular human mind is confronted with and
thereby work autonomously.

The same is valid for production rules: Over time, the experience tells us, which strategies
might be successful in certain situations and which are not. This process is also called
conditioning and described in equation (2.7).

2.4 Experiment Environment

In experiments conducted with humans, the test subjects are very often confronted with
visual or aural stimuli, for instance in the fan effect experiment described in section 2.2.1
on page 22 a permutation of sentences over some objects has been shown and people
had to remember the combinations. ACT-R provides an environment, where visual
stimuli, mouse gestures or clicks, window openings etc. can be produced or measured
respectively, so experiments can be run with both humans and the implemented model
using the same environment. The model is then able to perform clicks or write text on
the same graphical user interface as the humans are confronted with. However, this part
of ACT-R will not be subject of this particular work, which examines the fundamental
concept of the ACT-R theory first.

5This is the concept of base-level learning as described in section 2.2.1

27

3 Constraint Handling Rules

This chapter only gives a very brief introduction to Constraint Handling Rules. A much
more comprehensive introduction can be found in the book Constraint Handling Rules
by Frühwirth [Frü09], which gives a very detailed definition of the exact semantics of the
language and of the analysis methods as well as practical examples. Additionally, there
are a lot of tutorials, slides and exercises that can be found on The CHR Homepage [Chr].
This short summary is based on [Frü09].

Constraint Handling Rules (CHR) is a high-level declarative programming language
originally designed to write constraint-solvers [Sne+10, p. 2]. CHR programs are defined
by a sequence of rules that operate on a constraint store, which is a multiset of constraints
(built from predicate symbols and arguments). I.e., a constraint c/n with arity n is written
as c(t1, . . . , tn), where c is a predicate symbol and the ti – the arguments of the
constraint – are logical terms. Constraints in the store can be ground, i.e. they do not
contain any variables, but they also may contain unbound variables. CHR is usually
embedded in a host language, which provides so-called built-in constraints. Such built-in
constraints are constraints that are implemented in the host language. In this work, Prolog
is assumed to be the host language. There are three types of rules:

Listing 3.1: CHR rule types

1 simplification @ Hr <=> G | B.

2 propagation @ Hk ==> G | B.

3 simpagation @ Hk \ Hr <=> G | B.

Rules consist of a head H∗, which is a conjunction of at least one constraint, an optional
guard G, which is a conjunction of built-in constraints, and a body B, which is a conjunction
of both built-in and CHR constraints. Optionally, the rules can be given names followed
by the symbol @.

At the beginning of a program, the user provides an initial constraint store, which is also
called query or goal and the CHR program then begins to operate on this initial store by
applying rules.

29

3 Constraint Handling Rules

A rule can be applied on the constraint store, if there are constraints in the store that
match the head of the rule, i.e. the constraints in the store are “an instance of the head,
[. . . so] the head serves as pattern” [Frü09, p. 11]. Note that in the matching process no
variables of the query are bound since CHR is a committed-choice language, so rule
applications cannot be made undone by backtracking. If matching constraints have been
found, the guard is checked and if it holds, the rule is applied. The result of the rule
application is dependent on the type of the rule:

Simplification rules (as in line 1) remove the constraints which match the head Hr (the
“heads removed”) from the store and add the constraints in the body B to the store.

Propagation rules (as in line 2) add the constraints in the body B to the store and keep
the matching constraints from the head Hk (the “heads kept”).

Simpagation rules (as in line 3) are a mix of the first two rule types: They add the
constraints in the body B to the store, keep the matching constraints from the head
Hk and remove the constraints from the head Hr. In general, simplification and
propagation rules can be expressed by simpagation rules where one side of the
head is empty, i.e. only contains the constraint true.

Example 3.1 (Minimum). This simple example has been taken from [Frü09, pp. 19 sqq.]
and describes a CHR program that computes the minimum among the numbers ni given
as multiset of numbers in the query min(n1), ... , min(nk). The min/1 constraint
is interpeted such that its containing number is a minimum candidate. The minimum
computation is achieved by specifying one simpagation rule:

Listing 3.2: Minimum program

1 min(N) \ min(M) <=> N=<M | true.

For every pair of numbers in the store, the rule removes the greater one and keeps the
smaller one. If this rule is applied to exhaustion, only one constraint is left – the minimum.
Then the rule is not applicable any more, since it lacks a partner constraint for the single
min constraint to match the head.

Note that in pure CHR no assumptions on the order of the application of the rules and
the involved constraints are made. One possible derivation of the result could be (the
constraints the rule is applied to are underlined in each step):

Listing 3.3: Sample derivation of the minimum example

1 min(3), min(1), min(4), min(0), min(2)

2 min(1), min(4), min(0), min(2)

3 min(1), min(0), min(2)

30

4 min(0), min(2)

5 min(0)

Example 3.2 (Matching). This example tries to clarify the matching process and is taken
from [Frü09, p. 12]. The following rules are added into individual, separated programs
and some queries are tested in those programs.

1 p(a) <=> true.

2 p(X) <=> true.

3 p(X) <=> X=a.

4 p(X) <=> X=a | true.

5 p(X) <=> X==a | true.

The query ?- p(a) matches all the rules, so the result will always be an empty constraint
store, indicated by true.

For the query ?- p(b) the first rule does not match and p(b) is added to the constraint
store. The second rule is applicable, since p(X) is a pattern for p(a). For the third rule,
the result of the computation is false, because the rule is applicable, but the unification
a=b in the body will fail. Since CHR is a committed-choice language, the rule selection
will not be withdrawn by backtracking. The last two rules are not applicable, since the
guard fails.

The query ?- p(Y) does not match the first rule, since p(a) is not a pattern p(Y) –
the goal is more general than the head of the rule and no bindings of the constraints in
the goal will be performed for the matching. The second rule does match, because the X

from the head of the rule can be bound to Y from the goal. The result of the application of
the third rule is Y=a, because the rule does match and leads to a binding of Y to a in the
body. The last two rules do not fire, because their guards fail. If Y has been bound to a

explicitly before (e.g. by another rule), the rule could fire.

There are various definitions of the operational semantics (i.e. the behaviour of CHR
programs) for different purposes and there may come more in the future [Frü09, p. 11]. In
this work, the implementation from the K.U. Leuven as shipped with SWI-Prolog is used
[Swi]. This version implements the so-called refined operational semantics. Constraints
in the goal are processed from left to right. When entering the constraint store, a CHR
constraint becomes active, i.e. each rule which contains the active constraint in the head
is checked for applicability. The rule applicability is checked in textual order of the rules
(top-down). The first rule that matches is fired. If the active constraint is removed by

31

3 Constraint Handling Rules

the rule application, the next constraint from the body will be added and become active.
Otherwise, if the active constraint is kept, the next rule below the first matching rule is
checked for applicability, etc. If no rule matches, the constraint becomes passive and
is actually put to the constraint store, where it waits to become the partner constraint
in a further matching rule and the next constraint from the query is added. A passive
constraint becomes active again, if its containing variables are bound.

If a rule fires, its body is processed from left to right and behaves like a procedure call:
It will add its constraints one after another (and they will become active sequentially).
When all constraints from the body have been added and no constraint is active anymore,
the next constraint from the query is added. If no constraints are left in the query, the
program terminates and the final constraint store is printed.

In the implementation of ACT-R, it was necessary at some points to rely on the order of
rule applications from top to bottom. This is very common, for instance, if in an advanced
version of the minimum computation in example 3.1 the process should be triggered
by a get_min/1 constraint that also gets the result bound to its argument. I.e., after
the complete computation of the query in listing 3.3 triggered by get_min(Min), the
variable Min should be bound to Min=0, the minimal number in the query. This can be
achieved as follows:

Listing 3.4: Minimum program with trigger

1 get_min(_), min(N) \ min(M) <=> N=<M | true.

2 get_min(Min), min(N) <=> Min=N.

Obviously, the result of this program depends on the rule application order: The second
rule is applicable as soon as the minimum computation has been triggered by get_min
and one single minimum candidate min(N). After the application of the second rule, the
first one will not be applicable anymore, because the get_min/1 constraint is removed
from the store. Hence, it must be ensured that this rule is not applied before the first rule
has been applied to exhaustion. This is achieved by the refined operational semantics.
The program computes the minimum of all numbers that are in the store at the time the
get_min/1 trigger constraint is introduced. If there are added new minimum candidates
afterwards, they will not be respected in this particular minimum computation. However, if
later on a new minimum computation is triggered, all those minimum constraints will be
part of the computation.

32

4 Implementation of ACT-R in CHR

After the overview of the ACT-R theory in chapter 2, this chapter gives a more detailed
survey and presents a possible implementation of the described concepts of the ACT-R
theory in CHR, inspecting some implementational details of the theory and formalizing
some basic concepts. Note that this work only regards the fundamental concepts of
ACT-R and abstracts from some details. For example, the experiment environment as
described in section 2.4 is ignored.

For the implementation, some special cases and details that are not exactly defined in
theory have to be considered. Hence, some concepts of the theory that are implemented
in this work are formalized first. The implementation in form of CHR rules sticks to those
formalisms and is often very similar to them.

Additionally, the implementation is described incrementally, i.e. first, a very minimal
subset of ACT-R is presented that will be refined gradually with the progress of this
chapter. In the end, an overview of the actual implementation as a result of this work
is given. Some of the definitions in this chapter result directly from the theory, some of
them needed a further analysis of the official ACT-R 6.0 Reference Manual [Botb] or the
tutorials [Actb].

4.1 Declarative and Procedural Knowledge

The basic idea of the implementation is to represent declarative knowledge, working
memory etc. as constraints and to translate the ACT-R production rules to CHR rules. This
approach leads to a very compact and direct translation of ACT-R models to Constraint
Handling Rules.

In addition to the production rules there will be rules that implement parts of the framework
of ACT-R, for example rules that implement basic chunk operations like modifying or
deleting chunks from declarative memory or a buffer. Those parts of the system are
described as well as the central data structures and the translation.

33

4 Implementation of ACT-R in CHR

First, a formalization of declarative knowledge in form of chunk networks and their
implementation in CHR is given. Then, the working memory – also referred to as the
buffer system – is explored and the implementation is discussed. After those definitions
of the basic data structures of ACT-R, the procedural system is described including the
translation of ACT-R production rules to CHR rules using the previously defined data
structures. Furthermore, the reproduction of ACT-R’s modular architecture is shown and
the implementation of the declarative module is presented. After this overview of the
basic concepts of ACT-R, the description goes into more detail about timing issues and
the subsymbolic layer.

4.2 Chunk Stores

Since chunks are the central data-structure of ACT-R used for representation of declara-
tive knowledge, to exchange information between modules and to state requests, this
section first deals with this essential part of ACT-R.

4.2.1 Formal Representation of Chunks

In multiple parts of ACT-R it is necessary to store chunks and then operate on them.
Hence, the abstract data structure of such a chunk store is defined. Since chunk stores
have been referred to as networks in the previous chapters, the general idea of this
definition of a chunk store is based upon a relation that represents such a network.

Definition 4.1 (chunk-store). A chunk-store Σ is a tuple (C,E, T ,HasSlot, Isa), where
C is a set of chunks and E a set of primitive elements both identified by unique names,
with C ∩ E = ∅. The values of Σ are defined by the set V = C ∪ E ∪ {nil}. T is a set of
chunk-types. A chunk-type T = (t, S) ∈ T is a tuple with a unique1 type name t and a
set of slots S. The set of all chunk type names is Tname and the set of all slot names is S.

HasSlot ⊆ C × S × V and Isa ⊆ C × T are relations and are defined as follows:

• c Isa T ⇔ chunk c is of type T .
• (c, s, v) ∈ HasSlot⇔ v is the value of slot s of c. This can also be written as c s−→ v

and is spoken “c is connected to v” or “v is in the slot s of c”.

1∀(t, S), (t′, S′) ∈ T : t = t′ ⇒ S = S′

34

4.2 Chunk Stores

The Isa relation has to be right-unique and left-total, so each chunk has to have exactly
one type. The following functions are defined:

slots : C → S × V

slots(c) = { (s, v) | (c, s, v) ∈ HasSlot } and

slots : Tname → S

slots(t) =

 S for (t, S) ∈ T

∅ otherwise

A chunk-store is type-consistent, iff ∀(c, (t, S)) ∈ Isa : ∀s ∈ S ∃!(c, s, v) ∈ HasSlot. So
every chunk must have exactly one value for each slot of its type and only describe slots
of its type. Empty slots are represented by the value nil. Since every chunk has exactly
one type, this is valid for all chunks in the store.

Definition 4.2 (abstract methods of a chunk store). The following methods can be defined
over a chunk store Σ = (C,E, T ,HasSlot, Isa):

chunk-type(name slot1 ...slotn) is a method for defining a new type T =
(name, {slot1, . . . , slotn}) which is added to the store, i.e. T ′ = T ∪ {T}.

add-chunk(name isa type slot1 val1 ...slotn valn) adds a chunk speci-
fied by a name and a list of slot-value pairs to the store, i.e. C ′ = C ∪ {name},
Isa′ = Isa ∪ (name, (type, slots(type)) and HasSlot′ =

⋃n
i=1 (name, sloti, vali) ∪

HasSlot. Note that due to the expansion of C, the condition that C and E have to
be disjoint may be violated. To fix this violation, the element can be removed from
E: E′ = (E ∪ C)− (E ∩ C).
Additionally, a valid mechanism to restore type-consistency may be introduced: It
might happen that not all slots are specified in the call of the add-chunk method.
Since it is claimed by the definition of HasSlot that for all slots s of a chunk c there
must be a (c, s, v) ∈ HasSlot, in implementations the unspecified slots are initialized
as empty slots, represented by the empty value nil. Furthermore, slots specified
in the call of the method that are not a member of the chunk’s type should cause
an error to preserve type-consistency.

alter-slot(name slot1 val1 ...slotn valn) changes the values of the speci-
fied slots of a chunk identified by its name to new values. Only existing slots can
be altered, but the list of slot-value pairs may be a partial chunk-description. The
values of the slots not in the list remain at their old values.

remove-chunk(name) removes the chunk with the given name from C and all of its
occurrences in Isa and HasSlot.

return-chunk(name) gets a chunk name as input and returns a chunk specification,
i.e. the name, type and all slot-value pairs of this chunk in the store.

35

4 Implementation of ACT-R in CHR

Example 4.1. The addition-fact chunk in figure 2.3 and its chunk-type are defined as
follows:

1 chunk-type(addition-fact arg1 arg2 sum)

2 add-chunk(a isa addition-fact arg1 5 arg2 2 sum 7)

This leads to the following chunk-store:

({a}, {2, 5, 7},

{(addition-fact, {arg1 , arg2 , sum})},

{(a, arg1 , 5), (a, arg2 , 2), (a, sum, 7)},

{(a, addition-fact)}).

Type consistency is checked as follows:

slots(a) = {(arg1 , 5), (arg2 , 2), (sum, 7)}

slots(addition-fact) = {arg1 , arg2 , sum}

Since the chunk a defines values for all of the possible slots of the type addition-fact and
only those slots, the store is type-consistent.

4.2.2 Representation of Chunks in CHR

Declarative knowledge is represented as a network of chunks, defined by the two relations
Isa, specifying the belonging of a chunk to a type, and HasSlot, specifying the slot-value
pairs of a chunk. Those relations can be translated directly into CHR by defining the
following constraints representing the relations and sets:

1 :- chr_constraint chunk_type(+).

2 % chunk_type(ChunkTypeName)

3

4 :- chr_constraint chunk_type_has_slot(+,+).

5 % chunk_type_has_slot(ChunkTypeName, SlotName).

The chunk_type/1 constraint represents the set T of chunk-types in the store, but
refers only to the chunk-type names. The set of slots of a chunk-type is specified
by the chunk_type_has_slot/2 constraint, i.e. for a chunk-type T ∈ T , with T =

36

4.2 Chunk Stores

(t, S), there exists a chunk_type(t) and for every slot s ∈ S there is a constraint
chunk_type_has_slot(t,s) in the constraint store. For the chunks, the following
constraints are defined:

1 :- chr_constraint chunk(+,+).

2 % chunk(ChunkName, ChunkType)

3

4 :- chr_constraint chunk_has_slot(+,+,+).

5 % chunk_has_slot(ChunkName, SlotName, Value)

The chunk/2 constraint represents both the set C of chunks and the Isa relation, since
the presence of a constraint chunk(c,t) signifies that chunk c is of a type T = (t, S).
The HasSlot relation is represented by the chunk_has_slot(c,s,v) constraint, which
really is just a direct translation of an element (c, s, v) ∈ HasSlot.

Note that all values in the just presented constraints have to be ground. This is a demand
claimed by the original ACT-R implementation and makes sense, since each value in
a slot of a chunk is a real, ground value and the concept of variables does not have
an advantage in this context, because every element that can be stored in the brain is
assumed to be known by the brain.

Additionally, from the definition of a chunk store it is known that the Isa relation has
to be left-total and right-unique. Therefore, for every chunk c in the store, exactly one
chunk(c,t) constraint has to be in the store. Due to type-consistency, for each con-
straint chunk_type_has_slot(t,s) a chunk_has_slot(c,s,v) constraint has to
be defined. If it should be expressed that a chunk has an empty slot, the special chunk
name nil can be used as slot value to indicate that. Note that nil must not be the
name of a regular chunk or chunk-type.

Example 4.2. The chunk and chunk-type in example 4.1 are represented as:

1 chunk_type(addition-fact)

2 chunk_type_has_slot(addition-fact,arg1)

3 chunk_type_has_slot(addition-fact,arg2)

4 chunk_type_has_slot(addition-fact,sum)

5

6 chunk(a,addition-fact)

7 chunk_has_slot(a,arg1,5)

8 chunk_has_slot(a,arg2,2)

9 chunk_has_slot(a,sum,7)

37

4 Implementation of ACT-R in CHR

Distinction of Elements and Chunks

A chunk store distinguishes between a set of chunks C and a set of elements E. For
implementational reasons it can be helpful if there are only chunks in the system, because
elements just behave like chunks with no slots. Hence, a chunk-type chunk with no slots
will be added automatically to the store. Each element e ∈ E is added as a chunk of type
chunk to the set of chunks C. After this operation E = ∅, and for every former element e
of E: e ∈ C, (e, (chunk, ∅)) ∈ Isa. So E is now represented by {c ∈ C | c Isa (chunk, ∅)}
in the implementation.

Example 4.3. The chunk representation from example 4.2 is changed to:

1 chunk_type(addition-fact)

2 chunk_type_has_slot(addition-fact,arg1)

3 chunk_type_has_slot(addition-fact,arg2)

4 chunk_type_has_slot(addition-fact,sum)

5

6 chunk_type(chunk)

7

8 chunk(a,addition-fact)

9 chunk_has_slot(a,arg1,5)

10 chunk_has_slot(a,arg2,2)

11 chunk_has_slot(a,sum,7)

12

13 chunk(5,chunk)

14 chunk(2,chunk)

15 chunk(7,chunk)

Simple Implementation of the Default Methods

To implement the methods in definition 4.2, first a data type for chunk specifications has
to be introduced. From this specification the correct constraints modeling the chunk-store
are added or modified. This data type is necessary to allow communication between
implementationally independent modules which do not share a joint memory of constraints
(or data in general) as the ACT-R theory suggests (see section 2.1.1). The modular
organization and the communication between modules is described in section 4.4.

38

4.2 Chunk Stores

The straight-forward definition of a data type for chunk specifications is just to use the
specification like in definition 4.2: In both ACT-R and the aforementioned definition, chunks
are defined by a term (name isa type slot1 val1 ... slotn valn) which basi-
cally is just a list in Lisp and specifies a chunk uniquely. Hence, a similar Prolog term can
be used:

1 :- chr_type chunk_def ---> nil; chunk(any, any, slot_list).

2 :- chr_type list(T) ---> []; [T | list(T)].

3 :- chr_type slot_list == list(pair(any,any)).

4 :- chr_type pair(T1,T2) ---> (T1,T2).

By the :- chr_type directive, new types can be defined. For example, the definition
of list states that a list of type T is either empty ([]) or a term [X|Xs] where X is a
value of type T and Xs is a list of type T itself. The first definition states that the type
chunk_def can be either the atom nil or a term of the form chunk(Name,Type,SVP)

where Name and Type can be of any type and SVP is a slot_list which is an alias for
a list of pairs and describes a list of slot-value pairs, i.e. a Prolog list of terms (S,V),
where S is the name of a slot and V is an identifier for the value for this slot. This is the
direct translation of the chunk-specification used in the definition, amended by the nil

construct, that may be needed for later purposes.

The defined types can be used in the definitions of CHR constraints. The arguments of
these constraints are then checked at runtime for the correct types. For example, the
directive :- chr_constraint a(pair,any) states that the constraint a is expected
to have a pair as its first argument and any type as second argument. The default
methods can be implemented as follows:

add_chunk This method creates the chunks and elements of the chunk store. The set
E of elements is minimal, i.e. only elements that appear in the slots of a chunk but are not
chunks themselves are members of E. However, the set E is never constructed explicitly,
but represented by chunks of the special type chunk that provides no slots. So each value
in the slot of a chunk that is added to the store and that is not an element of the chunk store
yet, gets its own chunk of type chunk. As soon as a chunk with the name of such a prim-
itive element is added to the store, the chunk of type chunk is removed from the store.

Listing 4.1: Rules for add_chunk

1 % empty chunk will not be added

2 add_chunk(nil) <=> true.

39

4 Implementation of ACT-R in CHR

3 % initialize all slots with nil

4 add_chunk(chunk(Name,Type, _)), chunk_type_has_slot(Type,S) ==>

5 chunk_has_slot(Name,S,nil).

6

7 % chunk has been initialized with empty slots -> actually add

chunk

8 add_chunk(chunk(Name,Type, Slots)) <=>

9 do_add_chunk(chunk(Name,Type,Slots)).

First, all chunk_type_has_slot constraints are added to the store and initialized with
nil as slot value. This leads to complete chunk specifications that are consistent to the
type as demanded by a type-consistent chunk-store.

If all slots have been initialized, do_add_chunk performs the actual setting of the real
slot values:

Listing 4.2: Additional rules for adding chunks

1 % base case

2 do_add_chunk(chunk(Name, Type, [])) <=>

3 chunk(Name, Type).

4

5 % overwrite slots with empty values

6 chunk(V,_) \ do_add_chunk(chunk(Name, Type, [(S,V)|Rest])),

chunk_has_slot(Name,S,nil) <=>

7 chunk_has_slot(Name,S,V),

8 do_add_chunk(chunk(Name,Type,Rest)).

9

10 % overwrite slots with empty values

11 do_add_chunk(chunk(Name, Type, [(S,V)|Rest])),

chunk_has_slot(Name,S,nil) <=>

12 V == nil | % do not add chunk(nil,chunk)

13 chunk_has_slot(Name,S,V),

14 do_add_chunk(chunk(Name,Type,Rest)).

15

16 % overwrite slots with empty values

17 do_add_chunk(chunk(Name, Type, [(S,V)|Rest])),

chunk_has_slot(Name,S,nil) <=>

18 V \== nil |

19 chunk_has_slot(Name,S,V),

40

4.2 Chunk Stores

20 chunk(V,chunk), % no chunk for slot value found => add chunk

of type chunk

21

22 do_add_chunk(_) <=> false.

The first rule is the base case, where no slots have to be added any more. Then, as a last
step the actual chunk constraint of the chunk that is added to the store is created. The
second rule deals with the case, that a slot-value pair has to be added with a value that
is already described by a chunk. Then the nil-initialized slot of this chunk is removed
and replaced by another slot containing the actual value.

The next rule ensures that the helper chunk specification nil will not get a chunk in the
store, even if it is in the slots of a chunk. Otherwise, if the value of the slot to be added is
not nil, the next rule can fire and the value of the previously nil-initialized slot will be
replaced with the actual value. Additionally, since the first rule obviously did not fire for
this constellation, V is a value different from nil that does not have a chunk in the store.
Hence, it must be a primitive element. Thus a new chunk of type chunk is added to the
store for this value as described in section 4.2.2 (see page 38). If no rule matches, the
user tried to create a chunk with slots that are not specified in the chunk-type. This leads
to an error.

On top of the rules in listing 4.1, there must be added a rule that deletes a primitive
element (i.e. a chunk of type chunk), if the user introduces a real chunk with the name
of this element:

Listing 4.3: Clean up primitive elements

1 % delete chunk of Type chunk, if real chunk is added

2 add_chunk(chunk(Name,_,_)) \ chunk(Name,Type) <=>

3 Type == chunk |

4 true.

add_chunk_type The following rules create a new chunk type:

1 add_chunk_type(CT, []) <=>

2 chunk_type(CT).

3 add_chunk_type(CT, [S|Ss]) <=>

4 chunk_type_has_slot(CT, S),

5 add_chunk_type(CT, Ss).

41

4 Implementation of ACT-R in CHR

alter_slot This method replaces the value of an existing slot for a given chunk, but only
if it is a valid slot for the chunk-type of the altered chunk.

1 alter_slot(Chunk,Slot,Value), chunk_has_slot(Chunk,Slot,_) <=>

2 chunk_has_slot(Chunk,Slot,Value).

3 alter_slot(Chunk,Slot,Value) <=>

4 false.

The first rule replaces the existing chunk_has_slot constraint by a new one. This
is called destructive assignment as described in [Frü09, p. 32]. The second rule only
matches, if the first did not match (due to the refined operational semantics of CHR).
This is only the case, if it is tried to alter a slot with a non-existing chunk_has_slot

constraint. However, since the chunk descriptions are complete, the slot cannot be valid
for the type of the chunk and the altering has to fail.

remove_chunk This method removes all occurrences of a chunk from the store. I.e.,
all chunk and chunk_has_slot constraints the chunk is involved in are removed.

1 remove_chunk(Name) \ chunk(Name, _) <=> true.

2 remove_chunk(Name) \ chunk_has_slot(Name, _, _) <=> true.

3 remove_chunk(_) <=> true.

return_chunk This method creates a chunk specification as defined in section 4.2.2
from the chunk name of a chunk in the store.

1 chunk(ChunkName, ChunkType) \ return_chunk(ChunkName,Res) <=>

2 var(Res) |

3 build_chunk_list(chunk(ChunkName, ChunkType, []),Res).

4 chunk_has_slot(ChunkName, S, V) \

build_chunk_list(chunk(ChunkName, ChunkType, L), Res) <=>

5 \+member((S,V),L) |

6 build_chunk_list(chunk(ChunkName, ChunkType, [(S,V)|L]),Res).

7 build_chunk_list(X,Res) <=> Res=X.

The first rule creates the initial chunk specification with name and type set, but without
any slot specification. This initial representation is handed to the build_chunk_list

42

4.3 Procedural Module

constraint. The second rule adds a slot-value pair from the store to the list of slot-
value pairs in the specification and builds the next chunk specification from this new
representation. In the last rule, the process terminates if no other rule can fire any more.
Then the result is bound to the handed specification.

Checking Consistency and Type-Consistency

At the moment, there are no rules that check the consistency of the chunk store. However,
if the default methods for adding chunks are used, a type-consistent store is built auto-
matically, since every chunk has exactly one chunk-type.2 Furthermore, all slots from its
chunk-type are described and only those slots are described (satisfies type-consistency).
Additionally, there are no two different slot descriptions for the same chunk and every
chunk in the store is described3 (satisfies the definition of a chunk-store). Rules for
checking those constraints could be added easily to the implementation.

4.3 Procedural Module

The part of the system, where the computations are performed, is the procedural module.
It is the central component that holds all the production rules, the working memory (in
the buffer system) and organizes communication between modules (through buffers and
requests). In the following, all of those subcomponents of the procedural module are
described.

4.3.1 Buffer System

The buffer system can be regarded as a chunk-store that is enhanced by buffers. A buffer
can hold only one chunk at a time. The procedural module has a set B of buffers, a
chunk-store Σ and a relation between the buffers and the chunks in Σ.

Definition 4.3 (buffer system). A buffer system is a tuple (B,Σ,Holds), where B is a
set of buffers, Σ = (C,E, T ,HasSlot, Isa) a type-consistent chunk-store and Holds ⊆
B × (C ∪ {nil}) a right-unique and left-total relation that assigns every buffer at most

2left-totality and right-uniqueness of Isa
3This is demanded by the type-consistency: Since Isa is left-total, every chunk is in the Isa relation. Type-

consistency demands, that every chunk in the Isa relation has a value for all slots of its type.

43

4 Implementation of ACT-R in CHR

one chunk that it holds. If a buffer b is empty, i.e. it does not hold a chunk, then
(b, nil) ∈ Holds.

A buffer system is consistent, if every chunk that appears in Holds is a member of C and
Σ is a type-consistent chunk-store.

A buffer system is clean, if its chunk-store only holds chunks which appear in Holds.

For the implementation of a buffer system, the code of a chunk-store can be extended by
a buffer/2 constraint that encodes the set B and the relation Holds at once, since the
relation is complete by definition.4

Destructive Assignment and Consistency

The demand of Holds being right-unique5 is a form of destructive assignment as described
in [Frü09, p. 32], i.e. if a new chunk is assigned to a buffer, the old buffer constraint is
removed and a new buffer constraint is introduced, holding the new chunk:

1 set_buffer(B, C) \ buffer(B, _) <=> buffer(B, C).

This rule ensures that only one buffer constraint exists for each buffer in B. At the
beginning of the program, a buffer constraint has to be added for all the available
buffers of the modules. This problem is discussed in section 4.6.

In addition, if a new chunk is put into a buffer, it also has to be present in the chunk-store,
since the production system relies on the knowledge about the chunks in its buffers
and chunks are essentially defined by their slots (consistency property in definition 4.3).
Hence, every time a chunk is stored in a buffer, the add_chunk method described in
definition 4.2 has to be called. However, the chunks in the slots are not loaded, since
they are not present for working memory. They only appear as primitive elements in the
chunk-store. Figure 4.1 shows a buffer system which has two buffers. One of the buffers
holds a chunk. Note, that the values v1 and v2 might be chunks themselves. However,
their slots are not loaded to the chunk store and hence they only appear as primitive
elements.

4∀b ∈ B ∃c ∈ (C ∪ {nil}) : (b, c) ∈ Holds
5∀b ∈ B ∀c, d ∈ (C ∪ {nil}) : (b, c), (b, d) ∈ Holds⇒ b = c

44

4.3 Procedural Module

B = { b1 b2 }

C = { c

T

v1

v2

∈

T ∈

C ∪ E ∪ {nil}
∈

C ∪ E ∪ {nil}

} nil

Holds Holds

Isa

HasSlot

s1
HasSlots2

Figure 4.1: A buffer system (B,Σ,Holds) with two buffers b1, b2 ∈ B and a chunk store
Σ = (C,E, T ,HasSlot, Isa). The relations Holds, Isa and HasSlot are illus-
trated by arrows. The buffer b1 holds a chunk c of type T = (t, {s1, s2}) and
with values v1 and v2. Buffer b2 is empty. The buffer system is clean, since
only the chunks which are held by a buffer are in the set of chunks C of the
chunk store.

Buffer States

Another formal detail of the buffer system is that buffers can have various states: busy,
free and error. Those states represent the status of the underlying system, for example
the state of the retrieval buffer is based on the current action or result of the declarative
module’s retrieval system.

A module is busy, if it is completing a request and free otherwise. Since a module
can only handle one request at a time and requests may need a certain time (like the
retrieval request for example), the procedural module could state another request to
a busy module. This is called jamming which leads to error messages and should be
avoided. One technique to avoid module jamming is to query the buffer state in the
conditional part of a production rule [Actb, unit 2, p. 9]. The possibility to query buffer
states is discussed in the next section.

A buffer’s state is set to error, if a request was unsuccessful because of an invalid request
specification or, in case of the declarative module for instance, a chunk that could not be
found. In CHR, a buffer state can be represented by a buffer_state(b,s) constraint,

45

4 Implementation of ACT-R in CHR

which signifies that buffer b has the state s. Since every buffer has exactly one state all
the time, it is required, that for every buffer there is such a constraint and it is ensured,
that only one buffer_state constraint is present for each buffer. This can be achieved
by the destructive assignment method described in section 4.3.1.

At the beginning of the program, when a buffer is created (a buffer constraint is placed
into the store), a corresponding buffer_state constraint has to be added. The initial
state can be set to free, since no request is being computed at the time of creation.

4.3.2 Production Rules

Production rules consist of a condition part and an action part. Syntactically, in ACT-R
the condition is separated from the action by ==>. Additionally, each production rule has
a name. Thus, a rule is defined by:

1 (p name condition* ==> action*)

The condition part is also called the left hand side of a rule (LHS) and the action part is
called right hand side (RHS).

The Left Hand Side of a Rule

Generally, a condition is either a buffer test, i.e. a specification of slot-value pairs that are
checked against the chunk in the specified buffer or a buffer query, i.e. a check of the
state of a buffer’s module (either busy, free or error). A buffer test on the LHS of a rule is
indicated by a = followed by the buffer name of the tested buffer; a query is indicated by a
? in front of the buffer name. The LHS of a rule may contain bound or unbound variables:
=varname is a variable with name varname.

If the chunks in the buffers pass all buffer tests specified by the rule, the rule can fire, i.e.
its right hand side will be applied. The LHS is a conjunction of buffer tests, i.e. there is no
specific order for the tests [Botb, p. 165].

Example 4.4 (counting example – left hand side). This example introduces the ACT-R
syntax to define the left hand side of a production rule. The left hand side of the counting
rule specified in the example in section 2.1.6 can be defined as follows:

46

4.3 Procedural Module

1 (p count-rule

2 =goal>

3 isa count

4 number =n

5 =retrieval>

6 isa count-fact

7 first =n

8 second =m

9 ==>

10 ...)

The condition part consists of two buffer tests:

1. The goal buffer is tested for a chunk of type count and a slot with name number.
The value of the slot is bound to the variable =n.

2. The retrieval buffer is tested for a chunk of type count-fact that has the variable
=n in its first slot (with the same value as the number slot of the chunk in the
goal buffer, since =n has been bound to that value), and another value in its second
slot which is bound to the variable =m.

The Right Hand Side of a Rule

For the right hand side of a rule the following actions are allowed:

Buffer Modifications of the form

1 =buffer>

2 s v

3 ...

They are indicated by the buffer modifier = right before the buffer name and are
specified through a list of slot-value pairs. Note that this list can be incomplete
and must not contain a isa specification. It leads to all slots mentioned in the
modification action of a buffer being replaced by the specified values.

Buffer Requests of the form

1 +buffer>

2 s v

3 ...

47

4 Implementation of ACT-R in CHR

Requests are indicated by the buffer modifier + and specified by a list of slot-value
pairs. A request will be sent to the module of the specified buffer which reacts to
the transmitted chunk of the request specification (in form of the slot-value pairs).
The semantics of a request depends on the module, but the buffer is always first
cleared before stating the request.

Buffer Clearings of the form

1 -buffer>

Clearings are indicated by the buffer modifier -. When a buffer is cleared, the chunk
it contains will be removed from the chunk-store of the buffer system and then be
added to the declarative memory.

Example 4.5 (counting example). The counting rule specified in the example in sec-
tion 2.1.6 could be defined as follows:

1 (p count-rule

2 =goal>

3 isa count

4 number =n

5 =retrieval>

6 isa count-fact

7 first =n

8 second =m

9 ==>

10 =goal>

11 number =m

12 +retrieval>

13 isa count-fact

14 first =m

15)

Direct Translation of Buffer Tests

An ACT-R production rule of the form

1 (p name

2 =buffer1>

3 isa type1

48

4.3 Procedural Module

4 slot1,1 val1,1

5 ...

6 slot1,n val1,n

7 ...

8 =bufferk>

9 isa typek

10 slotk,1 valk,1

11 ...

12 slotk,m valk,m

13 ==>

14 ...)

states formally, that: If buffer1 Holds c1 ∧ c Isa type1 ∧ c1
slot1,1−−−−→ val1,1 ∧ . . . ∧

bufferk Holds ck ∧ ck Isa typek ∧ . . . is true, then the rule matches and the RHS
should be performed. This can be directly translated into a CHR rule:

1 name @

2 buffer(buffer1,C1),

3 chunk(C1,type1),

4 chunk_has_slot(C1,slot1,1,val1,1),

5 ...

6 chunk_has_slot(C1,slot1,n,val1,n),

7 ...

8 buffer(bufferk,Ck),

9 chunk(Ck,typek),

10 chunk_has_slot(Ck,slotk,1,valk,1),

11 ...

12 chunk_has_slot(Ck,slotk,m,valk,m)

13 ==>

14 ...

This rule checks the buffer system for the existence of a buffer holding a particular chunk
and then checks the chunk store of the buffer system for that chunk with the type and
slots specified in the ACT-R rule. The rule is a propagation rule, because the information
of the chunk-store should not be removed. If the values in the slot tests are variables,
they can be directly translated to Prolog variables.

The CHR rule only fires, if all the checked buffers hold chunks that meet the requirements
specified in the slot tests of the ACT-R rule. Since those slot-tests are just a conjunction of

49

4 Implementation of ACT-R in CHR

relation-membership tests and the CHR rule is a translation of these tests into constraints,
both are equivalent. In detail:

• If a checked buffer b holds no chunk, the constraint buffer(b,nil) will be
present, but the chunk store will not hold any of the required constraints chunk or
chunk_has_slot and the rule will not fire.

• If a checked buffer b holds a chunk, but the chunk does not meet one of the
requirements in its slots, the rule does not fire.

• The rule only fires, if for all checked buffers there are valid buffer, chunk and
chunk_has_slot constraints present that meet all the requirements specified by
the ACT-R rule.

• Variables on the LHS of a rule are bound to the values of the actual constraints that
are tried for the matching. After the matching, each variable from the rule has a
ground value bound to it, because there are no variables in the implementation of
the buffer store. This corresponds to the semantics of an ACT-R production rule
with variables on the LHS.

Translation of Actions

For each action type a constraint

1 buffer_action(buffer,chunk-specification)

and the corresponding rules that handle the action have to be added. Note that the buffer
action is defined by the action name, the buffer name and a chunk specification. That is
because actions in ACT-R are defined through a buffer modifier that specifies the action,
the name of the buffer and a list of slot-value pairs. Hence, this is a direct translation to
CHR.

Buffer Modifications The modification of a buffer takes an incomplete chunk speci-
fication and modifies the given slots of the chunk in the specified buffer. This can be
implemented as follows:

1 buffer(BufName, OldChunk) \ buffer_change(BufName,

chunk(_,_,SVs)) <=>

2 alter_slots(OldChunk,SVs).

50

4.3 Procedural Module

This implementation uses a generalization of the alter_slot method as described in
definition 4.2 and section 4.2.2:

1 alter_slots(_,[]) <=> true.

2 alter_slots(Chunk,[(S,V)|SVs]) <=>

3 alter_slot(Chunk,S,V),

4 alter_slots(Chunk,SVs).

Note that types cannot be changed. This corresponds to the grammar definition of ACT-R
as presented in section 4.3.3.

Buffer Clearings When clearing a buffer, the chunk that was stored in the buffer will
be removed from the chunk store and nil will be written to the store. Additionally, the
chunk is written to declarative memory.

1 buffer_clear(BufName), buffer(BufName, ModName, Chunk) <=>

2 write_to_dm(Chunk),

3 delete_chunk(Chunk),

4 buffer(BufName, nil).

write_to_dm handles the writing of the chunk to the declarative memory:

1 write_to_dm(ChunkName) <=> return_chunk(ChunkName, ResChunk),

add_dm(ResChunk).

where add_dm is basically just a global wrapper for the add_chunk method of the
declarative memory and will be explained in section 4.5.1.

Buffer Requests The buffer requests have to be handled a little bit differently from the
other actions. Therefore, they will be explained in section 4.4.2. The changes to the buffer
system are presented in section 4.4.3 and an example implementation of the module
request interface for retrieval requests is given in section 4.5.2.

Example 4.6 (counting example in CHR – simple). In this example, the translation of
a simple ACT-R production rule to a CHR rule is shown. Hence, the translation of the
production rule in example 4.5 is inspected. It leads to the following translation:

51

4 Implementation of ACT-R in CHR

1 count-rule @

2 buffer(goal,C1),

3 chunk(C1,count),

4 chunk_has_slot(number,N),

5 buffer(retrieval,C2),

6 chunk(C2,count-fact),

7 chunk_has_slot(first,N),

8 chunk_has_slot(second,M)

9 ==>

10 buffer_change(goal,chunk(_,_,[(number,M)])),

11 buffer_request(retrieval,chunk(_,count-fact,[first,M)])).

Translation of Buffer Queries

A buffer query

1 ?buffer>

2 state bstate

on the LHS of a production rule can be translated to the following CHR rule head:

1 ... buffer_state(buffer,bstate) ... ==> ...

4.3.3 The Production Rule Grammar

The discussed concepts lead to the following grammar for production rules, which is
a simplified version of the actual grammar used in the original ACT-R implementation
[Botb, p. 162]. Some of the details in this grammar that have not been discussed yet are
presented in the following sections.

Listing 4.4: The ACT-R production rule grammar

1 production-definition ::= (p name condition* ==> action*)
2 name ::= a symbol that serves as the name of the production for reference
3 condition ::= [buffer-test | query]

52

4.3 Procedural Module

4 action ::= [buffer-modification | request | buffer-clearing | output]
5 buffer-test ::= =buffer-name> isa chunk-type slot-test*

6 buffer-name ::= a symbol which is the name of a buffer
7 chunk-type ::= a symbol which is the name of a chunk-type in the model
8 slot-test ::= {slot-modifier} slot-name slot-value
9 slot-modifier ::= [= | − | < | > | <= | >=]

10 slot-name ::= a symbol which names a possible slot in the specified chunk-type
11 slot-value ::= a variable or any Lisp value
12 query ::= ?buffer-name> query-test*

13 query-test ::= {−} queried-item query-value
14 queried-item ::= a symbol which names a valid query for the specified buffer
15 query-value ::= a bound-variable or any Lisp value
16 buffer-modification ::= =buffer-name> slot-value-pair*

17 slot-value-pair ::= slot-name bound-slot-value
18 bound-slot-value ::= a bound variable or any Lisp value
19 request ::= +buffer-name> isa chunk-type request-spec*

20 request-spec ::= {slot-modifier} slot-value-pair
21 request-parameter ::= a Lisp keyword naming a request parameter provided by the

buffer specified
22 buffer-clearing ::= −buffer-name>
23 variable ::= a symbol which starts with the character =
24 output ::= !output! [output-value]
25 output-value ::= any Lisp value or a bound-variable
26 bound-variable ::= a variable which is used in the buffer-test conditions of the

production (including a variable which names the buffer that is tested in a
buffer-test or is bound with an explicit binding in the production

The Order of Rule Applications

In the current translation scheme, the order of the rule applications does not match the
semantics as described in the ACT-R theory (see section 2.1.3). Consider the following
rules in a compact notation:

1 =b1>

2 isa foo

3 s1 v1

4 ==>

5 =b1>

53

4 Implementation of ACT-R in CHR

6 s1 v2

7 =b2>

8 s x

and

1 =b1>

2 isa foo

3 s1 v2

4 ==>

5 =b2>

6 s y

7 =b1>

8 s1 v3 % for termination

In the semantics of ACT-R, if the first rule matches, all the buffer modifications are
performed first. After that, the procedural module can search for the next matching rule,
which is the second one (due to the result of the first rule). This rule then would overwrite
the value x in the s slot of buffer b2 with y.

1 buffer(b1,C),

2 chunk(C,foo),

3 chunk_has_slot(C,s1,v1)

4 ==>

5 buffer_change(b1,chunk(_,_,[(s1,v2)])),

6 buffer_change(b2,chunk(_,_,[(s,x)])).

7

8 buffer(b1,C),

9 chunk(C,foo),

10 chunk_has_slot(C,s1,v2)

11 ==>

12 buffer_change(b2,chunk(_,_,[(s,y)])),

13 buffer_change(b1,chunk(_,_,[(s1,v3)])). % this is for

termination

For the query

1 ?- chunk(c,foo), chunk_has_slot(c,s1,v1), chunk(c2,bar),

chunk_has_slot(c2,s,v), buffer(b2,c2), buffer(b1,c).

54

4.3 Procedural Module

the result would be

1 buffer(b1,c)

2 buffer(b2,c2)

3 chunk(c2,bar)

4 chunk(c,foo)

5 chunk_has_slot(c2,s,x)

6 chunk_has_slot(c,s1,v3)

I.e., the buffer b2 holds the chunk with value x. This is due to the fact, that after the first
rule has modified the buffer b1, the second rule matches and will be fired immediately,
which then changes the value of b1 to y. Afterwards, the second action of the first rule
will be executed and the s slot of the chunk in buffer b2 will be overwritten with x.

Hence, somehow the fact that the procedural module is busy and cannot fire another rule
has to be modeled. This can be achieved by a simple phase constraint fire that will be
added after the complete execution of a rule and will be removed as soon as a rule is
executed.

For every production rule, the rule

1 { buffer_tests } ==> { actions }

has to be changed to a simpagation rule

1 { buffer_tests } \ fire <=> { actions }, fire.

It is important that the adding of fire is the last action of a rule.

The example would be modified as follows:

1 buffer(b1,C),

2 chunk(C,foo),

3 chunk_has_slot(C,s1,v1)

4 \ fire

5 <=>

6 buffer_change(b1,chunk(_,_,[(s1,v2)])),

7 buffer_change(b2,chunk(_,_,[(s,x)])),

8 fire.

55

4 Implementation of ACT-R in CHR

9 buffer(b1,C),

10 chunk(C,foo),

11 chunk_has_slot(C,s1,v2)

12 \ fire

13 <=>

14 buffer_change(b2,chunk(_,_,[(s,y)])),

15 fire.

The test query

1 ?- chunk(c,foo), chunk_has_slot(c,s1,v1), chunk(c2,bar),

chunk_has_slot(c2,s,v), buffer(b2,c2), buffer(b1,c), fire.

yields

1 buffer(b1,c)

2 buffer(b2,c2)

3 chunk(c2,bar)

4 chunk(c,foo)

5 chunk_has_slot(c,s1,v3)

6 chunk_has_slot(c2,s,y)

7 fire

The fire constraint has to be added at the end of the query. This ensures the correct
semantics and a completely constructed buffer system.6

In appendix B.1 a minimal executable example is provided.

Bound and Unbound Variables

According to the ACT-R production rule grammar in listing 4.4, unbound variables can only
appear on the left hand side of a rule. Hence, no new variables are introduced on the right
hand side. Since all the elements in the buffer store are completely described and ground,
every variable on the LHS of a rule will be bound to a ground value. This simplifies the
rule selection and application process a lot, since every value of the calculation is known

6This was actually the reason why in the first example without the fire constraint the buffer b1 was created at
the end of the query: If it would be created at an earlier point, the first rule would have matched immediately
and the computation would have yielded a different result.

56

4.3 Procedural Module

after the matching. This enables simple implementations of arithmetic tests, for example
(see section 4.3.3).

Duplicate Slot Tests

A problem that has not been addressed yet is that ACT-R allows buffer tests like the
following:

1 =buffer>

2 isa foo

3 bar spam

4 bar spam

In the logical reading, this would signify that buffer Holds c ∧ c Isa foo ∧ c
bar−−→

spam ∧ c
bar−−→ spam which is equivalent to the test with only one check of the bar slot

since x ∧ x can be reduced to x. However, in CHR the following rule head resulting from
the simple translation scheme does not match:

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,bar,spam),

4 chunk_has_slot(C,bar,spam)

Because there are no two identical chunk_has_slot constraints in the store, the rule
cannot fire. I.e. the list of slot tests in ACT-R is interpreted as a set of conditions, whereas
CHR rules operate on a multi-set of constraints. However, the semantics of CHR can
be changed to a set-based semantics. The first approach to implement a set-based
semantics is to simply eliminate the duplicate test:

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,bar,spam)

However, this does not do the trick for all possible cases. For example, suppose a test

1 =buffer>

2 isa foo

57

4 Implementation of ACT-R in CHR

3 bar spam

4 bar =x

where the second test refers to a variable (or even both tests are variables). This problem
can be solved by adding a guard to the rule from the simple translation:

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,bar,spam)

4 ==> spam == X | ...

Since X must be bound after the matching,7 the test will always give the correct result.
This also works for the first example, where the test would be spam == spam, which is
always true and hence could be reduced to the rule with the second test eliminated and
no guard.8 It also works if the two slot-tests were contradictory, for example:

1 bar spam

2 bar eggs

describes a rule that never can fire. The translation models exactly this behaviour:

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,bar,spam)

4 ==> spam == eggs | ...

since the built-in syntactic-equality test of Prolog does never return true for those two
constants.

This approach is essentially the same as Frühwirth suggests in chapter 6 of the accompa-
nying slides to his book [Frü09]: For each multi-headed rule, new rule variants are added.
Those variants are produced by a pairwise unification of the constraints in the head which
eliminates one of the unifiable head constraints [Frü10]. For example, consider the rule:

1 a(1,Y), a(X,2) ==> b(X,Y).

7see section 4.3.3
8true guards can always be reduced

58

4.3 Procedural Module

The constraints a(1,Y) and a(X,2) can be unified to a(1,2). Therefore the following
rule is added:

1 a(1,2) ==> b(1,2).

Since in ACT-R all variables in the head of a rule have to be bound, this scheme can be
simplified to a simple guard-check and the elimination of duplicate slot tests. Hence, no
rule variants have to be added, but the rules containing duplicate slot tests are modified.

Slot Modifiers

In ACT-R, slot-tests can be preceded by slot modifiers. Those modifiers allow to specify
tests like inequality (-) or arithmetic comparisons (<, >, <=, >=) of the slot value of a
chunk with the specified variable or value. Since the slots in a chunk store are always
fully defined with ground values, those tests are decidable.

If no slot modifier is specified in a slot test, the default modifier = is used, that states that
the chunk in the specified buffer must have the specified value in the specified slot. This
default semantics has been used in the previous sections when translating simple ACT-R
rules to CHR and is performed automatically by the matching of CHR.

To translate the other slot modifiers to CHR, another CHR mechanism can be used:
Guards. Since the allowed modifiers are all default built-in constraints,9 a slot test with a
modifier

1 ...

2 =buffer>

3 ...

4 ~slot val

5 ...

6 ==>

where ~ stands for one of the modifiers in { =,-,<,>,<=,>= } can be translated as
follows:

1 buffer(buffer,C),

2 ...

9i.e. Prolog predicates

59

4 Implementation of ACT-R in CHR

3 chunk_has_slot(C,slot,V),

4 ...

5 ==>

6 V # val |

7 ...

where # is the placeholder for the built-in constraint that computes the test specified by ~
and V is a fresh variable that has not been used in the rule yet.

For arithmetic slot modifiers the values being compared have to be numbers. If a value is
not a number, the arithmetic test will fail and the rule cannot be applied [Botb].

Note that slot tests with modifiers other than = do not bind variables, but only perform
simple checks, like it is with guards in CHR. If val is an unbound variable and is never
bound to a value on LHS, the default implementation throws a warning, and the rule
will not match. Therefore, to handle this case, the rule translation scheme has to be
extended by an additional guard check ground(Val), where Val is the Prolog variable
that replaces each occurrence of the variable val.

As with normal slot tests, it is important to mention that if there are several tests on the
same slot, the chunk_has_slot constraint must appear only once on the LHS of the
CHR rule, since every slot-value pair is unique in the constraint store. Ie., if the first
slot test of a particular slot appears on the LHS of the ACT-R rule, a chunk_has_slot

constraint has to be added to the LHS of the CHR rule. For every other occurrence of
this slot in a slot test, only guard checks are added.

Example 4.7. To clarify the details of the matching concept in ACT-R, here are some
examples and their behaviour:

1 =buffer>

2 isa foo

3 -spam =bar

will throw a warning when loading the model. When running it, the rule will never fire,
since no chunk value will match the inequality to the unbound variable bar.

1 =buffer>

2 isa foo

3 -spam =bar

4 eggs =bar

60

4.3 Procedural Module

will fire, if there is a chunk whose value in eggs is different from the value in spam.

1 =buffer>

2 isa foo

3 spam =bar

4 spam =eggs

matches for every value of the spam slot. The translation to CHR is:

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,spam,Bar)

4 ==>

5 Bar=Eggs | ...

In this case, a binding occurs in the guard, which is usually unwanted. However, since
the Eggs variable is unbound and therefore a fresh variable introduced in the guard, it is
allowed and does not harm the matching process. It is even necessary to bind Eggs to
Bar because of the semantics of the equivalent ACT-R rule. The following example is a
little bit different: The rule

1 =buffer>

2 isa foo

3 spam =bar

4 spam =eggs

5 ham =eggs

will match all chunks which have the same value in spam and ham. This translates to

1 buffer(buffer,C),

2 chunk(C,foo),

3 chunk_has_slot(C,spam,Bar),

4 chunk_has_slot(C,spam,Eggs)

5 ==>

6 Bar==Eggs | ...

Note that in this case, no binding occurs, since both, Bar and Eggs, already occur in
the head of the rule and are bound to some value. Hence, the test in the guard can be
reduced to a simple syntactic equality test without binding (==).

61

4 Implementation of ACT-R in CHR

Relation to Negation-as-Absence The concept of negation-as-absence as described
in [Frü09, pp. 147 sqq.] is provided by many production rule systems. It enables the
programmer to negate a fact in the sense that the fact is not explicitly in the store and
therefore the rule is applicable – so the programmer asks for the absence of a particular
fact.

At the first glance, the slot modifiers seem to implement this concept, but this is not the
case: All negated slot tests in ACT-R can be reduced to simple built-in guard checks, be-
cause the chunks in the store are always described completely and the values are ground,
so simple built-in checks work automatically. This also works for invalid slot-tests that ask
for slots which are not offered by the chunk-type they ask for. Then there will never be a
constraint matching the head of the rule due to type consistency. With these restrictions,
ACT-R avoids the problems that come with negation-as-absence as they are explained
in [Frü09, pp. 147 sqq.] and the translation of such tests to CHR is very simple.

Empty Slots

An important special case in the semantics of ACT-R production rules is that if there is
a slot test specified, a potential chunk only matches if it really has a value in this slot.
Chunks that have nil in a slot specified in a buffer test will not match the test. Hence,
variables can not be used to test if two slots have the same value and the value is nil,
since every positive slot test involving nil fails automatically [Botb, p. 164, section
“Variables”, last sentence].

In CHR this special case can be handled by adding a guard for each variable occurring in
a positive slot-test checking that this variable does not equal nil. For negated slot tests,
this is not the case: The following rule matches also a chunk with an empty spam slot:

1 =buffer>

2 isa foo

3 -spam 4

Outputs

The production system of ACT-R also provides methods to produce side-effects. In this
work, only a subset of those methods is concerned: the outputs. Outputs can appear on
the right hand side of an ACT-R rule:

62

4.4 Modular Organization

1 =buffer>

2 isa foo

3 ==>

4 !output! (a1 a2 a3)

The argument of such an output call is a list of Lisp-symbols, so it is possible to hand
variables or terms.

This mechanism can be translated to Prolog directly:

1 output([]).

2 output([X|Xs]) :-

3 write(X),nl,

4 output(Xs).

The Xs have to be Prolog terms. In ACT-R, function calls like !eval! or !bind! are
allowed, but are ignored in this work.

4.4 Modular Organization

By now, all components of the implementation have been assumed to be in one file:
buffer system, production rules, declarative memory, . . . This leads to problems like name
space pollution and duplicate code, since, e.g. both the buffer system and the declarative
memory use different chunk stores, which have the same behaviour but different data. It
would be practical to reuse this code in both modules, but keeping the stores separated.
Additionally, the code is better readable and it is easier to add new modules if a program is
distributed over multiple files. Finally, the ACT-R architecture already proposes a modular
organization, so it seems likely to adopt this idea of a modular architecture.

The term module is highly overloaded: In ACT-R it describes independent parts of human
cognition, whereas in the world of programming the term is used in a slightly different
manner. In the following, implementational modules will always be named explicitly as
Prolog modules.

Nevertheless, the modular organization of ACT-R with its independent modules can be
implemented by defining a Prolog module for each ACT-R module and adding some other
modules around them. In the following, the concept of Prolog modules is explained.

63

4 Implementation of ACT-R in CHR

4.4.1 Prolog Modules

Defining a new module creates a new namespace for all CHR constraints and Prolog
predicates, which is illustrated in the following example:

Example 4.8 (Prolog Modules and CHR). In this example, two modules mod1 and mod2

are defined, with partially overlapping constraints. mod2 exports the constraint c. In the
following, the behaviour and interaction of the modules is explored.

Listing 4.5: Definition of Module 1

1 :- module(mod1,[]).

2 :- use_module(library(chr)).

3 :- use_module(mod2).

4 :- chr_constraint a/0, b/0.

5

6 a <=> c.

Listing 4.6: Definition of Module 2

1 :- module(mod2,[c/0]).

2 :- use_module(library(chr)).

3 :- use_module(mod1).

4 :- chr_constraint a/0, b/0, c/0.

5

6 a <=> b.

7 b <=> mod1:a.

In this definition, two new modules mod1 and mod2 are created and only the c constraint
of mod2 is exported, indicated by the lists in the module definitions. The modules import
each other.

The CHR constraint a in listing 4.5 is internally represented as mod1:a, so it lives in its
own namespace and does not pollute other namespaces. The constraint can appear on
the right hand side of rules of other modules, but has to be called explicitly with its full
namespace identifier. In line 8 of listing 4.6, the presence of the local a constraint leads
the rule to fire and mod2:a is replaced by mod2:b, which leads the rule in line 9 to fire
and replaces the local mod2:b constraint by an external mod1:a constraint. So, external
constraints can be called by their complete identifiers. However, on the left hand side of a
rule, only the constraints local to the current module can appear.

64

4.4 Modular Organization

Exported constraints can only appear once in a program, since they can be called without
their namespace definition, which is demonstrated in line 8 of listing 4.5, where mod2:c

is called in mod1 without referring to mod2 explicitly.

4.4.2 Interface for Module Requests

The architecture of ACT-R provides an infrastructure for the procedural module to state
requests to all the other modules. To implement this concept as general as possible, an
interface has to be defined which allows the adding of new modules to the system by just
implementing this interface. Later on, the interface will be refined.

Listing 4.7: Simple Interface IModule

1 module_request(+BufName,+Chunk,-ResChunk,-ResState)

The arguments of such a request are:

BufName The name of the requested buffer, e.g. retrieval.
Chunk A chunk specification that represents the arguments of the request. The form

of the allowed chunk specifications and the semantics of the request are module-
dependent. For example: chunk(_,t,[(foo,bar),(spam,eggs)]) could de-
scribe a chunk, that should be retrieved from declarative memory.

The request provides the following result:

ResChunk The resulting chunk in form of a chunk specification. The actual result and
its semantics depend on the particular module.

ResState The state of the buffer after the request. For example, if no matching chunk
could be retrieved from declarative memory, the state would be error.

4.4.3 Requests by the Buffer System

Every module that can handle a request implements the interface in listing 4.7. When
the buffer system gets a call buffer_request(buffer,chunk-specification),
it simply can call the module_request method of the corresponding module. This can
be achieved by ModName:module_request(...), where ModName is the name of the
corresponding module.

65

4 Implementation of ACT-R in CHR

Hence, the buffer system must know which buffer belongs to which module. The
buffer/2 constraint therefore has to be extended to a buffer/3 constraint, that
also holds the module name of its module:

1 buffer(BufName,ModName,Chunk)

A buffer request can now be handled as follows:

Listing 4.8: Retrieval Request in CHR

1 buffer(BufName, ModName, _) \ buffer_request(BufName, Chunk) <=>

2 % module is busy now

3 set_buffer_state(BufName,busy),

4 % clear buffer immediately

5 buffer_clear(BufName),

6 % send request

7 ModName:module_request(BufName, Chunk, ResChunk,ResState),

8

9 % Apply result of the request

10 % case 1: resulting state is error

11 (ResState=error,

12 buffer(BufName, ModName, nil),

13 set_buffer_state(BufName,error) ;

14

15 % case 2: no errors occured

16 ResState = free,

17 ResChunk = chunk(ResChunkName,_,_),

18 add_chunk(ResChunk),

19 buffer(BufName, ModName, ResChunkName),

20 set_buffer_state(BufName,free)).

When getting a buffer request, the buffer state is set to busy first. Then the buffer is
cleared immediately, which leads the chunk in the buffer being added to the declarative
memory. Then the module request is stated according to the interface. If the resulting
state is error, then the buffer gets this state and the content of the buffer is nil,
otherwise, if the resulting state is free, the result will be added to the buffer and the
state will eventually be set to free. It is important to mention, that the received chunk
will be created explicitly in the chunk store of the buffer system and therefore is a copy of
a possibly existing identical chunk in the module that has been requested.

66

4.4 Modular Organization

4.4.4 Components of the Implementation

As mentioned before, the implementation is divided into modules which provide and
require interfaces. Figure 4.2 gives an overview of the architecture of the implementation
as a component diagram. The main component is the model which consists of user-
defined rules, that is the translated production rules as described in section 4.3.2 and the
ACT-R core. The core consists of the buffer system (see section 4.3.1) which implements
a chunk-store (see section 4.2) and a module stdlisp which is capable of handling
default lisp functions as described in section 4.8. The interface ICore consists of the
buffer interface – which basically offers the access to the buffers and its contents for the
matching and the buffer actions – and the Lisp function interface as described in the
aforementioned sections. Additionally, the core provides the constraints fire/0 and
apply_rule/1 for reasons described in section 4.9.2 on page 104. Furthermore, the
core uses the scheduler module which provides the IScheduler interface described in
section 4.7.2 and defined in definition 4.5. The configuration and the IConfiguration and
IObserver interfaces are described in section 4.8.2. Finally, the interface IModule which
is implemented by every ACT-R module (and in this case especially by the declarative
module) is described in a simplified version in listing 4.7 and in its final version in
listing 4.10.

It is important to mention, that in the figure, each component which is included in
another component signifies that the corresponding Prolog file is textually included to the
parent component. The interfaces in the figure indicate that the component is a Prolog
module which is included by the use of use_module. The constraints defined in such a
standalone component are not accessible for the other components. An exception is the
component of the user-defined rules which – in the current version – textually includes
the core.

67

4 Implementation of ACT-R in CHR

m
odel

m
odel

declarative
m

odule
declarative

m
odule

scheduler
scheduler

configuration
configuration

user-defined
rules

user-defined
rules

core
core

chunk-store
chunk-store

buffers
buffers

stdlisp
stdlisp

chunk-store
chunk-store

IS
cheduler

IO
bserver

IC
onfiguration

IC
onfiguration

IA
ddD

MIM
odule

IC
ore

IB
uffers

ILispFunctions

Figure
4.2:U

M
L-C

om
ponentD

iagram
ofthe

im
plem

entation

68

4.5 Declarative Module

4.5 Declarative Module

The Declarative Module is a chunk store, that additionally implements the module inter-
face. Therefore some rules to handle requests that find certain chunks in the chunk store
have to be implemented. The chunk-store is separated from the buffer system which
has its own chunk-store. Hence, all chunks requested by the buffer system from the
declarative module are copies and therefore changes on those chunk do not affect the
chunks in the declarative memory directly.

4.5.1 Global Method for Adding Chunks

Since the declarative module is very important to the whole theory it is kind of a special
module. Therefore, its Prolog module exports a predicate add_dm that is just a wrapper
for its chunk store. Hence, with the command add_dm chunks can be added to the
chunk store of the declarative module from every part of the program. This is e.g. used
for the clearing of buffers in the buffer system, where the chunk of a buffer is written
to declarative memory when the buffer is cleared. This is the implementation of the
command:

1 add_dm(ChunkDef) <=> add_chunk(ChunkDef).

4.5.2 Retrieval Requests

A retrieval request gets an incomplete chunk specification as input and returns a chunk
whose slots match the provided chunk pattern.

Chunk Patterns

The chunk patterns are transmitted in form of chunk specifications as defined in sec-
tion 4.2.2. Since those specifications may be incomplete, variables are considered as
place-holders for values in the result. The result always is a complete and ground chunk
specification, because every chunk in a chunk store has to be defined completely; empty
slots are indicated by the value nil.

69

4 Implementation of ACT-R in CHR

Example 4.9. In this example, some possible requests are discussed.

1. Request:

1 chunk(foo,bar,_)

A chunk with name foo, type bar and arbitrary slot values is requested.
2. Request:

1 chunk(_,bar,_)

This request is satisfied by every chunk of type bar.
3. Request:

1 chunk(_,t,[(foo,bar),(spam,eggs)])

The most common case of requests is a specification of the type and a (possibly
incomplete) number of slot-value pairs for that type. If a type does not provide a
specified slot, the request is invalid and no chunk will be returned.

Finding Chunks

In this section, a CHR constraint find_chunk/3 will be defined which produces a
match_set/1 constraint for each chunk that matches a specified pattern. Eventually,
the match set will be collected and returned.

1 find_chunk(N1,T1,Ss), chunk(N2,T2) ==>

2 unifiable((N1,T1),(N2,T2),_),

3 nonvar(Ss) |

4 test_slots(N2,Ss),

5 match_set([N2]).

6

7 find_chunk(N1,T1,Ss), chunk(N2,T2) ==>

8 unifiable((N1,T1),(N2,T2),_),

9 var(Ss) |

10 test_slots(N2,[]),

11 match_set([N2]).

12

13 find_chunk(_,_,_) <=> true.

70

4.5 Declarative Module

First, each chunk in the store whose name and type are unifiable with the specified name
and type, will be part of the initial match set. If in the chunk specification the name and type
are variables, each chunk will match. For the unification test, the unifiable/3 predicate
of Prolog is used, because the unification should not be performed but only tested. If
name and type match the pattern, then the slots have to be tested by test_slots/2.

The rule in line 7 is for chunk specifications that do not specify the slots. In this case, no
slots have to be tested. If all chunks have been tested or no chunk matches at all, the
process is finished (rule in line 13).

After adding each matching candidate to the match set whose name and type have
already been checked, the match set is pruned from chunks that have non-matching slot
values:

1 test_slots(_,[]) <=> true.

2

3 chunk_has_slot(N,S,V1), match_set([N]) \

test_slots(N,[(S,V2)|Ss]) <=>

4 unifiable(V1,V2,_) |

5 test_slots(N,Ss).

6

7 chunk_has_slot(N,S,V1) \ test_slots(N,[(S,V2)|_]),

match_set([N]) <=>

8 \+unifiable(V1,V2,_) |

9 true.

10

11 test_slots(N,_) \ match_set([N]) <=> true.

The first rule is the base case, where no slots have to be tested any more and the test is
finished and has been successful.

In line 3, the rule is applicable if there is at least one slot (S,V2) that has to be tested
and a HasSlot relation of the kind N

S−→ V1 with the slot S to be tested, that is still in the
match set, so no conflicting slot has been found yet. If the values V1 and V2 are unifiable,
i.e. both are the same constant or at least one is a variable, the test passes and the
chunk N remains in the match set and the rest of the slot tests are performed.

The third rule in line 8 is applied if the guard of the first rule did not hold, so the values
V1 and V2 are not unifiable, but there is a connection N

S−→ V1 and in the request it has
been specified that the value of slot S has to be V2. In this case, V1 6= V2, so the test

71

4 Implementation of ACT-R in CHR

fails and the chunk N has to be removed from the match set, since one of its slots does
not match.

If the last two rules cannot be applied, the chunk does not provide a slot that, however,
has been specified in the request. Hence, the chunk does not match and the last rule
therefore deletes it from the match set.

If those rules have been applied exhaustively, only the matching chunks will remain in
the match set: If there was an outstanding slot test, one of the rules would be applicable
and the chunk would be removed from the match set, if the test fails (and the test would
also be removed, because it has been performed). If the test is successful, the chunk will
remain part of the match set, but the test will be removed. So the match set is correct
and complete.

However, since the match set is distributed over a set of match_set constraints, it
would be desirable to collect all those matches in one set. This can be triggered by the
constraint collect_matches/1, which returns the complete match set in its arguments
as soon as there is only one match_set left:

1 collect_matches(_) \ match_set(L1), match_set(L2) <=>

2 append(L1,L2,L),

3 match_set(L).

4

5 collect_matches(Res), match_set(L) <=> Res=L.

6

7 collect_matches(Res) <=> Res=[].

The first rule merges two match sets to one single merge set containing a list with all the
chunks of the former sets, if the collect_matches trigger is present.

In the second rule, if there are no two match sets to merge in the store any more, the
result of the collect_matches operation is the remaining match set. The same applies
for the last rule, where no match set is in the store and therefore the result is empty. Note
that this implies that the rules have to be applied from top to bottom, left to right.10

The symbolic layer does not implement any rule stating which chunk will be returned if
there is more than one chunk in the match set. In this implementation, the first chunk in
the list is chosen. The module request is now implemented as follows:

10This is called the refined operational semantics of CHR

72

4.5 Declarative Module

1 module_request(retrieval,chunk(Name,Type,Slots),ResChunk,

ResState) <=>

2 find_chunk(Name,Type,Slots),

3 collect_matches(Res),

4 first(Res,Chunk),

5 return_chunk(Chunk,ResChunk),

6 get_state(ResChunk,ResState).

where first(L,E) gets a list L and returns its first element E or nil if the list is empty.

With return_chunk/2 and get_state/2, the actual results of the request are com-
puted: By now, the variable Chunk holds the name of the chunk to return, but in
the specification of the module request, a complete chunk specification is demanded.
return_chunk/2 is defined as a default method of a chunk store that gets a chunk
name as its first argument and returns a chunk specification created from the values in
the chunk store as its second argument.

The resulting state of the request is computed as follows: If the result chunk is nil, no
chunk was in the match set, so the state of the declarative module will be error. In any
other case, the state is free after the request has been performed.

4.5.3 Chunk Merging

An important technique used in ACT-R’s declarative memory module is chunk merging: If
a chunk enters the chunk store and all of its slots and values are the same as of a chunk
already in the store, then those two chunks get merged. Both names refer to the merged
chunk.

If a chunk entering the declarative memory has the same name as a chunk that already
is in the store, the new chunk first gets a new name. Then, if its slots are the same as the
slots of the old chunk, they are merged and the new name is deleted.

1 chunk(Name,Type) \ add_chunk(chunk(Name,Type,Slots)) <=>

2 Type \== chunk |

3 add_chunk(chunk(Name:new,Type,Slots)).

4

5 % first check, if identical chunk exists

6 add_chunk(chunk(C,T,S)) ==>

73

4 Implementation of ACT-R in CHR

7 T \== chunk |

8 check_identical_chunks(chunk(C,T,S)).

The rules are added before the empty slot initialization in listing 4.1. The first rule handles
the case where a chunk with an already allocated name is added to the store. Then it
gets a new name (which basically is just the old name extended by :new) and tries to
add this new chunk to the memory.

The second rule adds an identity check for each chunk to be added except for primitive
elements, since their slots are identical for every name, because every primitive element
has no slots. Nevertheless they have to be distinguishable by their names and therefore
cannot be merged.

The identity check is implemented as follows:

1 check_identical_chunks(nil) <=> true.

2 chunk(NameOld,Type),

check_identical_chunks(chunk(NameNew,Type,Slots)) ==>

3 check_identical_chunks(chunk(NameNew,Type,Slots),NameOld).

4 check_identical_chunks(_) <=> true.

The rule in line 3 adds for each identity check and each chunk in the store a pairwise
identity check which is performed by the following rules:

1 chunk(NameOld, Type) \ check_identical_chunks(chunk(NameNew,

Type, []), NameOld) <=>

2 identical(NameOld,NameNew).

3

4 chunk(NameOld, Type), chunk_has_slot(NameOld, S, V) \

check_identical_chunks(chunk(NameNew, Type, [(S,V)|Rest]),

NameOld) <=>

5 check_identical_chunks(chunk(NameNew,Type,Rest),NameOld).

6

7 chunk(NameOld, Type), chunk_has_slot(NameOld, S, VOld) \

check_identical_chunks(chunk(_, Type, [(S,VNew)|_]),

NameOld) <=>

8 VOld \== VNew |

9 true.

10 remove_duplicates @ identical(N,N) <=> true.

74

4.5 Declarative Module

11

12 % abort checking for identical chunks if one has been found

13 cleanup_identical_chunk_check @ identical(NameOld,NameNew) \

check_identical_chunks(chunk(NameNew,_,_),NameOld) <=> true.

The first rule is the base case, where no slots have to be tested any more. Then the
chunks are identical and an identical/2 constraint is added to the store for those two
chunks.

The next rule applies for an identity check for a slot-value pair that is successful, whereas
the third rule handles the opposite case and aborts the check for this pair of chunks
without adding an identical constraint.

In the fourth rule redundant information is removed and the last rule aborts the identity
check as soon as one matching chunk has been found.

Note that this implementation assumes that the chunk specification of the chunk entering
the declarative memory is complete. If it is incomplete, the correct semantics of the
adding is that all unspecified slots are empty so their values equal nil. Nevertheless, this
implementation would merge the chunk with a chunk that has values in those unspecified
slots. This could be improved by completing the chunk specifications before checking for
identical chunks in the store.

For the easier use of the identical constraint at other points, transitive identities can be
reduced to the only real chunk in the store (the one with the chunk constraint):

1 reduce @ chunk(C1,_), identical(C1,C2) \ identical(C2,C3) <=>

2 identical(C1,C3).

Additionally, identical chunks should not be added to the store explicitly, since they are just
a copy of another chunk and their name is a reference to this actual chunk. The helper
chunks with the artificial :new suffix are also not added to the store and their identical
information is deleted in the end, since their nomenclature was only store internal, so
only the original name must be kept:

1 % do not add chunks with :new tag, remove identical information

2 add_chunk(chunk(C:new,T,S)), identical(C,C:new) <=> true.

3 % do not add identical chunk, but keep identical information

4 identical(C1,C2) \ add_chunk(chunk(C2,T,S)) <=> true.

75

4 Implementation of ACT-R in CHR

In the declarative module, the chunk search must be extended to find merged chunks by
both names. This can be achieved as follows:

1 identical(C1,C2) \ find_chunk(C2,T2,Ss2) <=>

2 ground(C2) |

3 find_chunk(C1,T2,Ss2).

so the chunk search of a chunk that is only a pointer to another chunk can be reduced to
the search of this chunk.

The process of chunk merging is described in [Botb, pp. 217, 71] and [Actb, p. 3]. The
treatment of identical names is not described there, but has been tested in the original
implementation: ACT-R handles those identical names similarly to this approach by
adding a sequential number to the identical name. For example, the chunk with name a

would be called a-0 if there already was a chunk a in the store.

4.6 Initialization

In the examples, the models had to be run by stating complex queries which create
all necessary buffers and add all chunk types and chunks to the declarative memory
manually. In the original ACT-R implementation, the command run is used to run a
model. This behaviour can be transferred easily to the CHR implementation by adding a
run constraint and a rule for this constraint, that performs all the initialization work.

1 init @

2 run <=>

3 add_buffer(retrieval,declarative_module),

4 add_chunk_type(...),

5 add_dm(...),

6 goal_focus(...),

7 fire.

This example assumes that there are implementation of the called methods that perform
the partial initialization work. A typical initialization routine could create all buffers at first,
then add all needed chunk-types (note, that this might include the artificial chunk-type
chunk as defined in section 4.2.2 (see page 38). Then the initial declarative memory
chunks are added. The goal-focus method selects a created chunk and copies it to the

76

4.7 Timing in ACT-R

declarative memory. The adding of the fire constraint eventually starts the computation
after the initialization is finished as described in section 4.3.3 (see page 53).

4.7 Timing in ACT-R

So far, the execution order of the production rules has been controlled by the fire

constraint – a phase constraint which so far has simulated the occupation of the production
system while executing a rule.

However, certain buffer actions like buffer requests may take some time to finish. The
procedural system is free to fire the next rule after all actions have been started11 and
the requests are performed in parallel to that. Additionally, for the simulation it may be
interesting to explore how much time certain actions have taken, especially when it comes
to the subsymbolic layer.

Those aspects cannot be implemented easily using the current approach with phase
constraints. Hence, the idea of introducing a central scheduling unit is a possible solution
of those requirements: The unit has a serialized ordered list of events with particular
timings. If a new event is scheduled, the time when it is executed must be known. The
scheduling unit inserts the event at the right position of the list preserving the ordered
time condition. Figure 4.3(a) illustrates this approach.

The system periodically removes the first event from the queue, sets the current time to
the time of the event and executes it which may lead to new events in the queue. The
queue organizes the right order of the events automatically. Figure 4.3(b) shows the
effect of the removal to the queue and the system time. With this approach, the simulation
of a parallel execution of ACT-R can be achieved: Each buffer action on the RHS of a
rule just schedules an event that actually performs the action at a specified time (the
current time plus its duration). The central part of the scheduler is a priority queue which
manages a list of events and returns them by time. It is described in the next section.

4.7.1 Priority Queue

A priority queue is an abstract data structure that serves objects by their priority. It
provides the following abstract methods:

11see chapters 2.1.3 and 2.1.7

77

4 Implementation of ACT-R in CHR

e1
t1

e2
t2

e3
t3

. . .

execution

e

t1 ≤ t2 ≤ t3 ≤ . . .

current time
T = t

(a)

e2
t2

e3
t3

. . .

execution

e1

current time
T = t1

(b)

Figure 4.3: Scheduling with an event queue. (a) The scheduler stores the events ei
with their corresponding times ti in a queue which is sorted by the times.
Currently, the event e is executed and the time T is t. (b) If the event e has
been executed completely, the next event – the first event e1 of the queue – is
removed. The current time is set to the time t1 and the event is executed.

enqueue with priority An object with a particular priority is inserted to the queue.
dequeue highest priority The object with the highest priority is removed from the queue

and returned.

Objects

In the implementation of the scheduler, the priority queue contains objects of the form
q(Time,Priority,Event). The priority of such a queue object is composed from the
Time and the Priority. An Event is a Prolog goal, i.e. a built-in or a CHR constraint.
The order between the elements is defined as follows:

Definition 4.4 (ordered time-priority condition). q(T1,P1,E1) ≺ q(T2,P2,E2), i.e.
the object q(T1,P1,E1) is the predecessor of the object q(T2,P2,E2), if T1 < T2. In
the case that T1 = T2, then q(T1,P1,E1) ≺ q(T2,P2,E2) if P1 > P2. So, events
with smaller times will be returned first. If two events appear at the same time, it is
possible to define a priority and the event with the higher priority will be returned first.

Representation of the Queue

The representation of the priority queue is inspired by [Frü09, pp. 38 sqq.]: An order
constraint A --> B is introduced, which states that A will be returned before B (or B is

78

4.7 Timing in ACT-R

the direct successor of A). The beginning of the queue will be defined by a start symbol
s, so the first real element is the successor of s. A possible queue could be:

1 s --> q(1,0,e1)

2 q(1,0,e1) --> q(3,7,e2)

3 q(3,7,e2) --> q(3,2,e3)

This queue achieves the ordered time-priority condition, since the queue objects are in
the correct order according to their times and priorities. It is also consistent in a sense
that it has no gaps and no object has more than one successor.

In general, some rules to make such a queue consistent can be defined, i.e. every object
only has one successor and the queue achieves the time-priority condition:

1 A --> A <=> true.

2

3 _ --> s <=> false.

4

5 A --> B, A --> C <=>

6 leq(A,B),

7 leq(B,C) |

8 A --> B,

9 B --> C.

The first rule states, that if an object is its own successor, this information can be deleted.
The second rule states, that nothing can be the predecessor of the start symbol. The last
rule is the most important one: If one object has two successors, then these connections
have to be divided into two connections according to the defined time-priority condition.
This condition can be implemented as follows:

1 leq(s,_).

2

3 % Time1 < Time2 -> event with time1 first, ignore priority

4 leq(q(Time1,_,_), q(Time2,_,_)) :-

5 Time1 < Time2.

6

7 % same time: event with higher priority first

8 leq(q(Time,Priority1,_), q(Time,Priority2,_)) :-

9 Priority1 >= Priority2.

79

4 Implementation of ACT-R in CHR

The first predicate states that the start symbol is less than every other object. The other
two rules directly implement the time-priority condition as defined in definition 4.4.

Note that two objects are considered the same, iff their time, priority and event are
syntactically the same. If an object is altered in one of the --> constraints, it has to be
edited in every other occurrence in the list to avoid gaps.

Another important property is, that the list does not have any gaps, so it must be possible
to track the queue from every element backwards to the start symbol. This condition is
not achieved by the rules above, but since a priority queue only offers two mechanisms
to modify it, a lot of those problems can be avoided:

add_q(Time,Priority,Event) Enqueues an object with the specified properties. I.e., a
new q(Time,Priority,Event) object will be created and the following con-
straint will be added: s --> q(Time,Priority,Event). The rules presented
above will move the element to the correct position since it conflicts potentially with
the former successor of the start symbol s. This leads to a linear, serialized list
achieving the time-priority condition without gaps.

1 add_q(Time,Priority,Evt) <=>

2 s --> q(Time,Priority,Evt).

de_q(X) Dequeues the first element of the queue according to the time-priority condition
and binds its value to X.

1 % queue with more than one element

2 de_q(X), s --> A, A --> B <=>

3 X = A,

4 s --> B.

5

6 % queue with only one element

7 de_q(X), s --> A <=>

8 X = A.

9

10 % empty queue

11 de_q(X) <=> X = nil.

The first object is just the successor of s, since the list has been constructed
preserving the correct order and the property, that everything starts at s. If the
first object has a successor, this object is the new first object. If there are no order
constraints left, the queue is empty and de_q returns nil.

80

4.7 Timing in ACT-R

Adding Events at Second Position

In this implementation, another default method is added for the priority queue to insert
an event which is the direct successor of the first event and hence avoids the default
enqueuing methods. It sets the time and priority automatically according to the desired
position of the new event:

after_next_event(E) Adds the event E to the queue after the first event without destroy-
ing the consistency and the time-priority condition of the queue.

To implement this method, the time and priorities have to be set in a way that the
time-priority condition does hold:

1 s --> q(Time,P1,E1) \ after_next_event(Evt) <=>

2 NP1 is P1 + 2, % increase priority of first event, so it

still has highest priority

3 P is P1 + 1, % priority of event that is added, ensured that

it is higher than of the former second event (because it

is P1+1)

4 de_q(_), % remove head of queue

5 add_q(Time,NP1,E1), % add head of queue again with new

priority. Will be first again, because it has old prio

(which is higher than prio of all successors)

6 add_q(Time,P,Evt). % add new event. Will be < than Prio of

head but it is ensured that it is higher than prio of

second event

If the first event is q(Time,P1,E1) and a new event Evt has to be added after this
event, the times of the two events are the same, the priority of the first event is P1 + 2

and the priority of the new event is P1 + 1. The first event is removed from the queue
and would be added with its new priority to the queue again, as it is with the new event.

This is correct: The first event will be the first event again, because its old priority was
higher than any other priority at that point of time. Since the new priority is even higher
than that, no other event from the queue will have a higher priority. The new event also
has a higher priority than every other event in the queue, but a lower priority than the first
event, so it will be added after the first event.

By the de_q and add_q actions it is ensured that no garbage of the old event remains in
the queue and the events are added correctly through an official method of the queue.

81

4 Implementation of ACT-R in CHR

4.7.2 Scheduler

The scheduler component is an own module that manages events by feeding a priority
queue and controls the recognize-act cycle. It also holds the current time of the system.

Current Time

The current time can be saved in a now/1 constraint. It is important that there is only
one such constraint and that time increases monotonically. Other modules can access
the time only by a get_now/1 constraint that just returns the current time saved in the
now/1 constraint. The current time cannot be set from outside, but is determined by the
last event dequeued from the priority queue.

Interface to the Scheduler

Definition 4.5 (IScheduler). The IScheduler interface provides the following methods:

Queue Management The methods add_q/3, de_q/1 and after_next_event/1

which are described above provide access to the queue of the scheduler.
Timings The setting and getting of the time by get_now/1 and now/1. The latter one

should only be used once in the initialization. The setting of the current time is
managed by the scheduler automatically.

Start next cycle The constraint nextcyc/0 is only used to initialize the first cycle and
should not be used at a later point, since the management of the recognize-act-cycle
is managed by the scheduler.

No rule If no rule was applicable, the procedural module can trigger the no_rule/0

constraint which has effects to the next conflict resolution event, as mentioned
before.

Recognize-Act Cycle

As described before, the procedural module can only fire one rule at a time. When
executing the RHS of a rule, all its actions are added to the scheduler with the time point
when their execution is finished. For example: If on the RHS of the firing rule a retrieval
request has to be performed, an event will be added to the priority queue with the time

82

4.7 Timing in ACT-R

Now + Duration, so the chunk retrieved from the declarative memory will be written to
the retrieval buffer at this time point.

After all events of the RHS have been added to the scheduler, the procedural module is
free again and therefore the next rule can fire. The event of firing will be added to the
priority queue as well by the fire constraint at the end of each production rule. The rule
will be added at the current time point, but with low priority, since it has to be ensured
that every action of the previously executed rule has been performed yet (in the sense
that a corresponding event has been added at the specified time point). In many cases,
no other rule will be applicable at this time, because most of the meaningful production
rules have to wait for the results of the preceding production rule.

Many of the buffer actions are performed immediately, so for buffer modifications or
clearings, an event with the current point of time is added to the queue. They are
performed in a certain order defined by their priority as shown in table 4.1. The request
actions are performed at last, but they perform a buffer clearing immediately and then
start their calculation which can take some time.

Table 4.1: Priorities of buffer actions
Priority Action
100 Buffer modification
50 Module requests
10 Buffer clearings

If no rule is applicable, the next time for a possible application is after having performed
the next event. So, the next fire event is scheduled directly after the first event in the
queue. This simulates the behaviour that the procedural module stays ready to fire the
next rule, without polling at every time point if a rule is applicable, but only reacting on
changes to the buffer system.

The following enumeration summarizes the recognize-act cycle with a scheduler:

1. The next event is removed from the queue, the current time is set to the time of the
event and the event is performed.

a) The dequeued event is a fire constraint: The rule that matches all its condi-
tions is fired and removes the fire constraint.

b) The actions of the rule are scheduled in the queue. Modifications and Clearings
have the current time point, requests have a time point in the future depending
on the module.

83

4 Implementation of ACT-R in CHR

c) The last action of the rule is to add a fire constraint to the queue with the
current time point and a very low priority. This simulates that the procedural
module is free again, after all in-place actions of a rule have been performed,
so the next matching rule may fire.

d) There are two possibilities:
i. The next rule matches: It will be performed like the last rule.
ii. No rule matches: The next possible time for a rule to fire is when some-

thing in the buffers has changed. This cannot happen until the next event
has been performed. So the next fire event will be added to the queue
by after_next_event which has been described above.

2. Go to point 1. This is performed until there are no events in the queue.

The following parts are necessary to implement this cycle:

Start Next Cycle The constraint nextcyc leads the system to remove the next event
from the queue and perform it. Performing is done by a call_event constraint:

1 % After an event has been performed, nextcyc is triggered.

2 %This leads to the next event in the queue to be performed.

3 nextcyc <=> de_q(Evt), call_event(Evt).

Call an Event Event calling just takes a queue element and sets the current time to the
time of the event and performs a Prolog call. Additionally, a message is printed to the
screen. After the event has been executed, the next cycle is initiated.

If the queue element is nil (i.e. no event has been in the queue), the computation is
finished and the current time is removed.

1 % no event in queue -> do nothing and remove current time

2 call_event(nil) \ now(_) <=> write(’No more events in queue.

End of computation.’),nl.

3 call_event(q(Time,Priority,Evt)), now(Now) <=>

4 Now =< Time |

5 now(Time),

6 write(Now:Priority),

7 write(’ ... ’),write(’calling event: ’), write(Evt),nl,

8 call(Evt),

9 nextcyc.

84

4.7 Timing in ACT-R

Changing the Buffer System For each buffer action, add a do_buffer_action

constraint, that actually performs the code specified in the former action. Modify the
action as follows:

1 % Schedule buffer_action

2 buffer_action(BufName, Chunk) <=>

3 get_now(Now),

4 Time is Now + Duration,

5 add_q(Time, Priority, do_buffer_action(BufName, Chunk)).

with appropriate values for Duration and Priority.

Production Rules As in the last version of the production system, each rule has the
following structure:

1 rule @

2 {conditions} \ fire <=>

3 {actions},

4 conflict_resolution.

where conflict_resolution/0 just schedules the next fire event and is defined
as:

1 conflict_resolution <=>

2 get_now(Now),

3 add_q(Now,0,fire).

As the last production rule, there has to be:

1 no-rule @

2 fire <=>

3 no_rule.

which removes the fire constraint if still present and states that no rule has been fired,
because otherwise the firing of a rule would have removed the fire constraint. If no rule
was applicable, a new fire event is scheduled after the next event:

85

4 Implementation of ACT-R in CHR

1 no_rule <=>

2 write(’No rule matches -> Schedule next conflict resolution

event’),nl,

3 after_next_event(do_conflict_resolution).

4.8 Lisp Functions

In ACT-R, it is possible to call Lisp functions in the model definitions, for example to
add chunk-types and declarative memory or to set configuration variables. Since those
functions cannot be called in the CHR/Prolog environment, there has to be a mechanism
to implement missing functions.

4.8.1 General Translation

Lisp functions are lists (indicated by round braces (and)), which have the functor
as their first element and the function arguments in the rest of the list. Hence, each
Lisp function (f arg1 arg2 ...) called in the model definition of an ACT-R model is
translated into the adding of a CHR constraint lisp_f([arg1, arg2, ...]). For all
used functions, there has to be a default implementation in the module std_lisp. In
this implementation, the concept is reduced to simple procedural calls ignoring return
values, which is adequate for most of the pure ACT-R models without the experiment
environment. Here is an example implementation of the Lisp function (chunk-type

name slot1 slot2 ...) which adds a new chunk-type to the system:

1 lisp_chunktype([Type|Slots]) <=>

2 % add type to buffer system (local module)

3 add_chunk_type(Type,Slots),

4 % add type to declarative module

5 declarative_module:add_chunk_type(Type,Slots).

Note that this function adds the chunk-types both to the declarative module and the buffer
system, since types are global to the system. Hence, every module with a chunk store
should be added to the implementation of this Lisp function.

86

4.8 Lisp Functions

4.8.2 Configuration Variables

In ACT-R, configuration variables which control the behaviour of the architecture are
set with the Lisp function (sgp :Var Val), which sets the variable Var to Val. To
handle such configuration variables, a configuration module can be added to the CHR
implementation that offers the IConfiguration interface to set variables and to ask for their
values:

Definition 4.6 (IConfiguration). The interface IConfiguration provides the following meth-
ods to access the configuration store:

Set configuration variables By calling set_conf(+Var,+Val) the configuration vari-
able Var is set to the value Val.

Get the value of a configuration variable The call of get_conf(+Var,-Val) binds
the value of the configuration variable Var to the argument Val.

The (sgp ...) call can then be translated to:

1 lisp_sgp([]) <=> true.

2 lisp_sgp([:,Var,Val|Rest]) <=>

3 set_conf(Var,Val),

4 lisp_sgp(Rest).

The Observer Pattern

Sometimes it is necessary for a module to get informed about the change of a configura-
tion variable. Therefore, the configuration module implements the Observable interface,
which offers an abstract method add_config_observer(Module,Var). Thereby a
module can register at the configuration module for update notifications of a particular
variable. If the variable is changed by a set_conf call, all observers of this variable can
be notified by the following code:

1 % collect observers

2 observer(Module,Var), set_conf(Var,_) ==> notify(Module,Var).

3

4 % actually set variable

5 set_conf(Var,Val), configuration(Var,_) <=>

6 configuration(Var,Val),

87

4 Implementation of ACT-R in CHR

7 notify_all(Var). % variable has been set -> perform pending

notifications

8 notify_all(Var), notify(Module,Var) ==>

9 Module:update. % perform all pending notifications

10 notify_all(_) <=> true. % no notifications pending, clean up

The constraint observer(Module,Var) states that the module Module observes the
variable Var. The observer modules have to declare a update/0 constraint which may
trigger some action related to the change of a configuration variable.

4.9 Subsymbolic Layer

So far, a translation scheme and a framework implementing the symbolic concepts of
ACT-R has been presented. This section extends this implementation by the subsymbolic
layer as described in section 2.2.

4.9.1 Activation of Chunks

The activation of a chunk is a numerical value that determines if a chunk is retrieved and
how long is the latency of the retrieval. The next sections describe how the concept can
be implemented in CHR.

Base-Level Learning

One part of the activation value is the base-level activation of a chunk. The value is
learned by the system and depends on practice as stated in equation (2.2):

Bi = ln

 n∑
j=1

t−dj

Presentations of a Chunk To determine the base-level value of a chunk, the time
points when it has been practiced have to be known. A chunk is considered as practiced
when it enters the declarative memory either explicitly by calling add_dm or implicitly by a

88

4.9 Subsymbolic Layer

buffer clearing. Additionally, if a chunk is merged with a chunk that enters the declarative
memory, the original chunk is strengthened (so the chunk that has been in the declarative
memory before is considered as presented).

Hence, every time a chunk enters the declarative memory, the time of this event has
to be stored. Therefore, a presentation/2 that holds the chunk name and the time
of a presentation is introduced. To simplify the use of this constraint, the procedural
constraint present/1, that stores the presentation of a chunk at the current time, can
be implemented as follows:

1 chunk(Name,Type) \ present(chunk(Name,Type,_)) <=>

2 getNow(Time),

3 presentation(Name,Time).

The add_dm command is extended by a presentation event:

1 add_dm(ChunkDef) <=>

2 add_chunk(ChunkDef),

3 present(ChunkDef).

If a chunk that is identical to a chunk already stored enters declarative memory, the
original chunk is being strengthened by:

1 identical(C1,C2) \ present(chunk(C2,_,_)) <=>

2 present(C1).

Calculating the Base-Level Value Somewhere in the process of a request, the activa-
tion of a set of chunks has to be calculated. To trigger the calculation of the activation of
one particular chunk, the trigger constraint calc_activation(Chunk,Activation)
which gets a chunk name and binds its activation value to the second argument is
introduced:

1 presentation(C,PTime), calc_activation(C,A) ==>

2 get_now(Now),

3 Time is Now - PTime,

4 base_level_part(C,Time,_,A).

5

6 calc_activation(_,_) <=> true.

89

4 Implementation of ACT-R in CHR

These two rules produce for every presentation of the chunk a base_level_part

with the name of the chunk and the time since a particular presentation has happened.
Additionally, two unbound variables are given to the part constraint: The first is a variable
that will hold an intermediate result and the second is the actual activation value that is
bound to the return value of the calc_activation constraint.

Each of those base_level_part constraints are part of the result which is the activation
value of their chunk. The following rule converts the time tj to the value t−dj as stated in
equation (2.2):

1 % if A and B not set: set B to Time^(-D). Time is the time

since the presentation of this base_level_part

2 base_level_part(_,Time,B,A) ==>

3 var(A),

4 var(B),

5 Time =\= 0 |

6 get_conf(bll,D), % decay parameter

7 B is Time ** (-D).

The result is bound to the variable B. The rule can only be applied if the intermediate
result B and the result A are not bound to any value. As soon as the intermediate result
has been calculated, two base_level_part constraints can be merged by adding their
B values up according to the base-level learning equation (2.2):

1 % collect base level parts and add them together. Only if Bs

are set

2 base_level_part(C,_,B1,A), base_level_part(C,_,B2,A) <=>

3 nonvar(B1),

4 nonvar(B2),

5 var(A) |

6 B is B1+B2,

7 base_level_part(C,_,B,A).

If this rule is applied to exhaustion, only one base_level_part constraint will remain.
Hence, below this rule, a rule for this single constraint can be introduced:

1 % if B is set, A is not set and there are no more

base_level_parts of this chunk: calculate actual base level

activation and store it in A. Only possible if B is =\= 0.

90

4.9 Subsymbolic Layer

2 base_level_part(_,_,B,A) <=>

3 var(A),

4 nonvar(B),

5 B =\= 0 |

6 A is log(B).

Note that the rule has to be executed after the last rule cannot be applied anymore,
otherwise it would take an intermediate result as the actual result.

With this set of rules, the base-level activation can be calculated according to its definition.
There are some special cases that can be handled implementation specifically (all cases
where the guards prevent the rules from firing are such cases that may need some kind
of special treatment).

Fan Values In the calculation process, the fan value fanj of a chunk j may be needed.
This value is the number of chunks where j appears in the slots plus one for the chunk
itself. So, a chunk that does not appear in any slots has the fan value 1, a chunk that
appears in the slots of another chunk has the value 2, etc. This can be achieved in CHR
as follows:

1 chunk(C,_) ==> fan(C,1).

2

3 chunk_has_slot(_,_,C), chunk(C,_) ==> fan(C,1).

4

5 fan(C,F1), fan(C,F2) <=>

6 F is F1+F2,

7 fan(C,F).

The first rule adds a fan of 1 for each chunk. The next rule adds a fan of 1 for a chunk
C for each slot where C is the value. In the last rule, two fan values for one particular
chunk are summed up to a single fan value. Note that this has to be considered when
deleting a chunk: For every chunk in the slots of the deleted chunk, the fan value must
be decreased by one.

As noted before in section 4.2.2 on page 38, primitive elements are stored as chunks
of the type chunk that has no slots. This is important for the fan calculation as it is
presented here, since the fan value depends on the presence of a chunk constraint

91

4 Implementation of ACT-R in CHR

to calculate the proper fan value. Otherwise, the fan value of primitive elements would
always be off by one.

Associative Weights The activation calculation also depends on a contextual compo-
nent, the associative weights. For a value Sji, which describes the associative strength
from a chunk j to a chunk i, the following rules apply:

1 fan(J,F), chunk(I,_), chunk_has_slot(I,_,J) \ calc_sji(J,I,Sji)

<=>

2 I \== J |

3 Sji is 2 - log(F).

4

5 calc_sji(_,_,Sji) <=> Sji=0.

The calc_sji(J,I,Sji) gets a chunk J and a chunk I, calculates their associative
weight from J to I and binds it to Sji. The first rule can be applied if J appears in the
slots of chunk I. Then, the associative weight is calculated according to equation (2.4):

Sji = S − ln(fanj)

The value of S is assumed to be 2 in this rule; a configurable constant for S as described
in section 4.8.2 can be introduced easily.

If J does not appear in the slots of chunk I, then SJI := 0 by definition (line 5).

Calculating the Overall-Activations To calculate the overall-activations, the constraint
calc_activations/2 is introduced. It gets a list of chunks and a context and initiates
the computation of the overall activation values of the chunks in the list regarding the
context. Remember that for the associative weights, the current context plays a role,
since all associative weights from the chunks (the js) in the context to the chunk whose
activation is calculated are summed up (see section 2.2.1 for details).

1 calc_activations([],_) <=>

2 true.

3

4 calc_activations([C|Cs],Context) <=>

5 calc_activation(C,B),

6 calc_activations(Cs,Context),

92

4.9 Subsymbolic Layer

7 context(C,Context,Assoc),

8 length(Context,N),

9

10 Assoc1 is 1/N * Assoc,

11 A is B + Assoc1,

12 max(C,A).

The first rule is the base-case that simply finishes the calculation. The second rule takes
the first chunk in the list and calculates its base-level activation B by calc_activation.
The next line triggers the computation for the rest of the chunks in the list (using the same
context).

For the chunk C the context component, i.e. the associative weight, is calculated by
the call of context(C,Context,Assoc) in line 7, which binds the associative weight
to Assoc. I.e. the result of

∑
j∈C Sji (C is the context as represented by Context) is

bound to the variable Assoc.

Afterwards, the attentional weighting Wj is considered in lines 8 and 10. The variable
Assoc1 now holds the value of Wj ·

∑
j∈C Sji. The overall activation of chunk C is – as

defined in equation (2.3) – calculated in line 11 by adding the base-level activation to the
sum of the associative weightings of the chunk. Eventually, in line 12, the activation of
this chunk is added to the set of potential maximum candidates of all activation values.
The maximum then is calculated as follows:

Listing 4.9: Calculate highest activation of all matching chunks

1 max(_,A1) \ max(_,A2) <=>

2 A1 >= A2 |

3 true.

This deletes all potential candidates for the maximal activation value that have a smaller
value than one of the other candidates. In [Frü09, pp. 19 sqq.] this algorithm is presented
in more detail.

Threshold and Maximum The request is only successful, if there is a matching chunk
that has an activation higher than a specified threshold. In the following, it is assumed
that the threshold is saved in a threshold/1 constraint.

93

4 Implementation of ACT-R in CHR

In the last section, the chunk with the highest activation among all matching chunks is
calculated and stored in a max/2 constraint (there is only one max constraint after the
rule in listing 4.9 has been applied to exhaustion). The constraint get_max/2 triggers the
final maximum computation and binds the chunk and its activation to its parameters:

1 get_max(MN,MA), max(N,A), threshold(RT) <=>

2 A >= RT |

3 MN=N,

4 MA=A.

5

6 get_max(MN,MA), max(_,A), threshold(RT) <=>

7 A < RT |

8 MN=nil,

9 % set activation to threshold

10 MA=RT,

11 write(’No chunk has high enough threshold’),nl.

12

13 get_max(MN,MA), threshold(RT) <=>

14 MN=nil,

15 % set activation to threshold if no chunk matches

16 MA=RT,

17 write(’No chunk matches.’),nl.

The first rule is applied in case of the activation of the maximal chunk being higher than
the threshold. Then, the chunk and its activation are simply returned.

In the second rule, the matching chunk with the highest activation does not pass the
threshold. Then no chunk can be returned, so the result of the get_max request is nil.
The activation of this empty chunk is set to the threshold, because the retrieval latency,
i.e. the time the retrieval request takes depends on the threshold in case that no chunk
could be found. So this value is used later.

The last rule will only be applied if both of the other rules did not match. This is the
case, if there has no max constraint been put to the store, which only occur, if no chunk
matched the request. This also leads to an empty chunk as a result.

New Module Request Interface Requests that regard the subsymbolic layer need
some additional information and return some additional results: First, somehow the
Context, i.e. all chunks that are in the values of the buffer chunks, have to be passed

94

4.9 Subsymbolic Layer

from the buffer system to the requested module (in this case the declarative module, but
it may be possible that there are other modules which need the context). Additionally, the
requested module has to return the time it takes, since every request may take a different
time that is only known by the module, but has to be considered by the scheduler of the
procedural module.

The interface from section 4.4.2 changes to:

Listing 4.10: The final version of the interface IModule

1 module_request(+BufName, +ChunkDef, +Context, -ResChunk,

-ResState, -ResTime)

where Context is a list of the chunk names that are in the current context (as defined in
section 2.2.1 on page 21) and ResTime is bound to the time the request will take. As
described in section 4.7.2 on page 85, the buffer actions are divided in two phases: The
first only schedules the second phase at the time when the action is finished, whereas
the second phase actually performs the action, i.e. the changes to the buffers.

A similar method as for the buffer modifications or clearings is applied for buffer requests:
They are divided into three rules with three trigger constraints – buffer_request/2,
start_request/2 and do_buffer_request/2 – similar to the division into two rules
as already described in section 4.7.2 on page 85 for the other actions. The difference
is that, since a request may take a certain time, the first rule schedules the start of the
request with the priority 0, so all other types of buffer actions have been performed. The
request is actually performed immediately when calling start_request, but the effects
to the requested buffer are applied not until do_buffer_request is called, which is
scheduled at the result time (ResTime) of the request. This is due to the dependence of
the latency of a request on the activation values of the matching chunks, so the request
has to be performed in advance to calculate the correct time it will take, so the result has
to be known before the request ends in simulation time. This yields the following code in
the buffer system:

Listing 4.11: Schedule the start of a buffer request

1 % just add start_request event with current time

2 buffer_request(BufName, Chunk) <=>

3 get_now(Now),

4 add_q(Now,0,start_request(BufName,Chunk)).

95

4 Implementation of ACT-R in CHR

Listing 4.12: Execute the buffer request and schedule time the result is applied

1 % start the request

2 buffer(BufName, ModName, _) \ start_request(BufName, Chunk) <=>

3 write(’Started buffer request ’),

4 write(BufName),nl,

5 get_now(Now),

6 buffer_state(BufName,busy),

7 do_buffer_clear(BufName), % clear buffer immediately

8 get_context(Context),

9 ModName:module_request(BufName, Chunk, Context,

ResChunk,ResState,RelTime),

10 performed_request(BufName, ResChunk, ResState), % save result

of request

11 Time is Now + RelTime,

12 add_q(Time, 0, do_buffer_request(BufName, Chunk)).

In line 8 the current context is calculated and bound in form of a list of chunk names to
the variable Context.

Listing 4.13: Apply the results of the buffer request

1 % apply the results

2 do_buffer_request(BufName, _), buffer(BufName, ModName, _),

buffer_state(BufName,_), performed_request(BufName,

ResChunk, ResState) <=>

3 write(’performing request: ’),write(BufName),nl,

4 (ResState=error,

5 buffer(BufName, ModName, nil),

6 buffer_state(BufName,error) ;

7

8 ResState = free,

9 ResChunk = chunk(ResChunkName,_,_),

10 add_chunk(ResChunk),

11 buffer(BufName, ModName, ResChunkName),

12 buffer_state(BufName,free)).

Note that a buffer request has the lowest priority of all buffer actions, as shown in table 4.1.
If the request was performed before the buffer modifications and clearings have taken
effect, the wrong context would be used for the activation calculations.

96

4.9 Subsymbolic Layer

Adapting the Retrieval Request With the now defined methods, the overall activation
of a chunk can be calculated. The module request for the retrieval buffer as introduced in
listing 4.8 can be adapted as follows:

Listing 4.14: Retrieval request with subsymbolic calculations

1 module_request(retrieval, chunk(Name,Type,Slots), Context,

ResChunk, ResState, RelTime) <=>

2 find_chunk(Name,Type,Slots),

3 collect_matches(Res),

4 % trigger activation calculation for matching chunks

regarding given context

5 calc_activations(Res,Context),

6

7 % find threshold for maximum check

8 get_conf(rt,RT),

9 threshold(RT),

10

11 get_max(MaxChunk,MaxAct),

12

13 % Return resulting chunk, state and time

14 return_chunk(MaxChunk,ResChunk),

15 get_state(ResChunk,ResState),

16 calc_time(MaxAct,RelTime).

Find matching chunks (lines 2 and 3) First of all, all matching chunks are searched
and saved in a list called Res, similarly to the symbolic approach in listing 4.8.

Calculate Activations of the matching chunks (line 5) The activations of the match-
ing chunks in the list Res are computed regarding the context that has been handed
over by the request.

Get the threshold (lines 8 and 9) The current threshold is retrieved from the configura-
tion and a threshold constraint is placed in the store. The next steps will need a
threshold constraint present.

Find chunk with highest activation (line 11) The chunk with the highest activation is
saved in MaxChunk, its activation value in MaxAct.

Return a chunk specification (line 14) The request is supposed to return a complete
chunk specification in the variable ResChunk. This is achieved by return_chunk.

Return the resulting state of the buffer (line 15) The resulting state ResState of the
requested retrieval buffer is free, if a matching chunk has been found and error

if no chunk matches the request:

97

4 Implementation of ACT-R in CHR

1 get_state(nil,error).

2 get_state(_,free).

Return the time the request takes (line 16) The time depends on the activation of the
chunk. If no matching chunk has been found, the activation is assumed to be the
threshold value. This is already achieved by the maximum calculation as described
above. According to equation (2.5), the resulting time is computed as follows:

1 calc_time(Act,ResTime) :-

2 get_conf(lf,F),

3 ResTime=F*exp(-Act).

Configuration of the Retrieval

ACT-R offers some configuration variables which influence the retrieval process. In the
CHR implementation, some of those configuration variables are implemented in the
system according to the configuration infrastructure as described in section 4.8.2. In
ACT-R, configuration variables are set with the command (sgp :Var Val) which sets
the value of the variable Var to Val.

Turn on the subsymbolic layer The variable esc that can be set to t for true and nil

for false controls the activation of the subsymbolic layer for retrieval requests. In
CHR, the declarative module observes the value of this variable by the observer
interface presented in section 4.8.2. Depending on the value of the variable, the
constraint subsymbolic/0 is present or not:

1 % subsymbolic layer turned on -> add subsymbolic constraint

2 set_subsymbolic(t), subsymbolic <=>

3 subsymbolic.

4 set_subsymbolic(t) <=>

5 subsymbolic.

6

7 % subsymbolic layer turned off -> remove subsymbolic

constraint

8 set_subsymbolic(nil), subsymbolic <=>

9 true.

10 set_subsymbolic(nil) <=>

11 true.

98

4.9 Subsymbolic Layer

For each rule only involved in the subsymbolic layer, the subsymbolic constraint
is added to its kept head, so the rule only fires if the subsymbolic layer is turned on.

Retrieval threshold The retrieval threshold θ is set by the configuration variable rt.
Latency factor The latency factor F is set by the configuration variable lf.
Proportion of θ and F The configuration system automatically sets the latency factor

if the retrieval threshold is set. If an individual value for F should be set, then the
automatically set value has to be overwritten after the threshold has been set.

1 latency-factor-by-threshold @

2 set_conf(rt,RT) ==>

3 LF is 0.35*exp(RT),

4 set_conf(lf,LF).

Decay parameter The decay parameter d is set by the configuration variable bll.

4.9.2 Conflict Resolution and Production Utility

If there are competing strategies that match a current state, the production system selects
the rule with the highest production utility to fire. This process is called conflict resolution
in the terminology of production rule systems and is described in the following.

Conflict Resolution

In [Frü09, pp. 151 sqq.] a general implementation of conflict resolution in CHR is described.
This approach can be easily adapted to the needs of ACT-R. Replace every production
rule

1 {buffer tests} \ fire <=> {guard} | {actions},

conflict_resolution.

with two rules

Listing 4.15: Translation scheme for production rules regarding conflict resolution

1 delay-name @

2 fire, {buffer tests} ==> {guard} | conflict_set(name).

3 name @

4 {buffer tests}, apply_rule(name) <=> {guard} | {actions},

conflict_resolution.

99

4 Implementation of ACT-R in CHR

The first rule adds the matching rule to a conflict set without computing anything, the
second rule actually performs the calculations as soon as the apply_rule constraint is
present.

At the end, add a rule

1 no-rule @

2 fire <=> conflict_set([]), choose.

As soon as the fire constraint is present (so the recognize cycle/conflict resolution
process begins), each matching rule adds a conflict_set/1 constraint with its name.
The last rule finishes the recognize cycle by deleting the fire constraint after all rules
that match had their chance to add a conflict_set constraint. Then an empty
conflict_set constraint, indicated by [], is added. At the end of this phase, the
constraint store contains a bunch of conflict_set constraints that represent the
matching rules plus an empty conflict_set constraint. If no rule matches, there is
only an empty conflict_set constraint in the store.

The last rule also triggers the choosing process by adding the constraint choose. The
following rules handle the choosing process:

1 conflict_set(_) \ conflict_set([]) <=> true.

2

3 find-max-utility @ production_utility(P1,U1),

production_utility(P2,U2), conflict_set(P1) \

conflict_set(P2) <=>

4 U1 >= U2 |

5 true.

The first rule deletes the empty conflict_set constraint, if there has been an applica-
ble production rule which is recognized by other conflict_set constraints present.

The second rule assumes, that for each production rule p in the procedural memory
there is a production_utility(p,u) constraint that holds the utility value u of the
production p. If there are two conflict_set constraints in the store, the one with the
higher utility value will be kept and the other will be removed from the store.

If the rules have been applied to exhaustion, there is only one conflict_set constraint
in the store – either an empty one ore one with the name of a rule. The following rules
handle the choosing process:

100

4.9 Subsymbolic Layer

1 choose, conflict_set([]) <=>

2 no_rule.

3

4 choose @ choose, conflict_set(P) <=>

5 P \== [] |

6 get_now(Now),

7 Time is Now + 0.05,

8 add_q(Time,0,apply_rule(P)).

The first rule is only applicable, if there were no matching rules and the empty conflict-
set, indicated by the conflict_set([]) constraint, is still present. Then this fact is
indicated by a no_rule constraint.

In the second rule, the firing of the last remaining rule is scheduled 50 ms from the current
time, as it is described in section 2.1.3. The event is the apply_rule(P) constraint,
which leads the second rule in listing 4.15 to fire, which performs the actions of the rule.

When the chosen production rule is applied, its actions are performed and eventually a
conflict_resolution constraint is added to the store. This constraint leads the next
conflict resolution event to being scheduled:

1 now(Time) \ conflict_resolution <=> add_q(Time,-10,fire).

The event is scheduled at the current time with very low priority, i.e. a priority lower than
all requests, so all the actions of the rule have had the chance to be executed. If there
was no matching rule, the no_rule constraint is in the store. This leads the next conflict
resolution event to be scheduled after the next event (which may lead to a change of the
system state):

1 no_rule <=> after_next_event(fire).

Note that the described method of implementing the conflict resolution process of ACT-R,
matches exactly the description in the reference manual:

“The procedural module will automatically schedule conflict-resolution events.
The first one is scheduled at time 0 and a new one is scheduled after each
production fires. If no production is selected during a conflict-resolution event

101

4 Implementation of ACT-R in CHR

then a new conflict-resolution event is scheduled to occur after the next
change occurs.” [Botb, p. 156]

In [Frü09], the conflict_set and apply_rule constraints also have the values of the
variables that have been bound in the matching of the rule in the collecting phase:12

1 delay-name @

2 fire,

3 {buffer tests}

4 ==> {guard} |

5 conflict_set(rule(name, {Variables in the head of the rule})).

6 name @

7 {buffer tests},

8 apply_rule(rule(name, {Variables in the head of the rule}))

9 <=> {guard} |

10 {actions}, conflict_resolution.

This is due to the fact that during the conflict resolution process other rules may have
changed the constraint store and the rule might not be applicable anymore. However, in
ACT-R the procedural module is a serial bottleneck, so no rules that change the state of
the buffer system can be applied during the conflict resolution. Additionally, in [Frü09]
the rules that were in the conflict set but have not been applied, remain in the conflict set
for the next cycle and are applied, if they have at some point the highest priority in the
set and are still applicable (ensured by the bound variables in apply_rule). In ACT-R,
this does not play a role, since the recognize-act cycle is defined serially and only one
rule is applied in each cycle. In the next cycle, all rules are checked again for matching
heads and the computations are performed on the new values. Note that the problem of
trivial non-termination of propagation rules described in [AFS13, p. 5], which has to be
considered when changing the operational order of rule applications in CHR, does not
play a role for ACT-R, since it does not implement propagation rules.

Computing the Utility Values

As described in section 2.2.2, rules can have a certain amount of reward that can
be distributed among all rules that have been applied since the last reward has been
distributed. The reward a rule can distribute, can be saved in a reward/2 constraint. If a

12The example is slightly modified from the original in [Frü09]: In the original, the name of the rule does not
play a role and the priorities are known in advance

102

4.9 Subsymbolic Layer

rule is applied, the time of application can be saved in a to_reward/2 constraint which
states that the rule in the constraint has been applied and therefore receives a part of the
next reward as soon as it occurs:

1 apply_rule(P) ==> P \== [] | get_now(Now), to_reward(P,Now).

Note that the apply_rule/1 constraint from the last section is used to determine when a
rule is fired. When a rule that can distribute a reward is applied, the reward is triggered:

1 apply_rule(P), reward(P,R) ==>

2 P \== [] |

3 trigger_reward(R).

This will reward all rules that have a to_reward/2 constraint in the store which leads to
a new production utility value:

1 trigger_reward(R) \ production_utility(P,U),

to_reward(P,FireTime) <=>

2 calc_reward(R,FireTime,Reward),

3 get_conf(alpha,Alpha),

4 NewU is U + Alpha*(Reward-U),

5 production_utility(P,NewU).

6

7 calc_reward(R,FireTime,Reward) :-

8 get_now(Now),

9 Reward is R - (Now-FireTime).

Note that in line 4 the utility is adapted by the utility learning rule as shown in equation (2.7).
The reward the rule receives is calculated by the Prolog predicate in lines 7 sqq.: The
more time passed since the rule application, the less is the reward of the rule.

In the end, there has to be a rule that cleans up the reward trigger, after all the rules have
been rewarded. This ensures, that the next to_reward constraints are not immediately
consumed by the last reward trigger:

1 trigger_reward(_) <=> true.

103

4 Implementation of ACT-R in CHR

Configuration of the Conflict Resolution

There are some methods to influence the conflict resolution process using the ACT-R
command (spp ...) that sets values for individual production rules. This command is
translated into CHR as described in section 4.8. Additionally, there are some configuration
variables that can be set – as described in section 4.8.2 – by the command (sgp ...):

Setting the utility of a rule Utilities can be set statically by the user by the ACT-R com-
mand (spp P :u U) which sets the utility of the rule P to U.

Setting the reward of a rule The amount of reward a rule can distribute is set by the
user. By default, no rules have a reward to trigger. With the ACT-R command
(spp P :reward R), the reward of the rule P is set to R. This command is also
implemented among the standard lisp methods.

Default values and turning the utility mechanisms off At the moment, there is no
command in the CHR implementation that allows to turn off the conflict resolution
mechanisms: The system sets a default utility value for each production rule and no
rewards in the initialization process (the rule init @ run <=> ... as described
in section 4.6). The user is able to set other initial utility values and rewards for par-
ticular rules. If no rewards are set, the utility values will remain at their initial values.
Hence, if the user does not set any utilities or rewards, each rule will have the same
utility value that does not change. If there are competing rules, the conflict resolution
process will pick one. This can be regarded as turned off utility mechanisms.

Learning rate The learning rate α is set by the command (sgp :alpha A) that sets
the configuration variable alpha to A.

Public Methods of the Conflict Resolution

Since the scheduler has to have access to the constraints fire/0 and apply_rule/1 to
control the timing conflict resolution, those constraints are added to the ICore interface as
described in section 4.4.4. Additionally, the constraint set_production_utility/2 is
added to the ICore interface, because the utilities may be set from outside the procedural
module initially.

4.10 Compiler

With the implementation of the basic ACT-R concepts, a simple compiler has been created
to automate the translation of Lisp ACT-R rules to CHR rules according to the translation

104

4.10 Compiler

schemes defined in section 4.3. The compiler has been built using Prolog and CHR.
However, it still lacks suitable translation of some of the details in the procedural module
presented in section 4.3.3.

4.10.1 Basic Idea

The basic idea of the compiler is that it gets an ACT-R model definition written in the
Lisp-like ACT-R syntax and produces the correspondent CHR rules. The model should
be executable by just loading the translation and typing in the query run. Hence,
the translated model should somehow load the CHR framework simulating ACT-R, for
instance the modules, the buffer system, the scheduler, etc.

4.10.2 Compiling

The compiler consists of three parts: A tokenizer, a parser and an actual translation
component. Those three parts are described individually in the following sections.

Tokenizer

The tokenizer gets the file with the model definition as input and does some preprocessing
on it: From the input – a sequence of characters – it builds a list of tokens. Tokens are
separated by white-space (or by special characters) and can be one of the following
character sequences in the input:

Special Characters are individual tokens and are defined as all allowed characters
that are not letters, numbers or white-space. In ACT-R, the symbols !, (,),

+, -, =, >, ? are considered special characters. Some special characters of
ACT-R are missing in this list, but are not implemented in the compiler yet.

Keywords are treated like a special character, but contain more than one symbol. In ACT-
R, one of the keywords is ==>, separating the LHS from the RHS of a production
rule.

Identifiers Every character sequence which starts with a letter and contains only letters
or numbers. An identifier ends, if a special character or a white-space is read from
the input. The - character is an exception, because it can be used within identifiers,
although it is a special character.
Example: count, addition-fact, chunk1

105

4 Implementation of ACT-R in CHR

Numbers Every word that only contains digits 0-9. As for every token, a number ends,
if a white-space, a special character or a keyword occurs.

Example 4.10 (Tokenizing some input). The input

1 (p name

2 =buffer>

3 s v

4 ==>

5 +buffer>

6 s new-value

7 -buffer2>

8)

produces the output list

1 [’(’,p,name,=,buffer,>,s,v,==>,+,buffer,>,s,new-value,

-,buffer2,>,’)’]

The basic idea for the implementation of such a tokenizer is described in [LM, pp. 19 sqq.].
It basically follows a deterministic finite automaton with the state transitions as illustrated
in figure 4.4.

In Prolog, text input can be handled as a list of ASCII character codes. To classify those
characters according to the list above, some predicates and facts can be used:

1 digit(D) :- 46 < D, D < 59.

2 special_char(33). %!

3 special_char(40). %(

4 ...

The tokenizer gets a list of such character codes and returns a list of tokens:

1 getTokens([], []).

2

3 getTokens([X|Xs], Ts) :-

4 white_space(X),

5 getTokens(Xs,Ts).

6

106

4.10 Compiler

startstart identifier

number

fail

break

letter

digit

otherwise

letter, number, {−}

break \{-}

otherwise

number

break

letter

*

Figure 4.4: The finite automaton implemented by the tokenizer. The labels of the arrows
are sets of symbols, e.g. letter denotes all characters that are letters. The
class break is the union of the classes white-space, keyword and special
character.

7 getTokens(In, [T|Ts]) :-

8 getToken(start, In, Rest, T), !,

9 getTokens(Rest, Ts).

The first predicate is the base case. The second rule just drops the white-space and calls
the tokenizing predicate again with the rest of the list. The last predicate only applies if
the other predicates failed. It starts the inspection of the symbols by calling the predicate
getToken(Q,In,Rest,T) which gets the start state as argument Q and the current
input list In and returns the rest of the list and the result token T, after some input has
been processed. The getToken predicate starts in the start state and then decides
deterministically which of the state transitions is chosen by inspecting the first character
from the input list. It then remains in the state according to the state transition diagram
in figure 4.4 until it reads a character that forces it to leave the state. Then it binds the
remaining input to the list Rest and all the characters that have been consumed in this
state to the result token T. For the identifiers, the following implementation is used:

107

4 Implementation of ACT-R in CHR

1 getToken(start, [X|Xs],Rest,LT) :-

2 letter(X),

3 % find rest of word

4 getToken(identifier, Xs,Rest,[X],T),

5 % convert uppercase letters to lowercase

6 downcase_atom(T,LT).

7

8 getToken(identifier, [C|R],Rest,S,T) :-

9 (letter(C);

10 digit(C);

11 minus(C)),

12 getToken(identifier,R,Rest,[C|S],T).

13

14 getToken(identifier,Rest,Rest,S,W) :-

15 % tokens are accumulated in wrong order

16 reverse(S,S1),

17 atom_chars(W,S1).

The first predicate checks, if the list starts with a letter. It then changes the state to
identifier, because only identifiers start with a letter. The predicate getToken/5

has an accumulator list as an additional argument to the original getToken/4 predicate.
It remains in the state identifier, if it reads a letter, a digit or the symbol - and accumulates
the read symbol in a list (second predicate). If the second predicate cannot be applied
any more, because the input list starts with a symbol that is not allowed for an identifier,
the third predicate binds this remaining input to the list Rest and returns the reversed
accumulated characters as token. The first predicate then changes the case of the token
to lowercase and returns it to getTokens, which changes the state to start and begins
the next cycle, until the complete input has been consumed. The implementation for
digits is analogous.

The arrow keyword is handled separately by a predicate which, as shown in the following
listing, consumes the three characters ==> at once. This predicate has to be the first to
be checked.

1 getToken(start, [61,61,62|Rest], Rest, ’==>’).

Note that the processing fails, if a not-allowed symbol is read from input, so all of the
getToken predicates fail.

108

4.10 Compiler

Parser

The parser takes a list of tokens as input and returns a parse tree. It is implemented
by the use of Definite Clause Grammar Rules (DCG rules), which allow to directly write
grammar-like rules like:

1 s --> [a], s, [b].

2 s --> [].

This program recognizes the language {anbn | n ≤ 0}. The query s([a,a,b,b],[])
returns true, whereas s([a,b,b],[]) returns false. An introduction to DCG rules
is given in [Ogb].

Hence, the grammar in section 4.3.3 can be translated almost directly to such DCG
rules. However, this only returns if the input list is a word of the defined grammar. To
get a parse-tree out of the parsing process, the rules can be extended according to the
following scheme:

1 a(a(B,C)) --> b(B), c(C).

2 b(b(B)) --> ...

3 c(c(C)) --> ...

I.e., the path taken by the program is accumulated in an argument as a term. A result of
the example could be a(b(...),c(...)).

Translation Component

In the translation component, CHR rules are generated from the parse-tree according to
the methods discussed in this chapter. For the output, a writer that has been presented in
the exercises of the Rule-Based Programming lecture at the University of Ulm by Amira
Zaki [Chr] has been used.

The translation component also organizes the complete parsing process: It loads the
input file, calls the tokenizer and the parser and then recursively analyzes the resulting
parsing tree. Whenever an ACT-R production rule has been processed completely, it
produces a CHR rule using the writer.

109

4 Implementation of ACT-R in CHR

For the variables in the rules, it uses a symbol table for each rule to ensure that the same
variable is always translated to the same Prolog variable in the result.

4.10.3 Limitations of the Current Implementation

The current implementation of the compiler can be improved at some points. First of all,
it can only process a subset of the grammar that actually is a subset of the simplified
grammar shown in section 4.3.3. For example, it is only able to parse the negation
slot-modifier, the others are not implemented yet, but can be added easily in the future.

The formulation of the grammar also differs from the original definition, so for future
work, it would be advantageous to assimilate the two grammars. Additionally, lists have
been implemented very complicated in the DCG rule grammar and could be simplified by
using actual Prolog lists instead of constructs like tests --> test, tests; test,
which make the parse tree very complicated. Instead, the tree could be simplified to
tests([t1, ... , tn]).

Another problem is that duplicate slot tests as shown in section 4.3.3 on page 57 cannot
be handled by the compiler yet.

The recursive approach of the translation component can get very confusing the more
rules are added, because a lot of help data has to be accumulated and passed between
the different recursion levels (sometimes upwards, sometimes downwards). Another
approach could be to store the data that is parsed at a certain level in the constraint store.
Eventually, some CHR rules put the parts together in the end.

Finally, the compiler does not produce any error messages, but only fails silently if there
are syntactical problems in the input. For usability, it would be helpful to add meaningful
error messages.

110

5 Example Models

In this chapter, two ACT-R models are translated into CHR and the results are discussed.
The examples are taken from The ACT-R Tutorial [Actb].

5.1 The Counting Model

The first model is an extension of the example presented in section 2.1.6. The code has
been published in unit 1 of The ACT-R Tutorial [Actb] as shipped with the source code of
the vanilla ACT-R 6.0 implementation. Basically, the counting process is modeled by a
set of static facts that a person has learned and retrieves for the counting process from
declarative memory. The following model definition is discussed:

Listing 5.1: ACT-R code of the counting example

1 (define-model count

2

3 (chunk-type count-order first second)

4 (chunk-type count-from start end count)

5

6 (add-dm

7 (b ISA count-order first 1 second 2)

8 (c ISA count-order first 2 second 3)

9 (d ISA count-order first 3 second 4)

10 (e ISA count-order first 4 second 5)

11 (f ISA count-order first 5 second 6)

12 (first-goal ISA count-from start 2 end 4)

13)

14

15 (P start

16 =goal>

17 ISA count-from

111

5 Example Models

18 start =num1

19 count nil

20 ==>

21 =goal>

22 count =num1

23 +retrieval>

24 ISA count-order

25 first =num1

26)

27

28 (P increment

29 =goal>

30 ISA count-from

31 count =num1

32 - end =num1

33 =retrieval>

34 ISA count-order

35 first =num1

36 second =num2

37 ==>

38 =goal>

39 count =num2

40 +retrieval>

41 ISA count-order

42 first =num2

43 !output! (=num1)

44)

45

46 (P stop

47 =goal>

48 ISA count-from

49 count =num

50 end =num

51 ==>

52 -goal>

53 !output! (=num)

54)

55

56 (goal-focus first-goal)

57)

112

5.1 The Counting Model

First of all, in line 1 the model definition is initiated and a model name is given. Line 3 sq.
add the two necessary chunk-types: A chunk-type for the goal-chunks and a chunk-type
for the actual declarative data. These chunk-type definitions are global to the system,
i.e. they are added to all chunk stores. The goal-chunks have the slots start and end

that encode from which number the counting process should start and where it should
end. The value in the slot count saves the current number of the counting process,
analogously as in section 2.1.6. Then the chunks are added from line 6 to 13. They are
representations of the order of the natural numbers from one to six. The last chunk is the
goal-chunk. Note that only the start and end numbers are specified, the current number
will be set to nil.

The first production rule start in line 15 sqq. can only be applied if the goal has an
empty count slot, but an actual value in the start slot. This will be valid for the initial
state as explained later. The production states a request for the first count-fact with the
start number in its first slot and sets the current number in the goal to the start number.
The other slots in the goal buffer remain the same.

In line 28 sqq. the main rule increment is defined. It assumes that a count-order
fact which matches the current number in the goal has been retrieved. Additionally, the
counting process must not end with this number, indicated by the negated slot test on the
slot end. The action part then states a new request for the next count-fact and increments
the current number. Once the rule is applicable, it will be applicable as long there are
count-facts in the declarative memory and the specified end has not been reached yet.

The last production rule stop in line 46 is applicable, as soon the increment rule
cannot be applied anymore due to the fact that the specified end of the counting process
has been reached. Then, the last number will be printed and the goal buffer will be
cleared.

The last function call in line 56 is an initialization method, which simply puts the previously
defined chunk first-goal into the goal buffer. This leads to an initial state where the
rule start is applicable. The output of the model is:

1 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL

2 0.000 PROCEDURAL CONFLICT-RESOLUTION

3 0.050 PROCEDURAL PRODUCTION-FIRED START

4 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL

5 0.050 DECLARATIVE START-RETRIEVAL

6 0.050 DECLARATIVE RETRIEVED-CHUNK C

7 0.050 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C

113

5 Example Models

8 0.050 PROCEDURAL CONFLICT-RESOLUTION

9 0.100 PROCEDURAL PRODUCTION-FIRED INCREMENT

10 2

11 0.100 PROCEDURAL CLEAR-BUFFER RETRIEVAL

12 0.100 DECLARATIVE START-RETRIEVAL

13 0.100 DECLARATIVE RETRIEVED-CHUNK D

14 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL D

15 0.100 PROCEDURAL CONFLICT-RESOLUTION

16 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT

17 3

18 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL

19 0.150 DECLARATIVE START-RETRIEVAL

20 0.150 DECLARATIVE RETRIEVED-CHUNK E

21 0.150 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL E

22 0.150 PROCEDURAL CONFLICT-RESOLUTION

23 0.200 PROCEDURAL PRODUCTION-FIRED STOP

24 4

25 0.200 PROCEDURAL CLEAR-BUFFER GOAL

26 0.200 PROCEDURAL CONFLICT-RESOLUTION

27 0.200 ------ Stopped because no events left to

process

The source file in listing 5.1 can be translated by the provided CHR compiler which yields
the following result:

Listing 5.2: Auto-generated CHR code of the counting example

1 :- include(’actr_core.pl’).

2 :- chr_constraint run/0, fire/0.

3

4 delay-start @

5 fire,

6 buffer(goal,_,A),

7 chunk(A,count-from),

8 chunk_has_slot(A,start,B),

9 chunk_has_slot(A,count,nil)

10 ==>

11 B\==nil |

12 conflict_set(start).

13

114

5.1 The Counting Model

14 start @

15 buffer(goal,_,A),

16 chunk(A,count-from),

17 chunk_has_slot(A,start,B),

18 chunk_has_slot(A,count,nil)

19 \ apply_rule(start)

20 <=>

21 B\==nil |

22 buffer_change(goal,chunk(_,_,[(count,B)])),

23 buffer_request(retrieval,chunk(_,count-order,[(first,B)])),

24 conflict_resolution.

25

26 delay-increment @

27 fire,

28 buffer(goal,_,A),

29 chunk(A,count-from),

30 chunk_has_slot(A,count,C),

31 chunk_has_slot(A,end,D),

32 buffer(retrieval,_,B),

33 chunk(B,count-order),

34 chunk_has_slot(B,first,C),

35 chunk_has_slot(B,second,E)

36 ==>

37 C\==nil,

38 D\==C,

39 E\==nil |

40 conflict_set(increment).

41

42 increment @

43 buffer(goal,_,A),

44 chunk(A,count-from),

45 chunk_has_slot(A,count,C),

46 chunk_has_slot(A,end,D),

47 buffer(retrieval,_,B),

48 chunk(B,count-order),

49 chunk_has_slot(B,first,C),

50 chunk_has_slot(B,second,E)

51 \ apply_rule(increment)

52 <=>

53 C\==nil,

115

5 Example Models

54 D\==C,

55 E\==nil |

56 buffer_change(goal,chunk(_,_,[(count,E)])),

57 buffer_request(retrieval,chunk(_,count-order,[(first,E)])),

58 output(C),

59 conflict_resolution.

60

61 delay-stop @

62 fire,

63 buffer(goal,_,A),

64 chunk(A,count-from),

65 chunk_has_slot(A,count,B),

66 chunk_has_slot(A,end,B)

67 ==>

68 B\==nil |

69 conflict_set(stop).

70

71 stop @

72 buffer(goal,_,A),

73 chunk(A,count-from),

74 chunk_has_slot(A,count,B),

75 chunk_has_slot(A,end,B)

76 \ apply_rule(stop)

77 <=>

78 B\==nil |

79 buffer_clear(goal),

80 output(B),

81 conflict_resolution.

82

83 init @

84 run <=> true |

85 set_default_utilities([stop,increment,start]),

86 add_buffer(retrieval,declarative_module),

87 add_buffer(goal,declarative_module),

88 lisp_chunktype([chunk]),

89 lisp_chunktype([count-order,first,second]),

90 lisp_chunktype([count-from,start,end,count]),

91 lisp_adddm([[b,isa,count-order,first,1,second,2],

92 [c,isa,count-order,first,2,second,3],

93 [d,isa,count-order,first,3,second,4],

116

5.1 The Counting Model

94 [e,isa,count-order,first,4,second,5],

95 [f,isa,count-order,first,5,second,6],

96 [first-goal,isa,count-from,start,2,end,4]]),

97 lisp_goalfocus([first-goal]),

98 now(0),

99 conflict_resolution,

100 nextcyc.

101

102 no-rule @

103 fire <=>

104 true |

105 conflict_set([]),

106 choose.

First of all, it is interesting to note, that there are some more CHR rules than production
rules in the original code in listing 5.1. One very obvious extension is the rule init in
line 83. This rule initializes the model according to section 4.6. First, it sets the default
utilities for each of the production rules and creates the used buffers in the buffer system.
Then, the Lisp functions from the original model definitions are called in their CHR
versions, according to section 4.8. Those are the methods which create chunk-types and
add the initial declarative knowledge to the declarative module. Note that also the artificial
chunk-type chunk with no slots is created. The last Lisp call moves the first-goal

chunk to the goal buffer. Finally, the current time is set to zero, a conflict resolution event
is scheduled in the queue (according to section 4.9.2) and the recognize-act cycle is
started by nextcyc, which will dequeue the first event from the scheduler as described
in section 4.7.2.

Furthermore, each production rule from the original module has two correspondent CHR
rules in the translation due to the conflict resolution process described in section 4.9.2.
The first rule delays the execution by adding the rule – if applicable – to the conflict set
as soon as a new conflict resolution event (represented by the CHR constraint fire)
has been triggered. The second rule actually performs the actions of the production
rule if it has been chosen by the conflict resolution process (indicated by the constraint
apply_rule/1). After the rule application, each rule schedules the next conflict resolu-
tion event by adding conflict_resolution to the store. The guards of the production
rules check that each tested slot actually has a value (so its value is not nil) as described
in section 4.3.3 (see page 62). In the rule increment, for example, a negated slot test
is translated to a guard check according to the pattern presented in section 4.3.3 (see
page 59).

117

5 Example Models

The rule no-rule in line 102 is the last rule tested in the collecting process of the conflict
resolution. It removes the fire constraint and triggers the choosing process after it has
added an empty rule to the conflict set. This is important for the choosing process to
detect if no rule was applicable in this conflict resolution phase.

The output of the model is the following (pretty printed by hand):

1 ?- run.

2 0 ... calling event: do_conflict_resolution

3 going to apply rule start

4 0.05 ... calling event: apply_rule(start)

5 firing rule start

6 0.05 ... calling event:

do_buffer_change(goal,chunk(_G17029,_G17030,[(count,2)]))

7 0.05 ... calling event:

start_request(retrieval,chunk(_G17476,count-order,[

(first,2)]))

8 Started buffer request retrieval

9 clear buffer retrieval

10 0.05 ... calling event: do_conflict_resolution

11 No rule matches -> Schedule next conflict resolution

event

12 1.05 ... calling event:

do_buffer_request(retrieval,chunk(_G17476,count-order,[

(first,2)]))

13 Retrieved chunk c

14 Put chunk c into buffer

15 1.05 ... calling event: do_conflict_resolution

16 going to apply rule increment

17 1.1:0 ... calling event: apply_rule(increment)

18 firing rule increment

19 output:2

20 1.1 ... calling event:

do_buffer_change(goal,chunk(_G33694,_G33695,[(count,3)]))

21 1.1 ... calling event:

start_request(retrieval,chunk(_G34139,count-order,[

(first,3)]))

22 Started buffer request retrieval

23 clear buffer retrieval

24 1.1 ... calling event: do_conflict_resolution

118

5.1 The Counting Model

25 No rule matches -> Schedule next conflict resolution

event

26 2.1 ... calling event:

do_buffer_request(retrieval,chunk(_G34139,count-order,[

(first,3)]))

27 Retrieved chunk d

28 Put chunk d into buffer

29 2.1 ... calling event: do_conflict_resolution

30 going to apply rule increment

31 2.15 ... calling event: apply_rule(increment)

32 firing rule increment

33 output:3

34 2.15 ... calling event:

do_buffer_change(goal,chunk(_G25849,_G25850,[(count,4)]))

35 2.15 ... calling event:

start_request(retrieval,chunk(_G26294,count-order,[

(first,4)]))

36 Started buffer request retrieval

37 clear buffer retrieval

38 2.15 ... calling event: do_conflict_resolution

39 going to apply rule stop

40 2.1999 ... calling event: apply_rule(stop)

41 firing rule stop

42 output:4

43 2.1999 ... calling event: do_buffer_clear(goal)

44 clear buffer goal

45 2.1999 ... calling event: do_conflict_resolution

46 No rule matches -> Schedule next conflict resolution

event

47 3.15 ... calling event:

do_buffer_request(retrieval,chunk(_G26294,count-order,[

(first,4)]))

48 performing request: retrieval

49 Retrieved chunk e

50 Put chunk e into buffer

51 3.15 ... calling event: do_conflict_resolution

52 No rule matches -> Schedule next conflict resolution

event

53 No more events in queue. End of computation.

119

5 Example Models

Note that the output is very similar to the original output, especially the order of rule
applications and events. However, the timings are not accurate yet, since some constants
and special cases are different from the original implementation. This can be fixed and
does not really harm the theory.

To demonstrate the subsymbolic layer, the original code is extended as follows:

1 (define-model count

2 (sgp :esc t)

3

4 (chunk-type count-order first second)

5 (chunk-type goal-chunk goal start end count)

6

7 (add-dm

8 ...

9 (d ISA count-order first 3 second 4)

10 (d1 ISA count-order first 3 second 5)

11 ...

12 (second-goal ISA goal-chunk goal training1)

13)

14

15 (P train1

16 =goal>

17 ISA goal-chunk

18 goal training1

19 ==>

20 =goal>

21 goal training2

22 +retrieval>

23 ISA count-order

24 first 3

25 second 4

26)

27

28 (P train2

29 =goal>

30 ISA goal-chunk

31 goal training2

32 =retrieval>

33 ISA count-order

120

5.1 The Counting Model

34 first 3

35 second 4

36 ==>

37 =goal>

38 ISA goal-chunk

39 start 2

40 end 4

41 goal count

42 -retrieval>

43)

44

45 (P start

46 { defined as in listing 5.1 }

47)

48

49 (P increment

50 { defined as in listing 5.1 }

51)

52

53 (P incrementx

54 =goal>

55 ISA goal-chunk

56 goal count

57 count =num1

58 - end =num1

59 =retrieval>

60 ISA count-order

61 first =num1

62 second =num2

63 ==>

64 -goal>

65 !output! (wrong)

66)

67

68 (P stop

69 { defined as in listing 5.1 }

70)

71

72 (goal-focus second-goal)

73

121

5 Example Models

74 (spp increment :u 8 incrementx :u 0)

75 (spp stop :reward 15)

76)

The subsymbolic layer is turned on and chunk d1 which encodes a false count fact is
added. Additionally, there are two training rules which just retrieve the fact d to increase
its activity and then reset the state to the initial state of the model in listing 5.1. The
goal is set to a chunk, which leads the first training rule to match at first. Furthermore, a
broken rule which matches the same context as the original increment rule is added.
The initial utility of the correct increment rule is set to 8, whereas the corrupted rule
gets an initial value of 0. Additionally, the reward the rule stop can distribute is set to 15,
so reaching the final state is rewarded and all rules which lead to that state get a certain
amount of this reward. The full code can be found in appendix B.2.

When executing the resulting CHR model, this yields the following output (times have
been cut after four digits):

1 ?- run.

2 0 ... calling event: do_conflict_resolution

3 going to apply rule train1

4 0.05 ... calling event: apply_rule(train1)

5 firing rule train1

6 0.05 ... calling event:

do_buffer_change(goal,chunk(_G26126,_G26127,[

(goal,training2)]))

7 0.05 ... calling event:

start_request(retrieval,chunk(_G26573,count-order,[

(first,3), (second,4)]))

8 Started buffer request retrieval

9 clear buffer retrieval:nil

10 0.05 ... calling event: do_conflict_resolution

11 No rule matches -> Schedule next conflict resolution

event

12 0.0974 ... calling event:

do_buffer_request(retrieval,chunk(_G26573,count-order,[

(first,3), (second,4)]))

13 performing request: retrieval

14 Retrieved chunk d

15 Put chunk d into buffer

16 0.0974 ... calling event: do_conflict_resolution

122

5.1 The Counting Model

17 going to apply rule train2

18 0.1474 ... calling event: apply_rule(train2)

19 firing rule train2

20 0.1474 ... calling event:

do_buffer_change(goal,chunk(_G44291,goal-chunk,[(start,2),

(end,4), (goal,count)]))

21 0.1474 ... calling event: do_buffer_clear(retrieval)

22 clear buffer retrieval:d

23 0.1474 ... calling event: do_conflict_resolution

24 going to apply rule start

25 0.1974 ... calling event: apply_rule(start)

26 firing rule start

27 0.1974 ... calling event:

do_buffer_change(goal,chunk(_G26238,_G26239,[(count,2)]))

28 0.1974 ... calling event:

start_request(retrieval,chunk(_G26683,count-order,[

(first,2)]))

29 Started buffer request retrieval

30 clear buffer retrieval:nil

31 0.1974 ... calling event: do_conflict_resolution

32 No rule matches -> Schedule next conflict resolution

event

33 0.2575 ... calling event:

do_buffer_request(retrieval,chunk(_G26683,count-order,[

(first,2)]))

34 performing request: retrieval

35 Retrieved chunk c

36 Put chunk c into buffer

37 0.2575 ... calling event: do_conflict_resolution

38 going to apply rule increment

39 0.3075 ... calling event: apply_rule(increment)

40 firing rule increment

41 output:2

42 0.3075 ... calling event:

do_buffer_change(goal,chunk(_G44015,_G44016,[(count,3)]))

43 0.3075 ... calling event:

start_request(retrieval,chunk(_G44460,count-order,[

(first,3)]))

44 Started buffer request retrieval

45 clear buffer retrieval:c

123

5 Example Models

46 0.3075 ... calling event: do_conflict_resolution

47 No rule matches -> Schedule next conflict resolution

event

48 0.3657 ... calling event:

do_buffer_request(retrieval,chunk(_G44460,count-order,[

(first,3)]))

49 performing request: retrieval

50 Retrieved chunk d

51 Put chunk d into buffer

52 0.3657 ... calling event: do_conflict_resolution

53 going to apply rule increment

54 0.4157 ... calling event: apply_rule(increment)

55 firing rule increment

56 output:3

57 0.4157 ... calling event:

do_buffer_change(goal,chunk(_G68222,_G68223,[(count,4)]))

58 0.4157 ... calling event:

start_request(retrieval,chunk(_G68667,count-order,[

(first,4)]))

59 Started buffer request retrieval

60 clear buffer retrieval:d

61 0.4157 ... calling event: do_conflict_resolution

62 going to apply rule stop

63 0.4657 ... calling event: apply_rule(stop)

64 firing rule stop

65 triggered reward for rule: stop

66 triggered reward for rule: increment

67 triggered reward for rule: increment

68 triggered reward for rule: start

69 triggered reward for rule: train2

70 triggered reward for rule: train1

71 reward triggered by rule stop

72 output:4

73 0.4657 ... calling event: do_buffer_clear(goal)

74 clear buffer goal:first-goal

75 0.4657 ... calling event: do_conflict_resolution

76 No rule matches -> Schedule next conflict resolution

event

124

5.1 The Counting Model

77 0.5029 ... calling event:

do_buffer_request(retrieval,chunk(_G36175,count-order,[

(first,4)]))

78 performing request: retrieval

79 Retrieved chunk e

80 Put chunk e into buffer

81 0.5029 ... calling event: do_conflict_resolution

82 No rule matches -> Schedule next conflict resolution

event

83 No more events in queue. End of computation.

Due to the training of chunk d which increased the activation of this chunk according
to the base-level learning equation, the other matching chunk d1 is not being retrieved
in the computational process. Furthermore, the rule increment is applied instead of
incrementx, although both are matching the context, due to the higher intitial utility
value of increment. The reward of the rule stop leads to the following utilities at the
end of the computation (taken from the final CHR store):

1 production_utility(train1,6.916852474603892)

2 production_utility(train2,6.9363461811027785)

3 production_utility(start,6.946346181102779)

4 production_utility(increment,10.480367881320248)

5 production_utility(stop,7.0)

6 production_utility(incrementx,0)

All rules except from increment and incrementx have been initialized with an utility
value of 5. The rules start, increment, stop and the training productions have a
higher utility value than in the beginning, whereas the other rules have their initial values.
This is the case because only the rules start and increment have lead to the final
state and therefore have received the reward distributed by the stop rule.

Note that the times in the output may vary from the execution of the same model in the
vanilla implementation, since some constants are set differently.

125

5 Example Models

5.2 Modeling a Taxonomy of Animals and Their
Properties

In this example, a taxonomy of categories and properties, illustrated in figure 5.1, is
modeled [Actb, unit 1, pp. 24 sqq.]. The goal chunks of this model represent queries like
“Is a canary a bird?” or “Is a shark dangerous?”.

animal

fish

shark

dangerous swims

gills

swims

salmon

edible swims

moves

skin

bird

canary

yellow sings

wings

flies

ostrich

can’t fly tall

Figure 5.1: An example taxonomy of categories and properties. The categories are
marked by rectangles, the pure text nodes in the tree are properties. For
example, a shark is member of the category fish and has the direct properties
dangerous and swims and inherits the properties gills, swims, moves and
skin from its parent categories.

Chunks which encode a property of an object are of the form illustrated in figure 5.2(a):
Each property chunk has a slot object which encodes the name of the object. The slot
attribute holds the name of the attribute like for example dangerous or locomotion. In the
value slot, the value of the attribute is defined. The value of the attribute locomotion is
swimming in this example. The chunk in figure 5.2(b) encodes the membership of the
object shark in the category fish.

To answer a query like “Is a canary an animal?” which cannot be answered directly from
a property chunk, the model must support a recursive search in the tree. The full model
code and translation can be found in appendix B.3. The model uses the concept of
duplicate slot tests as described in section 4.3.3 (see page 57). However, the compiler
cannot handle those tests in the current version and hence the compiled model has to be
edited using the pattern from section 4.3.3:

126

5.2 Modeling a Taxonomy of Animals and Their Properties

p1:
propertyshark

dangerous

true

object

attribute

value

(a)

p3:
propertyshark

category

fish

object

attribute

value

(b)

Figure 5.2: Two chunks of the type property encoding properties of the object shark
as defined in figure 5.1. (a) This chunk encodes the fact, that a shark is
dangerous. (b) The membership of an object in a category is also encoded
by a property chunk. The attribute for this category membership property is
category and the value encodes the name of the category.

1 =retrieval>

2 ISA property

3 object =obj1

4 attribute category

5 value =obj2

6 - value =cat

has to be translated to:

1 chain-category @

2 buffer(goal,_,A),

3 chunk(A,is-member),

4 chunk_has_slot(A,object,C),

5 chunk_has_slot(A,category,D),

6 chunk_has_slot(A,judgment,pending),

7 buffer(retrieval,_,B),

8 chunk(B,property),

9 chunk_has_slot(B,object,C),

10 chunk_has_slot(B,attribute,category),

11 chunk_has_slot(B,value,E)

12 \ apply_rule(chain-category)

13 <=>

127

5 Example Models

14 C\==nil,

15 D\==nil,

16 E\==nil,

17 E\==D |

18 ...

I.e., the duplicate slot test for the slot value is reduced to one single head constraint
(chunk_has_slot(B,value,E)) and a guard, which states that =obj2 6= =cat (the
built-in check E \== D). After this small change, the model can be run with various
queries, i.e. goal chunks as described in [Actb, unit 1, pp. 24 sqq.] and appendix B.3.

128

6 Conclusion

The goal of this thesis was to investigate the cognitive architecture ACT-R to develop a
translation scheme and an implementation of its fundamental concepts using Constraint
Handling Rules. It has been shown that the fundamental aspects of the system can
be implemented very elegantly in CHR and the translation process can be automated.
Hence, this work enables modelers to translate their ACT-R models without changing
them and they are executable immediately. Furthermore, with the translation of the rules,
modelers can directly utilize the various analysis methods of CHR programs and analyze
the implications of their models formally. The behaviour of the models and the framework
can be adapted easily to individual needs by just changing some rules for example for
some special cases of the base-level learning or the initialization. Since the framework
consists of a manageable set of elegant rules, even deep changes of the underlying
cognitive architecture beyond the default parameters are possible.

Another goal was to facilitate the comparison of rule-based systems. As described before
in the description of the procedural module (see chapter 4.3), the production rules of ACT-
R avoid a lot of common problems of production rule systems like negation-as-absence
and local variables. This is due to the – compared to other rule-based systems – simple
architecture of the basic rules. For instance, the system does not allow to introduce new
variables on the right hand side of a rule. Hence, all checks on the left hand side of an
ACT-R production rule are simple matchings or comparisons of known values. This leads
to very simple guard checks in the CHR translation; a lot of rules can even be reduced
to a simple matching problem which is already supported automatically by CHR. The
actions of a production rule are very limited, since they only affect the buffer system,
i.e. an implementation only has to offer a limited amount of actions which can then be
translated very easily.

One of the most complicated aspects of ACT-R implementations is the timing and the
scheduling of conflict-resolution and module request events. However, even those
concepts can be implemented elegantly using trigger constraints. The conflict resolution
of ACT-R can be implemented by automated rule compilation, which produces two CHR
rules out of one production rule. I.e., there is no unreasonable blow-up in the number of
rules.

129

6 Conclusion

Thus, the implementation offers an elegant and adaptable cognitive architecture which
sticks very close to the fundamental aspects of the ACT-R theory and reference imple-
mentation. It facilitates model analysis and comparison of the ACT-R production rule
system to other rule-based formalisms.

Future Work This work has presented some of the fundamental concepts of ACT-R
and mechanisms of translating them to CHR. However, there are some parts of the
theory and common implementations which have not been regarded in this thesis. Simple
ACT-R production rules without modified slot tests can be translated correctly. At the
moment, the compiler lacks of translation methods for some allowed modifiers. Rules with
duplicate slot tests cannot be translated correctly. Section 4.10.3 gives a more detailed
overview of the problems of the compiler.

ACT-R furthermore provides an experiment environment which allows the modeler to
create graphical frontends which can be used by both ACT-R models and humans. This
environment is called ACT-R GUI Interface (AGI) [Bota] and communication is imple-
mented by a network interface. The perceptual/motor modules usually are used in
combination with the AGI and therefore have not been implemented, yet. The implemen-
tation is also lacking the imaginal module, since the fundamental concepts can be shown
using only the declarative and the goal module.

Additionally, only a subset of the production rule grammar has been implemented, yet, so
modification requests, strict harvesting, explicit variable bindings and evaluation functions
which may produce side-effects have been ignored in the current implementation and
may be part of future versions.

In future work, the concepts of skill acquisition, i.e. the creation of new procedural
knowledge, especially the concept of production rule compilation, may be investigated in
addition. Furthermore, the possibilities of the analysis of ACT-R rules and the evaluation
of experiments may be inspected.

130

Bibliography

[Abo] About ACT-R. URL: http://act-r.psy.cmu.edu/about/ (visited on
08/19/2013).

[Acta] The ACT-R Homepage. URL: http://act-r.psy.cmu.edu/ (visited on
03/22/2013).

[Actb] The ACT-R Tutorial. 2012. URL:
http://act-r.psy.cmu.edu/actr6/units.zip.

[AFS13] Slim Abdennadher, Ghada Fakhry, and Nada Sharaf. “Implementation of the
Operational Semantics for CHR with User-defined Rule Priorities”. In: CHR
’13: Proc. 10th Workshop on Constraint Handling Rules. Ed. by
Henning Christiansen and Jon Sneyers. K.U.Leuven, Department of
Computer Science, Technical report CW 641, 07/2013, pp. 1–12.

[And+04] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass,
Christian Lebiere, and Yulin Qin. “An Integrated Theory of the Mind”. In:
Psychological Review 111.4 (2004), pp. 1036–1060. ISSN: 0033-295X. DOI:
10.1037/0033-295X.111.4.1036. URL:
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-

295X.111.4.1036 (visited on 04/24/2013).

[And07] John R. Anderson. How can the human mind occur in the physical universe?
English. Oxford University Press, 2007. ISBN: 978-0-19-539895-3.

[AR99] John R. Anderson and Lynne M. Reder. “The fan effect: New results and new
theories”. In: JOURNAL OF EXPERIMENTAL PSYCHOLOGY GENERAL
128 (1999), 186–197. URL: http://www.andrew.cmu.edu/user/
reder/publications/99_jra_lmr_2.pdf (visited on 05/05/2013).

[ARL96] John R. Anderson, Lynne M. Reder, and Christian Lebiere. “Working
memory: Activation limitations on retrieval”. In: Cognitive psychology 30.3
(1996), 221–256. URL: http://citeseerx.ist.psu.edu/viewdoc/

131

http://act-r.psy.cmu.edu/about/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/actr6/units.zip
http://dx.doi.org/10.1037/0033-295X.111.4.1036
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.111.4.1036
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.111.4.1036
http://www.andrew.cmu.edu/user/reder/publications/99_jra_lmr_2.pdf
http://www.andrew.cmu.edu/user/reder/publications/99_jra_lmr_2.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.6397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.6397&rep=rep1&type=pdf

Bibliography

download?doi=10.1.1.5.6397&rep=rep1&type=pdf (visited on
04/24/2013).

[AS00] John R. Anderson and Christian D. Schunn. “Implications of the ACT-R
learning theory: No magic bullets”. In: Advances in instructional psychology:
Educational design and cognitive science. Ed. by R. Glaser. Vol. 5. Hillsdale,
NJ: Lawrence Erlbaum Associates, 2000, pp. 1–33.

[BG10] Marcello Balduccini and Sara Girotto. “Formalization of psychological
knowledge in answer set programming and its application”. In: Journal of
Theory and Practice of Logic Programming (TPLP) 10.4-6 (2010), 725–740.
URL: http://journals.cambridge.org/production/action/
cjoGetFulltext?fulltextid=7834603 (visited on 04/24/2013).

[Bota] Dan Bothell. ACT-R 6.0 AGI Manual. Department of Psychology, Carnegie
Mellon University. Pittsburgh, Pennsylvania 15213.

[Botb] Dan Bothell. ACT-R 6.0 Reference Manual – Working Draft. Department of
Psychology, Carnegie Mellon University. Pittsburgh, Pennsylvania 15213.

[Chr] The CHR Homepage. URL:
http://www.constraint-handling-rules.org (visited on
08/10/2013).

[Frü09] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press,
08/2009. ISBN: 9780521877763. URL:
http://www.constraint-handling-rules.org.

[Frü10] Thom Frühwirth. CHR – a common platform for rule-based approaches.
2010. URL: http://www.informatik.uni-
ulm.de/pm/fileadmin/pm/home/fruehwirth/chr-book-slides-

chap6.pdf (visited on 08/26/2013).

[Jaca] Benefits of jACT-R (part of the FAQ section of the homepage). URL:
http://jactr.org/node/50 (visited on 08/13/2013).

[Jacb] The Homepage of jACT-R. URL: http://jactr.org/ (visited on
08/12/2013).

[Java] About ACT-R: The Java Simulation & Development Environment. URL:
http://cog.cs.drexel.edu/act-r/about.html (visited on
08/13/2013).

132

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.6397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.6397&rep=rep1&type=pdf
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=7834603
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=7834603
http://www.constraint-handling-rules.org
http://www.constraint-handling-rules.org
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/chr-book-slides-chap6.pdf
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/chr-book-slides-chap6.pdf
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/chr-book-slides-chap6.pdf
http://jactr.org/node/50
http://jactr.org/
http://cog.cs.drexel.edu/act-r/about.html

Bibliography

[Javb] ACT-R: The Java Simulation & Development Environment – Homepage. URL:
http://cog.cs.drexel.edu/act-r/ (visited on 08/12/2013).

[LM] James Lu and Jerud J. Mead. Prolog – A Tutorial Introduction. Computer
Science Department, Bucknell University. Lewisburg, PA 17387.

[New90] Allen Newell. Unified theories of cognition. Cambridge, MA, USA: Harvard
University Press, 1990. ISBN: 0-674-92099-6.

[Ogb] Anne Ogborn. Using Definite Clause Grammars in SWI-Prolog. URL:
http://www.pathwayslms.com/swipltuts/dcg/ (visited on
08/12/2013).

[PS07] Luís Moniz Pereira and Ari Saptawijaya. “Modelling morality with prospective
logic”. In: Procs. 13th Portuguese Intl.Conf. on Artificial Intelligence
(EPIA’07), LNAI. Springer, 2007.

[RT05] M Rutledge-Taylor. “Can ACT-R realize ‘Newell’s dream’?” In: Proceedings of
the 27th annual meeting of the Cognitive Science Society. 2005.

[RW72] R. A. Rescorla and A. W. Wagner. “A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement”. In:
Classical Conditioning II: Current Research and Theory. Ed. by A. H. Black
and W. F. Prokasy. New York: Appleton-Century-Crofts, 1972. Chap. 3,
pp. 64–99.

[Sne+10] Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. “As
Time Goes By: Constraint Handling Rules – A Survey of CHR Research
between 1998 and 2007”. In: Theory and Practice of Logic Programming
10.1 (2010), pp. 1–47. DOI: 10.1017/S1471068409990123.

[Sun08] Ron Sun. “Introduction to Computational Cognitive Modeling”. In: The
Cambridge Handbook of Computational Psychology. Ed. by Ron Sun. New
York: Cambridge University Press, 2008, pp. 3–19. URL:
http://www.cogsci.rpi.edu/~rsun/folder-files/sun-CHCP-

intro.pdf (visited on 07/15/2013).

[SW06] Terrence C. Stewart and Robert L. West. “Deconstructing ACT-R”. In:
Proceedings of the Seventh International Conference on Cognitive Modeling.
2006, 298–303. URL:
http://actr.psy.cmu.edu/papers/641/stewartPaper.pdf

(visited on 04/24/2013).

133

http://cog.cs.drexel.edu/act-r/
http://www.pathwayslms.com/swipltuts/dcg/
http://dx.doi.org/10.1017/S1471068409990123
http://www.cogsci.rpi.edu/~rsun/folder-files/sun-CHCP-intro.pdf
http://www.cogsci.rpi.edu/~rsun/folder-files/sun-CHCP-intro.pdf
http://actr.psy.cmu.edu/papers/641/stewartPaper.pdf

Bibliography

[SW07] Terrence C. Stewart and Robert L. West. “Deconstructing and reconstructing
ACT-R: Exploring the architectural space”. In: Cognitive Systems Research
8.3 (09/2007), pp. 227–236. ISSN: 13890417. DOI:
10.1016/j.cogsys.2007.06.006. URL: http://linkinghub.
elsevier.com/retrieve/pii/S1389041707000253 (visited on
04/24/2013).

[Swi] The SWI-Prolog Homepage. URL: http://www.swi-prolog.org/
(visited on 08/10/2013).

[TL03] Niels A. Taatgen and Frank J. Lee. “Production compilation: A simple
mechanism to model complex skill acquisition”. In: Human Factors: The
Journal of the Human Factors and Ergonomics Society 45.1 (2003), 61–76.
URL: http://hfs.sagepub.com/content/45/1/61.short (visited on
04/05/2013).

[TLA06] Niels A. Taatgen, C. Lebiere, and J.R. Anderson. “Modeling Paradigms in
ACT-R”. In: Cognition and Multi-Agent Interaction: From Cognitive Modeling
to Social Simulation. Cambridge University Press, 2006, pp. 29–52. URL:
http://act-r.psy.cmu.edu/papers/570/SDOC4697.pdf (visited
on 04/05/2013).

[Whi] Jacob Whitehill. Understanding ACT-R – an Outsider’s Perspective. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.184.8589&rep=rep1&type=pdf (visited on 03/22/2013).

134

http://dx.doi.org/10.1016/j.cogsys.2007.06.006
http://linkinghub.elsevier.com/retrieve/pii/S1389041707000253
http://linkinghub.elsevier.com/retrieve/pii/S1389041707000253
http://www.swi-prolog.org/
http://hfs.sagepub.com/content/45/1/61.short
http://act-r.psy.cmu.edu/papers/570/SDOC4697.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.8589&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.8589&rep=rep1&type=pdf

A CD Content

Thesis The thesis can be found in the folder thesis. It contains the LATEX source
files. The base document is thesis.tex, the individual chapters can be found
in chapters. To compile the files, a lot of packages are needed. For example,
the graphics are produced with TikZ, so make sure, all necessary packages are
installed on your system.

CHR-ACT-R The source of the implementation presented in this work can be found in
the directory CHR-ACT-R/src. It is separated into two parts: the compiler and the
framework.
• The compiler is in the directory compiler. It can be started by consulting
actr2chr.pl in SWI-Prolog. The query compile_file(f). compiles the
file f. There are several example model files in the directory of the compiler
which all start with the prefix example_.
• The framework can be found in the directory core. To load a model, the

compiled model file has to be consulted in SWI-Prolog. There are several
compiled example models all starting with the prefix example_. Make sure
that the models are in the same folder as the framework. The query run. runs
the model.

135

B Executable Examples

This appendix provides some of the examples that appeared in the work with a minimal
environment that represents the current context where the examples appeared.

B.1 Rule Order

In this example, the need of a phase constraint (fire/0) is illustrated. For the query

1 ?- chunk(c,foo), chunk_has_slot(c,s1,v1), chunk(c2,bar),

chunk_has_slot(c2,s,v), buffer(b2,c2), buffer(b1,c).

the example yields a wrong result. If uncommenting the rules with the fire constraint
instead of the rules without, the result will be correct. See section 4.3.3 on page 53.

Listing B.1: Rule order example

1 :- use_module(library(chr)).

2

3 :- chr_type chunk_def ---> nil; chunk(any, any, slot_list).

4 :- chr_type list(T) ---> []; [T | list(T)].

5 :- chr_type slot_list == list(pair(any,any)). % a list of

slot-value pairs

6 :- chr_type pair(T1,T2) ---> (T1,T2).

7

8 :- chr_type lchunk_defs == list(chunk_def).

9

10 :- chr_constraint buffer/2, buffer_change/2, alter_slots/2,

alter_slot/3, chunk/2, chunk_has_slot/3,fire.

11

12 % Handle buffer_change

137

B Executable Examples

13 buffer(BufName, OldChunk) \ buffer_change(BufName,

chunk(_,_,SVs)) <=>

14 alter_slots(OldChunk,SVs).

15

16 alter_slots(_,[]) <=> true.

17 alter_slots(Chunk,[(S,V)|SVs]) <=>

18 alter_slot(Chunk,S,V),

19 alter_slots(Chunk,SVs).

20

21 alter_slot(Chunk,Slot,Value), chunk_has_slot(Chunk,Slot,_) <=>

22 chunk_has_slot(Chunk,Slot,Value).

23

24 alter_slot(Chunk,Slot,Value) <=>

25 false. % since every chunk must be described completely, Slot

cannot be a slot of the type of Chunk

26 %chunk_has_slot(Chunk,Slot,Value).

27

28 % first example without fire:

29

30 buffer(b1,C),

31 chunk(C,foo),

32 chunk_has_slot(C,s1,v1)

33 ==>

34 buffer_change(b1,chunk(_,_,[(s1,v2)])),

35 buffer_change(b2,chunk(_,_,[(s,x)])).

36

37 buffer(b1,C),

38 chunk(C,foo),

39 chunk_has_slot(C,s1,v2)

40 ==>

41 buffer_change(b2,chunk(_,_,[(s,y)])),

42 buffer_change(b1,chunk(_,_,[(s1,v3)])).

43

44 % example with fire (uncomment it and add comments to the rules

above)

45

46 % buffer(b1,C),

47 % chunk(C,foo),

48 % chunk_has_slot(C,s1,v1)

49 % \ fire

138

B.2 Subsymbolic Layer

50 % <=>

51 % buffer_change(b1,chunk(_,_,[(s1,v2)])),

52 % buffer_change(b2,chunk(_,_,[(s,x)])),

53 % fire.

54 %

55 % buffer(b1,C),

56 % chunk(C,foo),

57 % chunk_has_slot(C,s1,v2)

58 % \ fire

59 % <=>

60 % buffer_change(b2,chunk(_,_,[(s,y)])),

61 % buffer_change(b1,chunk(_,_,[(s1,v3)])),

62 % fire.

B.2 Subsymbolic Layer

Listing B.2: Counting example with subsymbolic layer and training

1 :- include(’actr_core.pl’).

2 :- chr_constraint run/0, fire/0.

3

4 delay-train1 @

5 fire,

6 buffer(goal,_,A),

7 chunk(A,goal-chunk),

8 chunk_has_slot(A,goal,training1)

9 ==>

10 conflict_set(train1).

11

12 train1 @

13 buffer(goal,_,A),

14 chunk(A,goal-chunk),

15 chunk_has_slot(A,goal,training1)

16 \ apply_rule(train1)

17 <=>

18 true |

19 buffer_change(goal,chunk(_,_,

20 [(goal,training2)])),

139

B Executable Examples

21 buffer_request(retrieval,

22 chunk(_,count-order,

23 [(first,3),

24 (second,4)])),

25 conflict_resolution.

26

27 delay-train2 @

28 fire,

29 buffer(goal,_,A),

30 chunk(A,goal-chunk),

31 chunk_has_slot(A,goal,training2),

32 buffer(retrieval,_,B),

33 chunk(B,count-order),

34 chunk_has_slot(B,first,3),

35 chunk_has_slot(B,second,4)

36 ==>

37 true |

38 conflict_set(train2).

39

40 train2 @

41 buffer(goal,_,A),

42 chunk(A,goal-chunk),

43 chunk_has_slot(A,goal,training2),

44 buffer(retrieval,_,B),

45 chunk(B,count-order),

46 chunk_has_slot(B,first,3),

47 chunk_has_slot(B,second,4)

48 \ apply_rule(train2)

49 <=>

50 true |

51 buffer_change(goal,chunk(_,goal-chunk,

52 [(start,2),

53 (end,4),

54 (goal,count)])),

55 buffer_clear(retrieval),

56 conflict_resolution.

57

58 delay-start @

59 fire,

60 buffer(goal,_,A),

140

B.2 Subsymbolic Layer

61 chunk(A,goal-chunk),

62 chunk_has_slot(A,goal,count),

63 chunk_has_slot(A,start,B),

64 chunk_has_slot(A,count,nil)

65 ==>

66 B\==nil |

67 conflict_set(start).

68

69 start @

70 buffer(goal,_,A),

71 chunk(A,goal-chunk),

72 chunk_has_slot(A,goal,count),

73 chunk_has_slot(A,start,B),

74 chunk_has_slot(A,count,nil)

75 \ apply_rule(start)

76 <=>

77 B\==nil |

78 buffer_change(goal,

79 chunk(_,_,[(count,B)])),

80 buffer_request(retrieval,

81 chunk(_,count-order,[(first,B)])),

82 conflict_resolution.

83

84 delay-increment @

85 fire,

86 buffer(goal,_,A),

87 chunk(A,goal-chunk),

88 chunk_has_slot(A,goal,count),

89 chunk_has_slot(A,count,C),

90 chunk_has_slot(A,end,D),

91 buffer(retrieval,_,B),

92 chunk(B,count-order),

93 chunk_has_slot(B,first,C),

94 chunk_has_slot(B,second,E)

95 ==>

96 C\==nil,

97 D\==C,

98 E\==nil |

99 conflict_set(increment).

100

141

B Executable Examples

101 increment @

102 buffer(goal,_,A),

103 chunk(A,goal-chunk),

104 chunk_has_slot(A,goal,count),

105 chunk_has_slot(A,count,C),

106 chunk_has_slot(A,end,D),

107 buffer(retrieval,_,B),

108 chunk(B,count-order),

109 chunk_has_slot(B,first,C),

110 chunk_has_slot(B,second,E)

111 \ apply_rule(increment)

112 <=>

113 C\==nil,

114 D\==C,

115 E\==nil |

116 buffer_change(goal,

117 chunk(_,_,[(count,E)])),

118 buffer_request(retrieval,

119 chunk(_,count-order,[(first,E)])),

120 output(C),

121 conflict_resolution.

122

123 delay-incrementx @

124 fire,

125 buffer(goal,_,A),

126 chunk(A,goal-chunk),

127 chunk_has_slot(A,goal,count),

128 chunk_has_slot(A,count,C),

129 chunk_has_slot(A,end,D),

130 buffer(retrieval,_,B),

131 chunk(B,count-order),

132 chunk_has_slot(B,first,C),

133 chunk_has_slot(B,second,E)

134 ==>

135 C\==nil,

136 D\==C,

137 E\==nil |

138 conflict_set(incrementx).

139

140 incrementx @

142

B.2 Subsymbolic Layer

141 buffer(goal,_,A),

142 chunk(A,goal-chunk),

143 chunk_has_slot(A,goal,count),

144 chunk_has_slot(A,count,C),

145 chunk_has_slot(A,end,D),

146 buffer(retrieval,_,B),

147 chunk(B,count-order),

148 chunk_has_slot(B,first,C),

149 chunk_has_slot(B,second,E)

150 \ apply_rule(incrementx)

151 <=>

152 C\==nil,

153 D\==C,

154 E\==nil |

155 buffer_clear(goal),

156 output(wrong),

157 conflict_resolution.

158

159 delay-stop @

160 fire,

161 buffer(goal,_,A),

162 chunk(A,goal-chunk),

163 chunk_has_slot(A,goal,count),

164 chunk_has_slot(A,count,B),

165 chunk_has_slot(A,end,B)

166 ==>

167 B\==nil |

168 conflict_set(stop).

169

170 stop @

171 buffer(goal,_,A),

172 chunk(A,goal-chunk),

173 chunk_has_slot(A,goal,count),

174 chunk_has_slot(A,count,B),

175 chunk_has_slot(A,end,B)

176 \ apply_rule(stop)

177 <=>

178 B\==nil |

179 buffer_clear(goal),

180 output(B),

143

B Executable Examples

181 conflict_resolution.

182

183 init @

184 run <=>

185 now(0),

186 set_default_utilities([stop, incrementx, increment, start,

train2, train1]),

187 add_buffer(retrieval,declarative_module),

188 add_buffer(goal,declarative_module),

189 lisp_chunktype([chunk]),

190 lisp_sgp([:,esc,t]),

191 lisp_chunktype([count-order,first,second]),

192 lisp_chunktype([goal-chunk,goal,start,end,count]),

193 lisp_adddm([

194 [b,isa,count-order,first,1,second,2],

195 [c,isa,count-order,first,2,second,3],

196 [d,isa,count-order,first,3,second,4],

197 [d1,isa,count-order,first,3,second,5],

198 [e,isa,count-order,first,4,second,5],

199 [f,isa,count-order,first,5,second,6],

200 [first-goal,isa,goal-chunk,goal,training1]]),

201 lisp_goalfocus([first-goal]),

202 lisp_spp([increment,:,u,8,incrementx,:,u,0]),

203 lisp_spp([stop,:,reward,15]),

204 conflict_resolution,

205 nextcyc.

206

207 no-rule @

208 fire<=>

209 conflict_set([]),

210 choose.

B.3 Semantic Model

Listing B.3: ACT-R production rules for the semantic model

1 (define-model semantic

2

144

B.3 Semantic Model

3 (chunk-type property object attribute value)

4 (chunk-type is-member object category judgment)

5

6 (add-dm

7 (shark isa chunk) (dangerous isa chunk)

8 (locomotion isa chunk) (swimming isa chunk)

9 (fish isa chunk) (salmon isa chunk)

10 (edible isa chunk) (breathe isa chunk)

11 (gills isa chunk) (animal isa chunk)

12 (moves isa chunk) (skin isa chunk)

13 (canary isa chunk) (color isa chunk)

14 (sings isa chunk) (bird isa chunk)

15 (ostrich isa chunk) (flies isa chunk)

16 (height isa chunk) (tall isa chunk)

17 (wings isa chunk) (flying isa chunk)

18 (true isa chunk) (false isa chunk)

19 (p1 ISA property object shark attribute dangerous value true)

20 (p2 ISA property object shark attribute locomotion value

swimming)

21 (p3 ISA property object shark attribute category value fish)

22 (p4 ISA property object salmon attribute edible value true)

23 (p5 ISA property object salmon attribute locomotion value

swimming)

24 (p6 ISA property object salmon attribute category value fish)

25 (p7 ISA property object fish attribute breathe value gills)

26 (p8 ISA property object fish attribute locomotion value

swimming)

27 (p9 ISA property object fish attribute category value animal)

28 (p10 ISA property object animal attribute moves value true)

29 (p11 ISA property object animal attribute skin value true)

30 (p12 ISA property object canary attribute color value yellow)

31 (p13 ISA property object canary attribute sings value true)

32 (p14 ISA property object canary attribute category value bird)

33 (p15 ISA property object ostrich attribute flies value false)

34 (p16 ISA property object ostrich attribute height value tall)

35 (p17 ISA property object ostrich attribute category value bird)

36 (p18 ISA property object bird attribute wings value true)

37 (p19 ISA property object bird attribute locomotion value

flying)

38 (p20 ISA property object bird attribute category value animal)

145

B Executable Examples

39 (g1 ISA is-member object canary category bird judgment nil)

40 (g2 ISA is-member object canary category animal judgment nil)

41 (g3 ISA is-member object canary category fish judgment nil))

42

43 (p initial-retrieve

44 =goal>

45 ISA is-member

46 object =obj

47 category =cat

48 judgment nil

49 ==>

50 =goal>

51 judgment pending

52 +retrieval>

53 ISA property

54 object =obj

55 attribute category

56)

57

58

59 (P direct-verify

60 =goal>

61 ISA is-member

62 object =obj

63 category =cat

64 judgment pending

65 =retrieval>

66 ISA property

67 object =obj

68 attribute category

69 value =cat

70 ==>

71 =goal>

72 judgment yes

73)

74

75 (P chain-category

76 =goal>

77 ISA is-member

78 object =obj1

146

B.3 Semantic Model

79 category =cat

80 judgment pending

81 =retrieval>

82 ISA property

83 object =obj1

84 attribute category

85 value =obj2

86 - value =cat

87 ==>

88 =goal>

89 object =obj2

90 +retrieval>

91 ISA property

92 object =obj2

93 attribute category

94)

95

96 (P fail

97 =goal>

98 ISA is-member

99 object =obj1

100 category =cat

101 judgment pending

102

103 ?retrieval>

104 state error

105 ==>

106 =goal>

107 judgment no

108)

109

110

111 (goal-focus g1)

112)

Listing B.4: Translated production rules for the semantic model in CHR

1 :- include(’actr_core.pl’).

2 :- chr_constraint run/0, fire/0.

3

147

B Executable Examples

4

5 delay-initial-retrieve @

6 fire,

7 buffer(goal,_,A),

8 chunk(A,is-member),

9 chunk_has_slot(A,object,B),

10 chunk_has_slot(A,category,C),

11 chunk_has_slot(A,judgment,nil)

12 ==>

13 B\==nil,

14 C\==nil |

15 conflict_set(initial-retrieve).

16

17 initial-retrieve @

18 buffer(goal,_,A),

19 chunk(A,is-member),

20 chunk_has_slot(A,object,B),

21 chunk_has_slot(A,category,C),

22 chunk_has_slot(A,judgment,nil)

23 \ apply_rule(initial-retrieve)

24 <=>

25 B\==nil,

26 C\==nil |

27 buffer_change(goal,

28 chunk(_,_,[(judgment,pending)])),

29 buffer_request(retrieval,

30 chunk(_,property,

31 [(object,B),

32 (attribute,category)])),

33 conflict_resolution.

34

35 delay-direct-verify @

36 fire,

37 buffer(goal,_,A),

38 chunk(A,is-member),

39 chunk_has_slot(A,object,C),

40 chunk_has_slot(A,category,D),

41 chunk_has_slot(A,judgment,pending),

42 buffer(retrieval,_,B),

43 chunk(B,property),

148

B.3 Semantic Model

44 chunk_has_slot(B,object,C),

45 chunk_has_slot(B,attribute,category),

46 chunk_has_slot(B,value,D)

47 ==>

48 C\==nil,

49 D\==nil |

50 conflict_set(direct-verify).

51

52 direct-verify @

53 buffer(goal,_,A),

54 chunk(A,is-member),

55 chunk_has_slot(A,object,C),

56 chunk_has_slot(A,category,D),

57 chunk_has_slot(A,judgment,pending),

58 buffer(retrieval,_,B),

59 chunk(B,property),

60 chunk_has_slot(B,object,C),

61 chunk_has_slot(B,attribute,category),

62 chunk_has_slot(B,value,D)

63 \ apply_rule(direct-verify)

64 <=>

65 C\==nil,

66 D\==nil |

67 buffer_change(goal,

68 chunk(_,_,[(judgment,yes)])),

69 conflict_resolution.

70

71 delay-chain-category @

72 fire,

73 buffer(goal,_,A),

74 chunk(A,is-member),

75 chunk_has_slot(A,object,C),

76 chunk_has_slot(A,category,D),

77 chunk_has_slot(A,judgment,pending),

78 buffer(retrieval,_,B),

79 chunk(B,property),

80 chunk_has_slot(B,object,C),

81 chunk_has_slot(B,attribute,category),

82 chunk_has_slot(B,value,E)

83 ==>

149

B Executable Examples

84 C\==nil,

85 D\==nil,

86 E\==nil,

87 E\==D |

88 conflict_set(chain-category).

89

90 chain-category @

91 buffer(goal,_,A),

92 chunk(A,is-member),

93 chunk_has_slot(A,object,C),

94 chunk_has_slot(A,category,D),

95 chunk_has_slot(A,judgment,pending),

96 buffer(retrieval,_,B),

97 chunk(B,property),

98 chunk_has_slot(B,object,C),

99 chunk_has_slot(B,attribute,category),

100 chunk_has_slot(B,value,E)

101 \ apply_rule(chain-category)

102 <=>

103 C\==nil,

104 D\==nil,

105 E\==nil,

106 E\==D |

107 buffer_change(goal,

108 chunk(_,_,[(object,E)])),

109 buffer_request(retrieval,

110 chunk(_,property,

111 [(object,E),

112 (attribute,category)])),

113 conflict_resolution.

114

115 delay-fail @

116 fire,

117 buffer(goal,_,A),

118 chunk(A,is-member),

119 chunk_has_slot(A,object,B),

120 chunk_has_slot(A,category,C),

121 chunk_has_slot(A,judgment,pending),

122 buffer_state(retrieval,error)

123 ==>

150

B.3 Semantic Model

124 B\==nil,

125 C\==nil |

126 conflict_set(fail).

127

128 fail @

129 buffer(goal,_,A),

130 chunk(A,is-member),

131 chunk_has_slot(A,object,B),

132 chunk_has_slot(A,category,C),

133 chunk_has_slot(A,judgment,pending),

134 buffer_state(retrieval,error)

135 \ apply_rule(fail)

136 <=>

137 B\==nil,

138 C\==nil |

139 buffer_change(goal,

140 chunk(_,_,[(judgment,no)])),

141 conflict_resolution.

142

143 init @

144 run <=>

145 set_default_utilities([fail, chain-category, direct-verify,

initial-retrieve]),

146 add_buffer(retrieval,declarative_module),

147 add_buffer(goal,declarative_module),

148 lisp_chunktype([chunk]),

149 lisp_chunktype([property,object,attribute,value]),

150 lisp_chunktype([is-member,object,category,judgment]),

151 lisp_adddm([

152 [shark, isa, chunk],

153 [dangerous, isa, chunk],

154 { ... every primitive element is created as chunk of type

chunk. Can be omitted, since it is done automatically

}

155 [p1, isa, property, object, shark, attribute, dangerous,

value, true],

156 [p2, isa, property, object, shark, attribute, locomotion,

value, swimming],

157 [p3, isa, property, object, shark, attribute, category,

value, fish],

151

B Executable Examples

158 [p4, isa, property, object, salmon, attribute, edible,

value, true],

159 [p5, isa, property, object, salmon, attribute,

locomotion, value, swimming],

160 [p6, isa, property, object, salmon, attribute, category,

value, fish],

161 [p7, isa, property, object, fish, attribute, breathe,

value, gills],

162 [p8, isa, property, object, fish, attribute, locomotion,

value, swimming],

163 [p9, isa, property, object, fish, attribute, category,

value, animal],

164 [p10, isa, property, object, animal, attribute, moves,

value, true],

165 [p11, isa, property, object, animal, attribute, skin,

value, true],

166 [p12, isa, property, object, canary, attribute, color,

value, yellow],

167 [p13, isa, property, object, canary, attribute, sings,

value, true],

168 [p14, isa, property, object, canary, attribute, category,

value, bird],

169 [p15, isa, property, object, ostrich, attribute, flies,

value, false],

170 [p16, isa, property, object, ostrich, attribute, height,

value, tall],

171 [p17, isa, property, object, ostrich, attribute,

category, value, bird],

172 [p18, isa, property, object, bird, attribute, wings,

value, true],

173 [p19, isa, property, object, bird, attribute, locomotion,

value, flying],

174 [p20, isa, property, object, bird, attribute, category,

value, animal],

175 [g1, isa, is-member, object, canary, category, bird,

judgment, nil],

176 [g2, isa, is-member, object, canary, category, animal,

judgment, nil],

177 [g3, isa, is-member, object, canary, category, fish,

judgment, nil]]),

152

B.3 Semantic Model

178 lisp_goalfocus([g1]), % choose one of g1, g2, g3

179 now(0),

180 conflict_resolution,nextcyc.

181

182 no-rule @

183 fire <=>

184 conflict_set([]),

185 choose.

153

Name: Daniel Gall Matrikelnummer: 645463

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Daniel Gall

	Introduction
	Motivation and Goal
	Related Work
	Overview

	Description of ACT-R
	Procedural and Declarative Knowledge
	Modular organization
	Declarative Knowledge
	Buffers

	Procedural Knowledge
	Description of Procedural Actions
	Chunks as Central Data Structure
	Process of Rule Selection and Execution

	Goal Module
	Working memory

	Other Modules
	The Outside World
	The Imaginal Module

	Example: Counting
	Serial and Parallel Aspects of ACT-R

	Subsymbolic layer
	Activation of Chunks
	Base-Level Activation
	Activation Spreading
	Latency of Retrieval

	Production Utility

	Learning
	Symbolic Layer
	Fact Learning
	Skill acquisition

	Subsymbolic Layer

	Experiment Environment

	Constraint Handling Rules
	Implementation of ACT-R in CHR
	Declarative and Procedural Knowledge
	Chunk Stores
	Formal Representation of Chunks
	Representation of Chunks in CHR
	Distinction of Elements and Chunks
	Simple Implementation of the Default Methods
	Checking Consistency and Type-Consistency

	Procedural Module
	Buffer System
	Destructive Assignment and Consistency
	Buffer States

	Production Rules
	The Left Hand Side of a Rule
	The Right Hand Side of a Rule
	Direct Translation of Buffer Tests
	Translation of Actions
	Translation of Buffer Queries

	The Production Rule Grammar
	The Order of Rule Applications
	Bound and Unbound Variables
	Duplicate Slot Tests
	Slot Modifiers
	Empty Slots
	Outputs

	Modular Organization
	Prolog Modules
	Interface for Module Requests
	Requests by the Buffer System
	Components of the Implementation

	Declarative Module
	Global Method for Adding Chunks
	Retrieval Requests
	Chunk Patterns
	Finding Chunks

	Chunk Merging

	Initialization
	Timing in ACT-R
	Priority Queue
	Objects
	Representation of the Queue
	Adding Events at Second Position

	Scheduler
	Current Time
	Interface to the Scheduler
	Recognize-Act Cycle

	Lisp Functions
	General Translation
	Configuration Variables
	The Observer Pattern

	Subsymbolic Layer
	Activation of Chunks
	Base-Level Learning
	Configuration of the Retrieval

	Conflict Resolution and Production Utility
	Conflict Resolution
	Computing the Utility Values
	Configuration of the Conflict Resolution
	Public Methods of the Conflict Resolution

	Compiler
	Basic Idea
	Compiling
	Tokenizer
	Parser
	Translation Component

	Limitations of the Current Implementation

	Example Models
	The Counting Model
	Modeling a Taxonomy of Animals and Their Properties

	Conclusion
	Bibliography
	CD Content
	Executable Examples
	Rule Order
	Subsymbolic Layer
	Semantic Model

