
German University in Cairo
Faculty of Media Engineering and Technology

Computer Science Department

Automatic Poetry Generation Using
CHR

Masters Thesis

Author: Alia El Bolock

Supervisor: Prof. Slim Abdennadher

Co-supervisor: Prof. Thom Frühwirth

Submission Date: November 24, 2014

This is to certify that:

(i) The thesis comprises only my original work toward the Masters Degree.

(ii) Due acknowledgement has been made in the text to all other material used.

Alia El Bolock
November 24, 2014

Acknowledgments

To start off, some people, without which this work could not have been completed, need
to be acknowledged. I would like to show my gratitude to

• My parents and fiancé for their constant love, support and encouragement.

• My friends and family for always being there, even from the distance.

• My friends here in Ulm, for the fun times, the mutual help and for providing an
outlet to bounce off ideas.

• Amira, for always being there when needed. For the constant support, patience
and help in the theoretical, practical and personal matters. Finally, for answering
all our questions and concerns without hesitation and encouraging us.

• Prof. Thom Frühwirth for giving insight and guidance when needed. For steering
the project in the right direction but also giving me the freedom to shape the project
on my own.

• Professors Thom Frühwirth and Slim Abdennadher for providing me with this topic.

• Last but not least, I would like to thank god, for finishing my bachelor project and
thesis.

III

IV

Abstract. Poetry is one of the most interesting and complex natural language gener-
ation (NLG) systems, because a text needs to simultaneously satisfy three properties,
to be considered a poem; namely poeticness (poetic structure), grammaticality (gram-
matical structure and syntax) and meaningfulness (semantic content). In this thesis,
we discuss the development and implementation of an autonomous system, capable of
generating unique yet meaningful poetry, that harnesses the advantages of Constraint
Handling Rules (CHR). This is realized through the implementation of a reasoner, which
generates poems, that satisfy poeticness, grammaticality and meaningfulness, based on
a customized lexicon. In the proposed system, a poem is generated by incrementally
selecting its words, through a step-wise pruning of the lexicon by the reasoner. This is
done based on the constraints, that represent poeticness, grammaticality and meaningful-
ness. The developed approach proves, that CHR can be used to develop a hybrid system
capable of generating good poetry comparable to, and matching that of humans.

V

VI

Contents

Contents IX

1 Introduction 1

2 Preliminaries 5
2.1 Constraint Handling Rules . 5

2.1.1 Syntax . 5
2.1.2 Example . 7

2.2 Poetry . 8
2.2.1 Definition . 8
2.2.2 The Three Properties . 8
2.2.3 Characteristics and features . 9

2.3 Resources . 11
2.3.1 CMU Dictionary . 11
2.3.2 Alternate 12 Dicts Package . 13
2.3.3 Wordnet . 13

3 Approaches and Techniques for Poetry Generation 17
3.1 Grammar- and Template-Based Approaches 17

3.1.1 The Poetry Creator . 17
3.1.2 RACTER . 17
3.1.3 The ALAMO Group . 18
3.1.4 Others . 18

3.2 Generate and Test Approaches . 18
3.2.1 Manurung’s chart system . 18
3.2.2 WASP . 19
3.2.3 ASPID . 19
3.2.4 Tra-la-Lyrics . 19

3.3 Evolutionary Approaches . 20
3.3.1 MCGONAGALL . 21
3.3.2 POEVOLVE . 21

3.4 Case-Based Reasoning Approaches . 22
3.4.1 COLIBRI . 22
3.4.2 ASPERA . 23

VII

3.5 Constraint Programming and Corpus-based Approaches 24
3.5.1 Constraint- and Corpus-Based Poetry Generation 24
3.5.2 Full-FACE . 25

3.6 Other Approaches . 26
3.6.1 Stochastic Language Modelling 26
3.6.2 POS-Tag Based . 26
3.6.3 Vector Space Model . 27

4 System Architecture 29
4.1 Grammaticality . 30

4.1.1 Grammar Pattern List . 31
4.1.2 Grammar Correction . 32

4.2 Poeticness . 33
4.2.1 Basic Features . 33
4.2.2 Figures of Speech . 33
4.2.3 Form . 34

4.3 Meaningfulness . 35
4.3.1 Theme-based Lexica . 35
4.3.2 Poem Actors’ Restriction . 35

5 Lexicon 37
5.1 Design . 37
5.2 Generation . 39

5.2.1 Java . 39
5.2.2 CHR . 41
5.2.3 Additional Information . 41

6 Implementation of the Reasoner 45
6.1 Initialization and Termination . 45
6.2 Basic Grammaticality and Poeticness . 46
6.3 Additional Grammatical Constraints . 48
6.4 Additional Poeticness Constraints . 49
6.5 Coherence . 50
6.6 Choices . 51

7 Semantics 53
7.1 Concept . 53
7.2 Semantic Network Generation . 53
7.3 Integration . 54

8 Evaluation 57
8.1 Quantitative Evaluation . 57

8.1.1 Survey . 57
8.1.2 Results and Analysis . 60

8.2 Comparison . 66

VIII

8.3 Web Application . 67

9 Conclusion and Future Work 69
9.1 Conclusion . 69
9.2 Future Work . 69

References 73

IX

X

List of Figures

2.1 The phoneme set used by the CMU Dictionary 12

4.1 The pruning steps of the selection process of each word in the poem . . . 29

8.1 Results of Question 1 . 61
8.2 Results of Question 2 . 61
8.3 Results of Question 3 . 62
8.4 Results of Question 4 . 63
8.5 Results of Question 5 . 64
8.6 Results of Question 6 . 65

XI

Chapter 1

Introduction

Computational Creativity is a research field, at the cross section of Artificial Intelligence,
Computational Linguistics and Cognitive Science, that aims at automatically generating
creative artifacts such as musical pieces, stories, visual art and poetry. Having a system
capable of producing or simulating human-level creativity helps give more insight into
human creativity and could define it in an algorithmic way. This could also allow for
programs to augment the human creativity to possibly unexplored horizons. One of the
most expressive and creative uses of language is poetry, as it offers freedom, in terms of
writing rules, and is highly based on human interpretation. Also unlike other types of
text, a poem’s value depends on both its content and its form. As a result, poetry is one
of the most interesting and complex natural language generation (NLG) systems. For a
system to be capable of generating acceptable poetry, we first need to define the notion
of poetry. In Manurung (2004), Manurung postulates that a text needs to simultaneously
satisfy three properties, to be considered a poem, namely poeticness (poetic structure),
grammaticality (grammatical structure and syntax) and meaningfulness (semantic con-
tent).

The aim of this thesis and the conducted research, is to develop an autonomous
system, capable of generating unique yet meaningful poetry, that harnesses the advan-
tages of Constraint Handling Rules (CHR). Throughout the thesis, the hypothesis, that
a CHR-based system is be capable of generating poems comparable to human written
ones, is tested and proven. To achieve this, various poetry generation approaches were
investigated, before developing our own hybrid approach to achieve automatic poetry gen-
eration. The thesis, discusses the implementation of a poetry generation system, based on
the developed approach. This is realized through the implementation of a reasoner, which
generates poems, that satisfy poeticness, grammaticality and meaningfulness, based on a
customized lexicon. In the proposed system, a poem is generated by incrementally select-
ing its words, through a step-wise pruning of the lexicon by the reasoner. This is done
based on the constraints, that represent poeticness, grammaticality and meaningfulness.

The main contributions of this thesis are:

1

2 CHAPTER 1. INTRODUCTION

1. A hybrid poetry generation approach and system, that produce texts satisfying
grammaticality (syntax pattern), poeticness (rhythm and rhyme) and meanigful-
ness, simultaneously.

2. A single, large lexicon that provides all the necessary information, allowing for the
creation of a large variety of poems and increasing the odds of finding an optimal
solution. The lexicon does not follow the conventional Part-of-Speech tags (POS-
tags) but an extended version thereof with further word categorizations that lead to
more semantic meaningfulness and syntactic correctness with less constraints and
computations.

3. Instead of relying on complex computational methods, the system follows an in-
tuitive rule based algorithm enabled by CHR’s intuitive multi-headed rule rep-
resentation, that allows the manipulation of the constraint store without further
specifications; e.g. the rhythm is fulfilled using simple pattern matching. The al-
gorithm enables the generation of the whole poem, without being iterations, and
is thus more efficient than other systems. The use of Prolog’s lists coupled with
CHR’s constraints maintains efficiency while still taking advantage of the needed
benefits of using constraints.

4. The developed system does not rely on any corpora, which cause other systems that
are corpus-based to produce results that are still similar to their base text, even
with their requirements for novelty, as they all perform some sort of "cutting and
pasting" on these base texts. Instead, our system can optionally use training texts
to extracts their morphological info, providing a list of POS-tags and nothing more.

This thesis is organized as follows:

Chapter 2 Preliminaries: the preliminary knowledge needed for understanding the
work is explained.

Chapter 3 Poetry Generation: an overview of the state of the art and the various
approaches and techniques used in automatic poetry generation, is given.

Chapter 5 System architecture: an outline of the system architecture is presented
and the approach used for the poetry generation is explained.

Chapter 4 Lexicon: the design and generation of the lexicon is discussed.

Chapter 6 Implementation of the Reasoner: the various stages of the implementa-
tion of the reasoner are explained.

Chapter 7 Semantics: the extension of the implemented system with semantics is
discussed.

Chapter 8 Evaluation: the quantitative results of a survey are presented and ana-
lyzed. The poems generated are compared to those of other existing ones.

3

Chapter 9 Conclusion and Future Work: the conclusions and results of the work
are presented and the possible future work is discussed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In the following a brief overview of the used poetry terms and linguistic resources will be
given, and the programming language Constraint Handling Rules will be introduced. A
basic knowledge of linguistics is assumed.

2.1 Constraint Handling Rules

Constraint Handling Rules (CHR), is a high-level, constraint-based, declarative logic
programming language, invented by Prof. Thom Frühwirth in 1991. CHR adapts the basic
concepts of mathematical logic representation and is thus highly and easily applicable to
various problems. CHR is a committed-choice, single-assignment language, with multi-
headed rules and conditional rule application through guards. A CHR program consists
of CHR rules that add and remove the user-defined constraints to and from the global
constraint store. Having simplification, propagation and simpagation (a mixture of the
afore mentioned rules) as the only operators that can deal with constraints, CHR is well
suited for representing constraint-based problems and solving them straightforwardly.
However, CHR has evolved into a general-purpose programming language. CHR is usually
used as an extension for a host language; most commonly Prolog, although it can be
ported to various different environments. The properties of CHR enable the user to
design anytime, online, confluent and concurrent algorithms, depending on the semantics
used. Frühwirth (1998) is an excellent reference for more detailed explanations of CHR,
its properties and advanced examples. In the following however, a brief overview will be
given.

2.1.1 Syntax

Any CHR rule has the following attributes:

• Name ri: This is an optional attribute to identify a given rule

5

6 CHAPTER 2. PRELIMINARIES

• Head Hk, Hr: Any rule must have one or many heads. These heads may be kept
or removed. Unification with the head(s), triggers the application of the rule. The
head can only consist of CHR constraints; i.e. user defined constraints.

• Guard G: The optional guard, is a condition for the application of the rule. After
the heads are unified, the rule is only fired if the guard is true. The guard can only
consist of built-in constraints.

• Operator <=> or ==>: The operator is responsible for deciding which operation
should be done with the constraints, upon firing of the rules. More to the operators
in the sections below.

• Body B: The body of the rule comprises of the constraints to be added to the
constraint store upon application of the rule. The body can consist of both CHR
and built-in constraints.

2.1.1.1 Simplification Rules

Simplification rules look as follows:

rs @ Hr ⇐⇒ G | B

Simplification rules remove the set of constraints in the head and replace them with
a set of “simpler”- for the problem- constraints from the body. A simple example of a
simplification rule is

hungry <=> eat.

Where hungry/0 and eat/0 are user defined constraints. This rules translates to: If
one is hungry and eats, he is no longer hungry so the hungry constraint can be removed.

2.1.1.2 Propagation Rules

Propagation rules look as follows:

rp @ Hk =⇒ G | B

Propagation rules add new constraints from the body without removing the preexist-
ing ones. They simply use the knowledge one already has, to deduce further information.
An example for such a rule is

happy ==> smile.

Here, happy/0 and smile/0 are constraints defined by the user. This means that one
is happy, he will smile as a result, but smiling will not remove his happiness.

2.1. CONSTRAINT HANDLING RULES 7

2.1.1.3 Simpagation Rules

Simpagation rules look as follows:

rsp @ Hk \Hr ⇐⇒ G | B

This type of rules merges between the two other types, mentioned above. While is
introduces new constraints to the constraint store, part of the head constraints are kept
in the constraints store while other superfluous ones are removed. This can be explained
on the example of the one rule minimum algorithm in ?

min(N) \ min(M) <=> N=<M | true.

This algorithm works through comparing two user defined min/1 constraints from the
constraint store and removing the one with the larger number, as this number can not
possibly be the global minimum. After exhaustive application, the only remaining min
constraint will be the actual minimum of the input set.

2.1.2 Example

The syntax and semantics of CHR will be explained further by the example of the partial
order relation ≤, leq(X,Y), which holds if the value of variable X is less than or equal
that of Y. The CHR program for defining the leq relation consists of four rules:

reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y) , leq(Y,X) <=> X=Y.
idempotence @ leq(X,Y)\ leq(X,Y) <=> true.
transitivity @ leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

The simplification rule responsible for representing the reflexivity of the leq relation
consists of one head, that simplifies the fact, that X is less than or equal X, to true. This is
done by removing the leq(X,X) constraint from the constraint store. The anti-symmetry
property is again described using a simplification rule with two heads, where two sym-
metric leq constraints mean that the two variables are of equal value. Thus, the two
are removed and the equality relation between them is added to the constraint store and
handled by the host language, namely Prolog. The idempotence rule is responsible for
removing redundant copies from the constraint store by keeping the constraints before
the ‘\’ and removing the ones following it. Finally, The transitivity rule is a propaga-
tion of a new leq constraint, that can be implied from the already existing ones, while
the constraints in the head are kept in the constraint store. The execution of a CHR
program is triggered by an input query , where the constraints of the query keep fir-
ing the rules by matching the heads until a fix point is reached. For a sample query

8 CHAPTER 2. PRELIMINARIES

of leq(X,Y), leq(Y,Z), leq(Z,X), the transitivity rule will add leq(X,Z), which will
trigger the anti-symmetry rule to remove leq(Z,X),leq(X,Z) and add X=Z. The unifica-
tion of X with Z makes the anti-symmetry rule applicable on the first two constraints of
the query, and results in the addition of X=Y. At this point there are no more constraints
in the store to match the rule heads. Thus, no more rules can be fired and the program
will terminate and output the answer X=Y,X=Z.

Throughout the thesis, please note the distinction between CHR constraints that
represent actual objects and the semantic constraints enforced on poems.

2.2 Poetry

2.2.1 Definition

Finding a concrete definition of poetry, is a difficult task, because poetry has various
different forms and genres and highly depends on subjective taste and interpretation.
The Merriam-Webster English Dictionary defines a poem as:

“a piece of writing that usually has figurative language and that is written in separate
lines that often have a repeated rhythm and sometimes rhyme”

This shows that the content and form of a poem are strongly interacting and equally
important for its value. This is what differentiates between poetry and prose texts in the
first place. This becomes clear, for example, when we think about translating a poem
compared to another text. The poem, will be much harder to translate and will probably
lose its beauty while maintaining its meaning; the other text will remain the same. This
is so, because in poetry various phonetic and figurative devices interact to provide the
feeling and meaning of a poem. This is supported by LEVIN (1962), where it is stated
that:

“... in poetry the form of the discourse and its meaning are fused into a higher unity ...
form in fact embraces and penetrates message in a way that constitutes a deeper and

more substantial meaning than either abstract message or separable ornament.”

2.2.2 The Three Properties

As no definition of poetry can be followed to define how valid poetry should look like, we
follow the representation of Manurung (2004). It states that a text has to satisfy three
properties to be considered a poem:

• Meaningfulness This means that a poem must convey a certain message, that
has a meaning under some interpretation, given a specific knowledge base. It is
clear that this property should be true of any text, not only poems.

2.2. POETRY 9

• Grammaticality This means that a poem must follow the linguistic rules of a
certain language, which are defined by a grammar and a lexicon. Again, this feature
needs to be satisfied by any given text, and not only poetic ones. the only difference
here is, that poems are less constrained in terms of grammar, and thus some lenience
can be applied when considering the grammatical rules. However, caution needs to
be applied when doing so, because too much deviation from grammaticality, could
turn the text from poetic to not understandable.

• Poeticness This means that a poem must have poetic features, that differentiate
it from other texts. These features are figurative as well as phonetic and form
dependent. Rhythm, rhyme, metaphors, repetitions etc. are all key features that
make poems special.

So, a poem is a text that fulfills the properties of meaningfulness, grammaticality and
poeticness.

2.2.3 Characteristics and features

In this subsection, we introduce the different characteristics and features of poetry and
define the basic terminology. All the used definitions are collected or exactly taken from
Manurung (2004); Ltd (2014); Foundation (2014); Campbell (2014).

2.2.3.1 Basic Terminology

First we will give some definitions of recurring terms in poetry:

• Stanza: A group of lines that is separated from others in a poem. Stanzas are used
to shift between moods, time, action or thoughts.

• Verse: “A line in a poem or a line of poetry”. Can also we used to refer to formal
poetry, in general.

• Phoneme: “A distinct unit of sound in language to distinguish between words. For
example p, b, d, and t in the words pad, pat, bad, and bat.”

• Syllable: “A single unit of a whole speech sound; i.e. a vowel preceded by conso-
nants (from zero up to three) and followed by consonants (from zero to four). For
example tag, gross, strings.”

10 CHAPTER 2. PRELIMINARIES

2.2.3.2 Rhythm

In poetry, the rhythm of the language plays an important role and is clearly defined and
followed. In the following the different rhythm-related terms and concepts will be defined:

• Stress: “A stressed syllable, is one that is more emphasized than the others”. In
English, the words in themselves have a definition, of which syllables are stressed
and which are not. However, the position in a sentence, the semantics and the
chosen metre, can influence the stress of a word.

• Metre: “The metre is the rhythmic pattern of a verse, represented by stressed and
unstressed syllables.”

• Syllabic Metre: “The most common metre in the English poetry. Here, the verses
are divided into units, known as feet, which have a certain number of syllables. The
metrical feet are defined in terms of the length of the syllable and the location of
the stressed syllable.” Some of the most used feet are:

1. Trochee: 2 syllables, stressed - unstressed; e.g. incest

2. Iamb: 2 syllables, unstressed - stressed; e.g. inject

3. Dactyl: 3 syllables, stressed - unstressed - unstressed; e.g. terrible

4. Amphibrach: 3 syllables, unstressed- stressed - unstressed; e.g. incumbent

5. Anapest: 3 syllables, unstressed - unstressed - stressed; e.g. interrupt

The feet are then used in a certain sequence for each verse. The most popular is
the iambic pentameter, which is a sequence of five consecutive iambs.

2.2.3.3 Rhyme and other phonemic patterns

As discussed before, other than the rhyme, that governs the flow of the whole poem,
poetry is known for using many phonemic patterns, such as rhymes. In the following, the
most common ones will be defined:

• Rhyme is “the similarity of the ending sound of two words. Two words rhyme, if
their final stressed vowel and the sounds following it, are matching.” There are two
types of rhyme:

1. In a masculine rhyme only one syllable is rhyming; e.g. rot and not.

2. In a feminine rhyme two or more syllables are included in the rhyme; e.g.
lighting and fighting.

• Alliteration is “the repetition of identical consonant sounds, usually at the begin-
ning of a word; e.g. she sells seashells.”

2.3. RESOURCES 11

• Anaphora is “the repetition of the same word or phrase at the beginning of a line,
in the whole poem for part of it.”

• Assonance is “the repetition of identical vowel sounds in different words, that
appear close to each other; e.g. deep green sea.”

• Consonance is “the similarity in sound between two words; e.g. bed, bad.”

• Dissonance is “the disruption of harmonic sounds or rhythms; e.g. cacophony.”

• Enjambment is “the continuation of a sentence from one verse to the next.”

2.2.3.4 Figurative Language

The beauty of poetry lies in the freedom of interpretation. The figurative language is
responsible for allowing the poet to become more creative using imagery and the poem
reader to use his or her imagination and interpretation. There are various different
types of figurative language: the symbolic imagery type and the phonemic type. In the
following, we will give the definition of the most widely used figures of speech and stylistic
devices:

• Metaphor is a direct comparison, but without the explicit use of comparative
words; e.g. like, as.

• Oxymoron “joins contradictory words to create an effect; e.g. deafening silence.”

• Personification is “the description of a material item, a concept or non-human, as
though it were a person.”

2.3 Resources

2.3.1 CMU Dictionary

The Pronunciation Dictionary for North American English by the Carnegie Mellon Uni-
versity University (2014) is machine-readable dictionary with over 125000 entries of words
and their pronunciations. The dictionary’s format makes it suitable for speech recogni-
tion and synthesis system, because it maps words to their phonemic pronunciation. The
phoneme set used in the dictionary consists of 39 phonemes, shown in Figure 2.1. The
vowel phonemes, also carry a lexical stress, to show the stressing of the syllable repre-
sented by the vowel. In the dictionary, there is a distinction between three different vowel
stresses.

• No stress: represented by the number 0 attached to the vowel

• Primary stress: represented by the number 1 attached to the vowel

• Secondary stress: represented by the number 2 attached to the vowel

12 CHAPTER 2. PRELIMINARIES

Figure 2.1: The phoneme set used by the CMU Dictionary

2.3. RESOURCES 13

2.3.2 Alternate 12 Dicts Package

The Unofficial Alternate 12 Dicts Package Beale (2014), consists of various files. For
the purposes of thesis, we will only describe the file relevant to our implementation; the
2of12id.txt file. This file consists of a huge number of words, with all their inflections.
The file differentiates between the basic word types: noun, verb, adjective/adverb, con-
junction/preposition, interjection, pronoun, spoken contraction. For example, for a base
noun word, its plural is also stated, if it exists. Similarly, this holds for the verbs and
adjectives and their different inflections.

2.3.3 Wordnet

Wordnet University (2010); Witzig (2003) is a “lexical reference system” and database,
which is also available in Prolog format. In this thesis, we use the Prolog version of
Wordnet, as Prolog is the host language we use for CHR in this work. Wordnet is based
on the concept of synonym sets, called synsets. A synset is a group words, which are
semantically connected. Every word has a synset ID, and words of a synset have the same
ID. Words that have various meaning, will belong to different synsets and thus will have
multiple IDs. In the Prolog database, this means that some words will have multiple
entries with different synset IDs. The different word relations contained in Wordnet,
are represented using operators. In Prolog, each operator has a file (with the name of
the operator), that contains all the Prolog clauses of the word pairs, linked by a said
operator. The operators describe semantic as well as lexical relations. The operators
used for the incorporation of semantics in our poetry generation system are listed below.
Their definitions, is taken from the official Wordnet documentation University (2010).

1. s(synset_id,w_num,’word’,ss_type,sense_number,tag_count). “A s operator
is present for every word sense in WordNet. In wn_s.pl , w_num specifies the word
number for word in the synset.”

2. sk(synset_id,w_num,’sense_key’). “A sk operator is present for every word
sense in WordNet. This gives the WordNet sense key for each word sense.”

3. hyp(synset_id,synset_id). “The hyp operator specifies that the second synset is
a hypernym of the first synset. This relation holds for nouns and verbs. The reflexive
operator, hyponym, implies that the first synset is a hyponym of the second synset.”

4. ins(synset_id,synset_id). “The ins operator specifies that the first synset is an
instance of the second synset. This relation holds for nouns. The reflexive operator,
has_instance, implies that the second synset is an instance of the first synset.”

5. ent(synset_id,synset_id). “The ent operator specifies that the second synset is
an entailment of first synset. This relation only holds for verbs.”

14 CHAPTER 2. PRELIMINARIES

6. sim(synset_id,synset_id). “The sim operator specifies that the second synset
is similar in meaning to the first synset. This means that the second synset is a
satellite the first synset, which is the cluster head. This relation only holds for
adjective synsets contained in adjective clusters.”

7. mm(synset_id,synset_id). “The mm operator specifies that the second synset is
a member meronym of the first synset. This relation only holds for nouns. The
reflexive operator, member holonym, can be implied.”

8. ms(synset_id,synset_id). “The ms operator specifies that the second synset is
a substance meronym of the first synset. This relation only holds for nouns. The
reflexive operator, substance holonym, can be implied.”

9. mp(synset_id,synset_id). “The mp operator specifies that the second synset is a
part meronym of the first synset. This relation only holds for nouns. The reflexive
operator, part holonym, can be implied.”

10. der(synset_id,synset_id). “The der operator specifies that there exists a re-
flexive lexical morphosemantic relation between the first and second synset terms
representing derivational morphology.”

11. cls(synset_id,w_num,synset_id,w_num,class_type). “The cls operator spec-
ifies that the first synset has been classified as a member of the class represented
by the second synset. Either of the w_num’s can be 0, reflecting that the pointer is
semantic in the original WordNet database.”

12. cs(synset_id,synset_id). “The cs operator specifies that the second synset is a
cause of the first synset. This relation only holds for verbs.”

13. vgp(synset_id,w_num,synset_id,w_num). “The vgp operator specifies verb synsets
that are similar in meaning and should be grouped together when displayed in re-
sponse to a grouped synset search.”

14. at(synset_id,synset_id). “The at operator defines the attribute relation be-
tween noun and adjective synset pairs in which the adjective is a value of the noun.
For each pair, both relations are listed (ie. each synset_id is both a source and
target).”

15. ant(synset_id,w_num,synset_id,w_num). “The ant operator specifies antony-
mous word s. This is a lexical relation that holds for all syntactic categories. For
each antonymous pair, both relations are listed (ie. each synset_id,w_num pair is
both a source and target word.)”

16. sa(synset_id,w_num,synset_id,w_num). “The sa operator specifies that addi-
tional information about the first word can be obtained by seeing the second word.
This operator is only defined for verbs and adjectives. There is no reflexive relation
(i.e. it cannot be inferred that the additional information about the second word
can be obtained from the first word).”

2.3. RESOURCES 15

17. ppl(synset_id,w_num,synset_id,w_num). “The ppl operator specifies that the
adjective first word is a participle of the verb second word. The reflexive operator
can be implied.”

18. per(synset_id,w_num,synset_id,w_num). “The per operator specifies two dif-
ferent relations based on the parts of speech involved. If the first word is in an
adjective synset, that word pertains to either the noun or adjective second word. If
the first word is in an adverb synset, that word is derived from the adjective second
word.”

16 CHAPTER 2. PRELIMINARIES

Chapter 3

Approaches and Techniques for Poetry
Generation

Automatic poetry generation started developing as a research field in the late nineties
when the first promising systems started to emerge. Since then various systems using a
large range of approaches have been appearing. In order to investigate new advantageous
methods for poetry generation, the state of the art in this growing field needs to be
reviewed. In the following advantages of each system will be marked in italics while
disadvantages will usually be stated explicitly.

3.1 Grammar- and Template-Based Approaches

Systems where an incomplete poetry template is filled with words from a certain dictio-
nary to suit a set of defined syntactic and/or rhythmic constraints. Notable examples of
template-based poetry generation are:

3.1.1 The Poetry Creator

According to Oliveira (2009), the Poetry Creator is a simple poetry generation system,
that fills predefined poem templates with words that describe a certain subject, a synonym
for that subject and a title for the poem, all of which are input by the user.

3.1.2 RACTER

RACTER Manurung et al. (2012) is assumed to employ grammar-based generation as it
performs verb conjugation and noun declension. It also gives the impression of thematic
continuity by employing a heuristic of reusing some lexical elements. The resulting texts
are thus similar to understandable sentences, which enabled the publication of the poems
produced by RACTER e.g. "The Policeman’s Beard is Half Constructed" consists solely
of RACTER generated poetry.

17

18CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

3.1.3 The ALAMO Group

There are various french poetry generation programs on the ALAMO group website.
The description of some of these programs is given on the website e.g. the program
Rimbaudelaires Rubaud J and P (2000); Gervás (2002) uses existing Rimbaud sonnets as
a starting template and then replaces the nouns, verbs and adjectives by words appearing
in Baudelaire’s poetry, following strong syntactic and rhythmic constraints.

3.1.4 Others

Other notable template-based poetry generation systems include:

• ELUAR: In addition to the template-based generation approach, EULAR simulates
the appearance of coherence and poeticness by utilizing a heuristic e.g. assigning
ad-hoc emotional categories like love, nature and philosophy.

• ADAM

• PROSE Manurung et al. (2012): Some of the poems generated by PROSE has been
published.

• ALFRED the Agent (Donald n.d.)

• Masterman’s haiku generator (Boden 1990)

3.2 Generate and Test Approaches

Generate and test systems produce random word sequences following constraints, that
satisfy some poetic formal requirements e.g metric or semantic constraints. In the fol-
lowing some of the most important systems in this category are discussed.

3.2.1 Manurung’s chart system

In Manurung (1999) Manurung introduced using a chart system to generate syntactically
correct texts that conform to a rhythmic pattern. Usually charts are used for parsing
but reversing a chart parser provided Manurung with a chart generator that translates
logical forms to strings and is thus used to generate natural language strings matching
a certain stress pattern. The input semantics are described by first order predicates
that logically represent sentences. During the generation phase, the stress pattern of the
result of a new rule is checked against the target stress pattern before adding the rule
to the chart. Stress patterns are represented as lists of weak and strong syllables which
are obtained from a pronunciation dictionary. The system maintains syntactic, semantic,
and rhythmic well-formedness at every step at the cost of being computationally very
expensive and not very flexible, as it can only generate a perfect result or none at all.
This system was used within the more advanced poetry generation system McGonnagall
Manurung (2004) which will be discussed in detail later.

3.2. GENERATE AND TEST APPROACHES 19

3.2.2 WASP

WASP Gervás (2000a) is a forward reasoning rule-based system which is considered one of
the first serious attempts on automatic poetry generation. The system actually consists
of multiple programs, each implementing a different construction heuristics acquired from
formal metric constraints aiming at creating a poem based on prior poems given to the
system and a set of words and reference verse patterns both provided by the user. Finally
WASP either outputs a set of free verses or a set of verses following a certain strophic
form; both in Spanish. Despite the fact that the produced poetry conforms to the rules
of formal metrics, it fairs poorly from a linguistic point of view as it made little sense.

3.2.3 ASPID

The ASPID system Gervás (2000b); Gervás et al. (2001) for Spanish poetry generation
requires the user to propose a message for the output poem and then uses certain algo-
rithms to select a working set of words from an initial vocabulary based on the similarity
between the user-defined message and a corpus of validated verses. Candidate words to
be added are chosen based on their satisfaction of strict metric and rhyming constraints.
The system defines priorities among the whole vocabulary based on said similarity calcu-
lations. Words added to the poem thus follow a ranking, where words with lower priority
are only selected if no higher priority word can be selected. This procedure provides
better search times and allowed the expansion of the vocabulary while utilising stricter
formal constraints. Successful termination of the program is however not ensured above
a certain threshold of the vocabulary size and the number of constraints. Also the system
provides poor syntactic and semantic results.

3.2.4 Tra-la-Lyrics

Tra-la-Lyrics Oliveira et al. (2007b,a) is a system that generates Portuguese lyrics based
on the rhythm of a song melody that is input by the user. By using the pattern of strong
and weak melody beats as the rhythmic pattern, the process of creating song lyrics is
almost identical to that of poetry generation. Following the generate and test approach,
the system produces grammatical sentences and scores them according to the constraints
of the derived metric pattern. To reach its goal Tra-la-Lyrics follows three strategies,
taking into consideration the features of song lyrics e.g. rhyme and repetition in addition
to the metric constraints:

1. Random words & rhyme: Only rhythmic constraints are applied when choosing
words. This strategy however enables setting up the probabilities of reusing words
and of rhyme locations

2. Words following sentence templates & rhyme: Not only rhythmic but syntactical
constraints, given by sentence templates, are applied when choosing words, with

20CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

syntactical constraints taking precedence over rhythmic ones with backtracking in
case of unsatisfied constraints. Also here the setup of the probabilities of reusing
words and using words with given roots is supported in addition to trying to end
grammatical and musical sentences in the same beat.

3. Grammar & rhyme: The words are chosen following sentence templates and then
evaluated against musical sentences. Following multiple generations, the sentence
that fits the target rhythm pattern best is chosen.

Strategies two and three however do not always ensure the presence of rhyme while the
first strategy does not account for grammar rules.

3.3 Evolutionary Approaches

Evolutionary computing follows techniques based on concepts of biological evolution e.g.
natural selection and genetic inheritance and are well suited for modeling the process
of poetry generation as it is similar to the process human authors follow while writing
poems.

Michalewicz (1994) defines an evolutionary algorithm as a multi-point stochastic
search algorithm, meaning a heuristic search that explores multiple points in the search
space simultaneously and avoids getting trapped in local maxima like other hill-climbing
algorithms through stochastically navigating the search space. Evolutionary algorithms
maintain a population of individuals, each representing a possible solution to the given
problem, over some time t. The algorithm consists of five main steps:

1. Initialization: Construct a new population representing a set of starting points for
exploring the search space, with the points ideally being spread evenly across the
space.

2. Evaluation: Evaluate each possible solution to measure its fitness for use.

3. Selection: Form a new population by stochastically selecting individuals from the
older population, while preferring fitter individuals.

4. Evolution: Transform some of the members of the new populations through genetic
operators resulting in new solutions.

5. Repeat: Steps 2 to 4 are repeated until:

(a) a certain number of iterations has elapsed

(b) a certain fitness score is reached

(c) the algorithm has converged to a near-optimal solution

3.3. EVOLUTIONARY APPROACHES 21

3.3.1 MCGONAGALL

McGonnagall is an evolutionary system introduced by Manurung in his thesis Manurung
(2004) that represents the process of poetry generation as a state space search problem
using stochastic hill-climbing search, where each state represents a potential text with all
its representations and a move from semantics to phonetics can happen at any represen-
tation level. The system generates metrically constrained poems based on a given topic
using a grammar-driven formulation Manurung et al. (2000b), Manurung et al. (2000a).
The generation process consists of two stages:

1. Evaluation phase: A group of individuals is formed based on initial information,
target semantics and target phonetics. The individuals are scored based on different
characteristics like surface form, phonetic pattern and semantics.

2. Evolution phase: A subset of individual with the highest scores is selected for
reproduction and is thus mutated to hopefully produce better versions of the poem.

evaluation and evolution. The system reaches a goal state when the produced poem sat-
isfies all three properties poetic texts must fulfil according to Manurung, namely mean-
ingfulness, grammaticality, and poeticness. McGonnagall realizes grammaticality through
the use of lexicalized tree-adjoining grammar (LTAG) while meaningfulness and poetic-
ness are achieved by maximizing the evaluation functions that measure the isomorphism
degree between the phenotypic features of a candidate solution and the target semantics
and target metre (represented the same way as described in 3.2.1). The system models
the creative process of real people due to the strong interaction between content and
form in the generation process but has the disadvantage of being a knowledge-intensive
approach. Although McGonnagall is capable of finding optimal solutions for moderately-
sized target semantics and metre pattern separately, it has difficulties with simultaneously
considering both evaluation functions Manurung et al. (2012).

3.3.2 POEVOLVE

Levy’s work Levy (2001) takes the actual process of human poetry writing as a reference
for creating an evolutionary computational model of poetry generation and a prototype
instance of said model, namely POEVOLVE which aims at creating limericks. Following
Levy’s model a poetry generation system consists of:

• One or more generator modules responsible for creating the initial population of
candidate poems and modifying them in the following generation instances.

• A workspace where the population resides

• A lexicon

22CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

• A conceptual knowledge base

• A syntactical knowledge base

In POEVOLVE the initial population is formed from a set of words along with their
phonetic and stress information. First words that follow the appropriate rhyme patterns
are selected before choosing words to fill the rest of the line based on their stress informa-
tion. The evolution step of the genetic algorithm followed by POEVOLVE is realized by
mutation and crossover operators that modify the words in the limericks while a neural
network trained on human judgment performs the evaluation step. The main drawback
of the system is its lack of consideration of syntax and semantics.

3.4 Case-Based Reasoning Approaches

Another popular approach for poetry generation is case-based reasoning, where existing
poems are retrieved and then adapted based on the required content and a target message
input by the user. Case-based reasoning poetry generation systems are forward reasoning
rule-based systems that, when given an output message and a rough specification of the
poem type, perform the following tasks:

1. select appropriate metre and stanza

2. generate draft poem

3. request validation or modification from the user

4. update database with the validated verse

3.4.1 COLIBRI

COLIBRI Díaz-Agudo et al. (2002) is a Spanish poetry generation system, very simi-
lar to ASPERA 3.4.2. COLIBRI stores the various cases in flexible representation fol-
lowing a Description Logic System and incorporates an application-dependent ontology
(CBROnto), responsible for improving the system’s inference power in addition to the
representation and use of more explicit and general knowledge. The system takes a list
of keywords representing the meaning and a specification of a certain strophic form as
input. The generation algorithm then proceeds as follows:

1. A case following the appropriate strophic form is retrieved from a corpus of existing
poems

2. The user-defined keywords are replaced in the text while conserving the syntactic
well-formedness

3.4. CASE-BASED REASONING APPROACHES 23

3. The result is revised by replacing words to ensure conformity with the metre and
rhyme specified by the strophic form

Although the text aims at conveying a certain user-defined message (albeit being trivially
achieved), the final step of the algorithm might destroy this intended meaning in order
to satisfy the constraints of the strophic form Manurung et al. (2012).

3.4.2 ASPERA

ASPERA Gervás (2000b), an evolution of the WASP system 3.2.2, employs a case-based
reasoning approach to produce an improved version of the construction strategies devel-
oped in WASP. ASPERA requires the user to input a set of prose sentences describing
the intended message. The system then generates Spanish poetry based on the given
input text through composition of the poetic fragments, best matching the input, that
are retrieved from the case base of existing poems. The fragments are combined through
applying additional metrical rules to produce a final poem with a certain relation to the
input sentence. The system ensures that the words in the verses are combined follow-
ing the syntax of the language and that the result makes sense according to the word
semantics. Depending on the chosen stanza, rhyming constraints are also maintained
at line endings. The generation process followed in ASPERA requires the user to input
the length and degree of formality of the required poem to extract the most appropriate
strophic form from the knowledge base. The vocabulary selection is also manipulated
by the user through a choice for the mood and setting of the poem. ASPERA does not
model the complexity of natural language to achieve its results, as it relies on engineer-
ing solutions based on the input and its case base instead of a rich lexicon, syntax and
semantics rules. The creation of each line in the main algorithm follows the four steps of
case based reasoning systems:

1. Retrieve step: For each sentence in the user-intended message, retrieve a verse from
the corpus of verse examples

2. Reuse step: Construct a draft of the line based on the POS-tag of the chosen verse

3. Revise step: The user validates or revises the draft

4. Retain step: Analyse and store the validated poems, to have their information
available for reuse in further generations

The system selects words only based on their syntactic category and ranking with re-
spect to the user-defined meaning, case description or case solution. Thus it lacks strong
poeticness in that it does not consider metric information in the word choice, as it is
not included in the lexicon to start with. The author suggests improving the word se-
lection process in addition to incorporating semantic information through a knowledge
rich ontology to improve the results. A later version of the system introduced in (Gervás,
2013) follows a similar approach that basically relies on choosing an existing poem, re-
placing some words in it according to some constraints and splitting the original lines
using various methods.

24CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

3.5 Constraint Programming and Corpus-based Approaches

The found systems belonging to this category utilize constraint programming coupled
with the reliance on corpora to extract certain information. Constraint programming on
its own is popular for creative computation in the field of music Boenn et al. (2010);
Sneyers and De Schreye (2010). In the field of poetry however, although constraints are
often utilized in different forms in the process of automatic poetry generation, very few
systems where found that are implemented using a constraint solver.

3.5.1 Constraint- and Corpus-Based Poetry Generation

Toivanen et al. (2012); Toivanen et al. (2013) introduce a poetry generation system
that consists of two sub-components, described separately in two papers; the first sub-
component is a conceptual space specifier that follows a corpus-based approach for fulfill-
ing grammaticality and coherence (what poems can be like) and the second is a conceptual
space explorer that uses constraint programming techniques for achieving poeticness fea-
tures and actually producing the poems accordingly. This approach separates the content
and form of a poem from the actual process of creating such poems

The specifier component is built according to the principles introduced in Toivanen et
al. (2012), which on its own is a system capable of producing Finnish poetry with the help
of two separate plain text corpora; a background corpus for mining lexical associations
and a grammar corpus that provides grammatical and structural patterns.

The poetry generation algorithm used proceeds as follows:

1. Give or randomly choose a one word topic for the new poem

2. Extract words associated with said topic from the background graph representing
common-sense associations between words extracted from the back ground corpus

3. Randomly select a text piece from the grammar corpus

4. Morphologically analyse the words in the text for their POS, case, tense etc.

5. Independently substitute the words in the text with the words associated with
the topic while maintaining the original morphological forms and reverting to the
original word if the morphological form cannot be matched

6. After going through all words, measure the the poem novelty based on the percent-
age of replaced words and only output if it is sufficiently different else retry the
process for a different starting text

This system still did not cover the poeticness property of poetry which will be realized by
the explorer component. The role of the specifier component is to use the input from the

3.5. CONSTRAINT PROGRAMMING AND CORPUS-BASED APPROACHES 25

user, alongside the corpora to generate the input to be passed to the explorer component;
namely a large number of mutually dependent word choices for different positions in the
poem and their dependencies.

The explorer component, described in Toivanen et al. (2013), then takes this input and
produces the output poem by using a constraint programming approach based on search-
ing for optimal solutions over an implicit representation of the conceptual space. The
system solely relies on expressing all various aspects of poetry as interacting constraints
and thus utilizes a constraint solver to find solutions.

The explorer component comprises of a constraint solver and a static library of con-
straints (provided by the system designers) . The data, that triggers the constraints or
potentially creates new ones, provided by the specifier component is:

• Poem Skeleton: the number of lines with their respective number of words

• Candidates: a list of potential words for each position in the skeleton

• Form Requirements: possible requirements on the poem form, e.g. rhyming struc-
ture, rhythm

• Syntax and Content Requirements: possible requirements on the syntax and content
of the poem, e.g. word inter-dependencies

The user can manipulate these parameters by providing the specifier component with his
or her preferences.

The dynamic specifications provided by the specifier component alongside the con-
straint library form a constraint satisfaction and also optimization problem. The authors
use answer set programming (ASP) Gelfond and Lifschitz (1988); Niemelä (1999); Si-
mons et al. (2002) as the constraint programming paradigm for finding the solutions to
the problem, i.e. to generate the poems. ASP is a data-centric paradigm where the input
data (predicates) provided by the specifier component, express the constraint satisfaction
problem. The actual poetry generation process is expressed as rule-based constraints ,
which are used to infer additional knowledge on the input data and to apply constraints
on the possible solutions until the optimal one is found.

3.5.2 Full-FACE

The Full-FACE poetry generation system, Colton et al. (2012), uses templates to gener-
ates poems following a corpus-based approach according to given constraints on meter,
stress, sentiment, word frequency and word similarity. The system analyses newspaper
articles to determine a mood for the day, which is used to determine an article to base
the poem on and a template for the poem.

The algorithm of poetry generation consists of four steps:

26CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

1. Retrieval: Similes (very short phrases) are mined from the internet, according to
both sentiment and evidence.

2. Multiplication: Objects, aspects, description words, or any combination thereof ate
substituted to create variations for each simile

3. Combination: Similes, their variations and phrases extracted from newspaper arti-
cles are combined according to template given by the user. Templates define which
words must exactly match, the POS tags of words and how words can be combined
to produce compound phrases.

4. Instantiation: Random phrases are chosen from and elaborate set to fill the fields
of a user-given template.

The system creates an aesthetic based on lyricism, flamboyancy, sentiment and relevance
to the article and looks for an instantiation that maximizes said aesthetic. It also provides
a commentary for the generation process, in order to add value to the creative act.
Constraints are used to shape only some aspects of the generation process of the described
poetry generator.

3.6 Other Approaches

Some other approaches towards poetry generation have been tried and will be discussed
briefly:

3.6.1 Stochastic Language Modelling

Markov-chains (n-grams) can be used to model some syntactic and semantic characteris-
tics if language in a clear and simple way; n-grams can for example model the probability
of certain words appearing next to each other. This can be used to produce simple poetry
but at the expense of sentence and poem structures.

Ray Kurtzweil Cybernetic Poet, Kurzweil (2001), is a poetry generation system that
generates well-formed rhythmic texts based on a statistical language model trained on a
corpus of existing poems. The use of n-grams provides for coherence within each verse
but not globally.

3.6.2 POS-Tag Based

et al. (2013) introduces a POS-tag based Basque poetry generation system that extracts
POS-tag sequences from verse corpora and calculates the probability of each sequence.
Three different experiments have been tried out for the generation process: Based on a
strophe chosen from the corpora:

3.6. OTHER APPROACHES 27

1. Replace each word according to its POS-tag and suffixes

2. Replace each noun and adjective with an equally inflected word

3. Only replace nouns with semantically related ones, using the Basque WordNet

The third experiment produced the best results with respect to coherence and correctness,
however the system does not account for any poeticness features, like rhyme or metre.

3.6.3 Vector Space Model

Wong and Chun (2008) present an approach for generating modern haikus based on
text found in blogs using a Vector Space Model (VSM). The system requires a keyword
lexicon, consisting of 50 words commonly used for writing haikus, and a line repository,
containing sentence fragments from blogs. The haiku generation algorithm proceeds as
follows:

1. Choose three keywords from the lexicon to form the general picture

2. Search the line repository for fragments using these keywords

3. Using a weighing scheme to determine the importance of a word in a sentence,
extract two keywords from each of the fragments

4. Describe the semantic relation between sentence pairs using vectors and create a
query for each possible pair using a keyword from each sentence.

5. Assign the result of the query in Yahoo! to the corresponding element in each vector

6. Chose the sentences with the most semantically related vectors’ pair for the final
haiku

Summary

The variation in the ranges of output quality is clearly noticeable as some approaches only
attempt to satisfy metrical or grammatical features while others focus more on syntax,
semantic and coherence or even all three properties of a poem defined in Manurung
(2004).

Because of the creative nature of poetry it is difficult to define an objective evaluation
method of the quality of the resulting poems. Basic Turing-like tests (to be discussed
later) and trials of publishing resulting poetry are often used to evaluate poetry quality.
Also some work is done to try an define an objective criteria for assessing the creativity
of the poems produced by a certain system Oliveira (2009).

Although computer generated poetry is still far from matching the quality of human
written poetry, it is clear, that the rich and diverse research and implementation attempts
towards this endeavor, provide many interesting and promising results, that show the
potential of the field.

28CHAPTER 3. APPROACHES AND TECHNIQUES FOR POETRY GENERATION

Chapter 4

System Architecture

After having mapped out the preliminaries and the state of the art of automatic poetry
generation, in this chapter the approach used for the poetry generation will be discussed.

An overview of the whole system architecture will be given, before going into the
poetry generation components in more detail. In the introduced approach, the whole
poem is regarded as an empty grid, where the reasoner replaces each grid element with a
word. A poem is generated by filling the grid, one element at a time. Each final word is
selected from its set of candidate words, which is initially the whole lexicon. The selection
process of each word can be regarded as a step-wise pruning of the whole lexicon by the
reasoner, based on various constraints, as shown in Figure 4.1. The first constraint to
be taken into consideration is the word type, where the POS-tag pruner selects only the
words matching the current required word type, from the lexicon. The required word
types are all stored in a grammar pattern list, that contains the POS-tag of all the words
that should appear in the poem, in the correct order. All the important information,
contained in the grammar list, is extracted from the lexicon, as it is explicitly designed to
provide all the necessary grammatical details. The generation of the lexicon and grammar
list will be discussed in more detail, later. After achieving a list of all the words, that

Figure 4.1: The pruning steps of the selection process of each word in the poem

29

30 CHAPTER 4. SYSTEM ARCHITECTURE

match the grammar pattern, the list is narrowed down further, by the Rhythm matcher
to keep only words corresponding to the current stress pattern. The stress pattern list
contains the information about the rhythm of the poem and thus, ensures that all chosen
words satisfy the stress pattern. The two pruning stages employed to this point, are
sufficient to create an artifact that can be considered as English text, because it satisfies
the basic grammar rules. In turn, this text can also be considered a poem, as it satisfies
the most basic poem property, namely the rhythm. The quality of the generated poems,
can however still be improved. In addition to the further grammaticality and poeticness
elements, that need to be considered, the complex property of meaningfulness needs
to be satisfied. Most of the further grammar rules are handled in advance in the initial
grammar list, to ensure that the words are chosen correctly from the beginning. However,
some grammar rules can only be applied after, all or some, words of the sentence have
already been chosen. Another property that is familiar in poems, is the fact that verse
endings follow a certain rhyme scheme. This is achieved by the rhymer, which enforces
an extra pruning step to the candidate lists of words appearing at line endings. Finally
the random selector selects a random word from the pruned candidate list, and adds it
to the poem. As some words need to be compared to already chosen words, as well as
the candidate list, CHR is very well suited for this type of constraint solving, due to its
multi-headed nature, as will be shown later. Meaningfulness is achieved in this system,
in the sense of poem coherence. It is ensured that each generated poem follows one basic
theme by dividing the basic lexicon into various smaller theme-based lexica, and allowing
the user to specify the theme of the poem to be generated. To achieve more coherence
the system minimizes the number of acting subjects and objects in the poem, which
will be discussed later. Because of the figurative and interpretative nature of poetry,
texts generated using the above outlined approach sound meaningful and coherent. Also,
because of the randomness of the word selection process, given the satisfaction of the
basic constraints, the generated text has the beauty of enabling the readers to allow their
imagination to run freely. Given a poem, each reader will deduce a different message
he or she believes the poem conveys, which is the actual point of poetry and creative
works, in general. The architecture of the reasoner enables the addition of any further
constraints the user wishes to enforce on the generated poems, as it will simply require
the addition on an extra pruning step to the candidate list.

The poetry generation process thus consists of two components, namely the lexicon
and the reasoner, which will each be explained in further details in the following chapters.

As previously mentioned, a poem was defined to be a text that simultaneously satisfies
three properties; poeticness, grammaticality and meaningfulness. In the following, we will
discuss the approach chosen to realize each of the three properties using CHR.

4.1 Grammaticality

First we will discuss how the grammaticality property was achieved, meaning how we
ensure that the generated text is grammatically correct. Instead of generating a text

4.1. GRAMMATICALITY 31

and then checking if it is grammatically correct, it is better to generate grammatically
correct text, to start with. To do that, we first need to define the correct English sentence
structure. There are two options for defining the sentence structure of the poem: either
by providing a grammar for the English language to specify what kind of sentences is
accepted by it, or by explicitly giving a template containing the required POS-tags for
each position in a sentence. The former option would be more autonomous, but requires
handling the ambiguity of the English language and would allow for a smaller subset of
the English language to ensure termination. It can also be investigated by implementing
the grammar in CHR Grammars Christiansen (2004), the CHR counterpart of DCGs
for Prolog. For the purposes of this thesis, the latter option was chosen, to investigate
how grammaticality could be realized through the underspecification of constraints. The
approach used depends on a list containing the target grammar pattern of the whole
poem, namely the correct POS-tag sequence of the words that will appear in the poem.

4.1.1 Grammar Pattern List

The grammar patter list is the guide the reasoner uses to choose words from the lexicon
and insert them in the poem. The first instance of grammaticality is thus ensured by
always selecting words from the lexicon that match the current required word type, i.e.
POS-tag. As long as the sentence structure represented in the grammar pattern list is a
correct one the generated sentence should be grammatically correct. The reasoner goes
through the list and selects all the words that match the current POS-tag, to then prune
them further to match the remaining constraints. The grammaticality is only ensure
through the POS-tag matching with the word types in the grammar pattern list and
without any application of further constraints. The grammar pattern list, which is the
core grammaticality measure, can be generated in many ways.

4.1.1.1 Manual Specification

The first possibility is the obvious one, of manually deciding on the required grammar
pattern list. The user could specify the exact pattern of the required poem. This way
he could manipulate the flow of the poem, by enforcing a certain grammatical structure.
For example if the user, wants a poem that describes a certain concept, he would specify
that the POS-tag of the first word should be a concept, followed by a verb and an object,
then another verb and object, etc. However, this possibility is trivial and tedious for the
user to fully specify the whole grammatical pattern of the poem.

4.1.1.2 Extraction from Corpora

The second option is to extract the grammar pattern of the poem, from corpus of existing
poems. This can be done in two ways. The ifrst one is by collecting a corpus of poems for
different poets or poetry types and then learning the different grammar patterns. This

32 CHAPTER 4. SYSTEM ARCHITECTURE

way the user can specify the theme or poet style he wants and the grammar pattern
matching the user’s request will be used. The second possibility is to search the internet
for poems matching the user’s query and they extracting the grammar pattern from it.
While matching the grammar pattern to that of an existing poem, the ambiguity of
grammar parsing has to be handled. A naive instance of parsing to extract the grammar
pattern from existing poetry has been implemented throughout this work. However, this
approach was abandoned, to be enhanced later, as the goal of this work was to examine
the possibility of poetry generation without relying on any external resources, to test the
power of CHR for natural language generation. Also the approach of grammar pattern
extraction from corpora has been investigated in numerous works so far, as shown in 3,
and thus is was decided to pursue a novel approach.

4.1.1.3 Automatic Generation

The final option is the automatic generation of the grammar pattern list, which is the
actual approach pursued in this work. The grammar pattern list is initially empty and the
system just fills it with a certain number of nouns, to specify how many main sentences
should appear in the final poem. Any noun is automatically preceded with an article,
initially ‘a’. The article will be removed or modified as needed, later. After any noun
a verb should appear. Optionally, two nouns can first be combined with a conjunction
before following them by a verb. Another optional feature, is the conjunction of two
sentences; at this point two nouns and two verbs. Sentences that consist of only a noun
and verb would produce text of very crude nature. This is where the lexicon design comes
in. As will be shown in 5, each verb entry contains additional information about how
a sentence should continue after the appearance of said verb. This information is used
to expand the basic grammar pattern list after each verb in it. Verbs can be succeeded
by objects, prepositions and objects, infinitive verbs, clauses and so on. Depending on
the choice of the verb, the list is updated with the necessary POS-tags, in the correct
location. In case of a preposition, the verb entry in the lexicon also contains a information
about the possible prepositions that could appear with the specific verb and thus a certain
preposition is added to the grammar pattern list. Any additional modifications required
for the added word types are also managed automatically, as will be discussed in detail
in 6.

4.1.2 Grammar Correction

After ensuring that the sentence structure itself is correct, some further grammar rules
need to be enforced. This additional corrections are preformed outside the grammar
pattern list, as they depend on other word choices. For instance, the article can only be
correctly set after the noun itself has been chosen. In case of a plural noun, the article is
changed to ‘the’. In case of a noun starting with a vowel the article becomes ‘an’. And
finally, if the chosen noun is a pronoun, then the article is entirely removed. Another
case were the grammar correction needs to be handled explicitly, is the s-form verbs.

4.2. POETICNESS 33

Whenever the noun of the sentence is a singular third person the verb types in the whole
grammar pattern list have to be modified to become s-form verbs instead of regular ones.
In case of a past verb, this restriction is naturally ignored.

4.2 Poeticness

In this section the realization of the poeticness feature will be discussed; i.e. how we
ensure that the generated texts are poems. The interesting thing about poetic features,
is that they are many and that now all of them have to appear in a certain poem at once.
Also, they are not very strictly defined and restricted like other linguistic features and
are highly dependent on subjective taste and opinion.

4.2.1 Basic Features

One feature that most linguists agree upon, for a text to be considered a poem, is the
rhythm. The rhythm of the poem is realized similarly to the grammar of the poem:
through a metre list. However, instead of defining the target metre list of the whole
poem at once, the list is defined for each verse separately. This is so, because depending
on the poem type, each verse can have a different rhythm, form and length. The target
metre list, is defined based in the required rhythm pattern of the poem. It consists of
zeros and ones to represent stressed and unstressed syllables. This enables, the pattern
matching with the rhythm pattern lists of each word in the lexicon. The pruning of the
candidate words according to the rhythm, is performed by the reasoner after the selection
of the POS-tag matching words, as shown in ??. The finishing of a single rhythm pattern
list, signals the termination of a poem’s verse, which denotes the final chosen word as the
last word of said verse. This brings us the the other popular feature of poems: rhyme.

If a user decided he wants to enable the rhyme in the generated poetry, an extra
constraint is enforced on the last word of each verse. Depending on the chosen rhyme
scheme the last words of certain verses have to rhyme. In these cases, the reasoner
narrows down the list of possible words further to allow only suitably rhyming last words.
To decide whether two words rhyme, the phonemes following their last stressed vowels
are checked. If they match and the consonants preceding the vowel are different, then
the words are considered to rhyme. Rhythm and rhyme alone, are enough to transform
a text into a poem.

4.2.2 Figures of Speech

But the actual beauty of poetry comes from the added figures of speech that make for
for the individual interpretation and imagination of each human. While it is possible
to investigate the deliberate incorporation of figures of speech, in particular metaphors,

34 CHAPTER 4. SYSTEM ARCHITECTURE

the chosen approach focused on examining, how metaphors could appear through under-
specification. So instead of following the human’s definition of what a metaphor is and
how it should be, the computer was allowed to generate his own metaphors. This was
achieved because the words were somehow chosen randomly, as long as they satisfied the
harder constraints of grammar, rhythm and also semantics. The metaphors that appear
in the generated poems are different from the accustomed human generated metaphors,
which allows for more creativity and interpretation. While metaphors are defined as link-
ing two different planes with each other Hobbs (1979), the system allows for metaphors
that span higher dimensional planes and unconventional connections that humans would
usually shy away from. An example of two metaphors generated in poem snippet is:
‘Safety tears a tear,or feels for a fear’. The reasoner is choosing rhyming and
rhythm matching words, that have no other restriction than the grammatical structure.
Yet, it produces two metaphors that can be interpreted by the reader, because of the
random word choice governed by coherence (which will be discussed later). Although,
metaphors are generated as a by-product of the generation design, it is possible to manip-
ulate them upon requirement. This can be done by enforcing the linking of two different
theme-based lexica at certain location. This is usually enforced with appearances of the
comparative ‘like’, where the word preceding it should come from the indigenous lexicon,
and the succeeding word should come from the target lexicon. The target can either be
specified by the user, chosen randomly or chosen based on commonness of use with the
indigenous lexicon.

Enjambments are also implicitly achieved in the generated poems, because the gram-
mar patter list is globally defined for the whole poem, while the rhythm pattern list is
only defined locally for each verse. So again, through underspecification, enjambments
are generated because a sentence could span two verses.

Some other phonemic figures of speech that can be explicitly specified and incorpo-
rated into the system are repetitions, alliteration, anaphora and assonance. Repetitions
can simply be enforced, by specifying a certain word, sentence or structure, that should
be copied again at certain locations of the poem, to appear in certain intervals. A similar
concept applies to anaphoras. Alliteration can be achieved by applying an extra con-
straint on the word choice, for the whole poem or for parts of it. The extra constraint
would require two words to start with the same letter and exclude all the other words.
Similarly, assonance can be achieved, but by putting a constraint on the vowels of the
words instead.

4.2.3 Form

The final important trait of poems, is that they must have a unique form. Poems can
have various different forms, which can be specified by the rhythm pattern list. One clear
example of poetry forms, is concrete or shape poems. For example, if the user requires
the generation of a diamante, the rhythm pattern lists would have the following form:

[_,_],[_,_,_,_],[_,_,_,_,_,_],[_,_,_,_,_,_,_,_],[_,_,_,_,_,_],[_,_,_,_],[_,_]

4.3. MEANINGFULNESS 35

Similarly, the poem’s form can be manipulated in many ways.

Also, some poems have certain features or structures, where they describe a certain
environment, action or concept. This can be manipulated by the grammar pattern list
and the rhyme pattern list together. For example, for a descriptive poem, it could be
enforced that it starts with the thing it wants to describe and that after that no new
subjects appear throughout the whole poem and only verb sentences that describe the
main subject of the poem appear. Another possibility is to enforce the poem to start with
specific actors or things and then move on to a more general case, or vice versa. Generality
can be achieved by concepts and nouns describing broad things, while specification can be
realized through persons and items. The type distinctions between the nouns, is enabled
because of the specific lexicon design as will be shown in 5

4.3 Meaningfulness

The final and most ambiguous feature of poetry, and any literature text in general, is the
meaningfulness. Meaningfullness is difficult in that it cannot be specifically defined. For
the purposes of this work, it has been enforced through the concept of coherence, because
a text can only be meaningful if it is coherent. Coherence has been ensured because of
two measures, the generation of theme-based lexica and the restriction of the actors in
the poem.

4.3.1 Theme-based Lexica

The main notion of coherence is achieved because of the extraction of smaller theme-based
sub-lexica from the general lexicon. By enforcing a poem to be generated solely (with
the exception of intended metaphors) from a lexicon that contains words belonging to a
specific theme, it is ensured that the poem will have this theme. Also, all the words in
the poem will have a certain unity in terms of the topic and the text will gain a meaning.
This also allows for freedom in the meaning of the generated poems, so that they do not
sound too constrained but allow the reader to interpret the actual message of the text as
he pleases.

4.3.2 Poem Actors’ Restriction

Another measure taken to improve the coherence of the produced poems, is the restriction
of the actors of the poem. In other words, to limit the number of subject and objects
that act in one poem. This is achieved by starting out with one subject. Then, whenever
choosing another subject or object, there are two choices: either choose from the list of
existing subjects and objects or choose a new one and add it to the list. The decision
between the two options is done randomly with higher probability for the existing subjects

36 CHAPTER 4. SYSTEM ARCHITECTURE

and objects. This allows the poem to have more coherence and unit, as it specifies the
individuals the poem is revolving around.

Some extra restrictions can be enforced at this point. There is the soft constraint
of the uniqueness subject and object of the a certain sentence. This constraint is thus
not always enforced, to avoid excluding sentences that would provide a poetic meaning,
where the subject of the sentence acts upon himself. Also, the exact number of subject
and objects of the poem can be specified. For example, a certain poem can have one
specific subject and one object. Additionally, the user could specify the actual actors
(subjects and objects) of the poem. So, one could generate a poem whose only actors are
a ‘king’ and a ‘queen’, for example.

Chapter 5

Lexicon

5.1 Design

The poetry generation process usually needs a lexicon or a corpus to provide the system
with the words. In the introduced system the reasoner consists of pruning rules, that
are applied on the lexicon, to generate each word. The lexicon is designed specifically to
simplify the word selection and pruning process, by providing the reasoner with the needed
information, in the format best suited for the implementation using CHR. The lexicon
is generated using Java and CHR, by merging and reformatting University (2014) and
Beale (2014), before adding some external information. Alternately Wordnet University
(2010) could be used, instead of using Beale (2014), al Each entry in the lexicon has the
following format:

word type;number of syllables;stress pattern list;pronunciation list;word

Where the word type represents the POS-tag of the current word, the number of syllables
corresponds to the number of vowels in the word and the stress pattern corresponds to
the number representing the stress of each vowel phoneme in University (2014). The
pronunciation list contains the phonemes for the pronunciation of the word, based on
University (2014). The final element in the entry contains the actual word. For example,
the initial entry of the word ‘charm’ would be verb;1;1;ch,aa1,r,m;charm;. Initially,
we differentiate between 7 different word types: noun, verb, adjective, adverb, pronoun,
preposition and conjunction. Having the type of the word at the beginning of each
lexicon entry, enables us to only import those words from the lexicon that belong to the
required POS-tag. The first pruning step is thus preformed in the lexicon file, with the
instructions of the reasoner. This makes the CHR pruning rules more efficient by having
a much smaller candidate list to operate on, as will be shown later.

The described information contained in the lexicon, is already enough to allow the
reasoner to realize the poeticness features: namely rhythm and rhyme, because of the

37

38 CHAPTER 5. LEXICON

available stress pattern and pronunciation list. The basic notion of grammaticality is
also achieved, in that the chosen words will always match the word type at the head of
the grammar pattern list, regardless of how the latter is generated. A sample output
generated by using this lexicon is:

the maid amends except the numbers
flogging till linguist solely summons
contrite charades detailed or raped
import diseased or tipster shaped

Although the text sounds like a poetic construct it definitely does not make much sense.
One can easily notice the weird sentences and lack of coherence in the text. Thus, the
first modification made to the lexicon is narrowing it down to get rid of the words that
are not very common as well as those not likely to appear in poems (e.g. ‘tipster’). Also
instead of always considering the whole main lexicon whenever generating a poem, smaller
theme-based sub-lexica are generated and only one of them is considered for the creation
of one poem. This improves the coherence of the poem because only words related to
each other, with respect to the theme, will appear in the candidate list produced by the
sub-lexica. For the time being, this is done manually, to prove the concept of coherence
on the sample theme of love. Using the love-themed lexicon instead of the main one,
would generate such poems:

friendship breathed or brightly trusted
lovely marriage wedded and divorced
a wife touching after dearest lust
firing over music and caress
tear adored and kindly missed
lone affairs divorced and kindled
a boy dreaming on devout romance
never dreaming men behind eclipse

While the poem sounds like a construct that could be produced by a human, we notice,
for example, the odd sound of the use of the preposition ‘after’ with the verb ‘touching’
or ‘on’ with the verb ‘dream’.

This is why the lexicon is further enhanced, to add the necessary information needed
to construct the rest of the sentence, after the appearance of a verb. The single en-
try of the verb ‘charm’ is now extended to verb;1;1;ch,aa1,r ,m;charm;obj and
verb;1;1;ch,aa1,r, m;charm;obj,prep, ing;into, each time conveying a different
meaning. The first occurrence of the verb ‘charm’ states that the sentence can be contin-
ued by adding an object after the verb. The second gives the possibility of succeeding the
object with a preposition and a verb in its ‘ing’ form. However, we need to define exactly
which prepositions can be used, which was the reason for this extension in the first place.
Thus, another element is added to the entry, namely the list of possible prepositions; in

5.2. GENERATION 39

the case of the verb ‘charm’, ‘into’. The reasoner regards the two entries as two different
ones of the same POS-tag.

In order to be able to generate poems using the extended lexicon, some modifications
need to be applied. Further type distinctions are incorporated into the lexicon. We
differentiate between different verb forms e.g. the ‘-s’ and ‘-ing’ form and different verb
tenses, namely past and present. In the case of nouns, we differentiate between: actor,
concept, thing, item and plural. While the subject of the sentence is initially restricted
to be of type ‘actor’, the object of the sentence can be of any noun type. Using the new
extended lexicon, it is possible to generate such sentences correctly:

A Miss felt alive about the hug
She sadly charms the boy into singing

5.2 Generation

The first version of the lexicon, which is a merging of various linguistic resources, was
generated using Java. Additional enhancements to the lexicon were realized using CHR.
The remaining needed information was preliminarily added manually to a small sample
lexicon, as proof of concept. In the future, this part is to be automated and generalized
to cover the whole lexicon.

5.2.1 Java

The initial main lexicon is a compilation of two main resource files, namely the ‘cmu-
dict.txt’ file in University (2014) and the ‘2of12id.txt’ file in Beale (2014). Before starting
to merge the files together, some minor changes were performed on them, in order to make
their future use easier. The double spaces separating a word from its pronunciation, were
replaced by a single space in ‘cmudict.txt’. Also, to reduce diversity, unnecessary inflec-
tions and differentiations of words were removed from ‘2of12id.txt’. All words preceded
by a single hyphen or a ‘∼’ were also removed, due to being unusual. Furthermore, words
of type ‘spoken’ or ‘interjection’ are ignored, as they are not very familiar in poetry and
would require special treatment.

At this point, both files, ‘cmudict.txt’ and ‘2of12id.txt’ are ready to be read by
Java and the needed information is extracted from them to be written into the out-
put lexicon. As discussed, each entry in the produced lexicon, has the following form:
word type;number of syllables;stress pattern list;pronunciation list;word.
In the following we will always consider each lexicon entry, as a list, whose elements are
separated by a ‘;’ and we will refer to the elements by either their name or their number
in the list. The semicolons separating each element of the lexicon entry allow the Prolog
predicate transform/2 to transform each element in candidate list into a 2D list of the
form [[type],[no of syllables],[stress pattern], [pronunciation]] to be able

40 CHAPTER 5. LEXICON

to access each element of the entry using its corresponding index. The advantage of this
notation will become clearer when we go into the details of the poetry generation process.
The actual word is appended at the end of each entry, to be displayed faster in the final
poem, which will also be shown later. The ‘my2of12id.txt’ is read to provide the word
categorizations and the ‘cmudict.txt’ file is read to provide the pronunciation, syllable
number and stress list.

A Word object is created for each line from the ‘cmudict.txt’ and is stored in a list of
Words. Each Word has two attributes, the word itself and the pronunciation list. For each
line of the ‘my2of12id.txt’ a WordCategory object containing the word and its category
is created and stored in a similar list of WordCategories. For each instance of the class
WordCategory we gather all the necessary information and create the output line for the
lexicon, in the desired format.

The process method in the class WordCategories is responsible for this procedure.
Depending on the category of each word in the WordCategories list, it adds the word
type to the string to be written into the output line. It then accesses the word with the
same index in the Words list, to extract the remaining information. To do so it makes
use of two helper methods, namely syllableCounter which is responsible for counting
the syllables of the current word by counting the number of phonemes starting with a
vowel and stressPattern which is responsible for creating the stress list of each word by
checking on the number appended to the vowel phonemes. It is important to note, that
for the purposes of the poetry generator, we only need to distinguish between stressed and
unstressed syllables, without needing the strength of the stress, thus both stress values 1
and 2 are stored as a 1 in the stress list. After having calculated the syllable count and
the stress list they are also appended to the output string. The last information to be
added to the string before the actual word in question is the pronunciation list. All the
information concatenated to the string is separated by ‘;’. Whenever a string is ready, it
is added to list of strings to be written back to the output lexicon.

Due to the fact that inflections of the same word are normally stored in the same
line in the ‘my2of12id.txt’, and are thus all stored as one word in both the Word and the
WordCategory lists, these cases need to be handled separately. The first case where this
is relevant is in the case of adjective where each adjective usually has two superlatives.
If they exist, the information for each of the superlatives is gathered and stored into
individual output strings. However, we do not differentiate between the three types of
adjectives and store all three as words of type adjective. The second case is that of nouns,
where the plural of a noun is stored right after it in the line, if the noun has a plural form
to start with. In this case the info for the plural noun is gathered at the same time and
stored with the type plural in a line of its own. The final case for this occurrence is for all
the verbs, where each verb usually has multiple inflections for various tenses. Each line in
‘my2of12id.txt’ contains these inflections in a certain order. So each line is scanned and
the first word alongside its relevant information is stored with the type verb, the second
one with the type past, the third as ‘-ing’ form and the fourth as ‘-s’ form.

After all strings are created and formatted correctly they are written into an output
file that serves as the first draft of the lexicon. Initially, only words with a maximum of

5.2. GENERATION 41

two syllables are written into the lexicon, seeing as to how the generated text will be a
poem with a limited verse size.

5.2.2 CHR

The produced lexicon is then passed on to be processed by the CHR code. The role of
the CHR code is to differentiate between adjectives and adverbs with the help of the s/6
predicate of the Prolog version of the Wordnet database University (2010).

To start, the UNIX grep command is called from within CHR using the predicate
grep, to get all the lines of the lexicon file, generated by the Java code, and store them in a
list in the constraint all_words/1. We then loop on the elements of the list. Whenever we
find a word of type adjective, we check on the type attribute of the s fact corresponding
to the current word. If it has the letter ‘r’ as its type, then the whole line should be
replaced in the lexicon as the word should have the type adverb instead. After the
necessary additions and removals have been made to the list and all lines have been
checked, meaning the base case has been reached, the whole list is written into a new
lexicon file.

5.2.3 Additional Information

Before adding the additional necessary information, a smaller love-themed lexicon was
generated, by selecting all word related to love from the main lexicon. As discussed
before this process, should be automated in the future, as it was applied to a small
sample as prove of concept before being generalized. The additional information added
to the sub-lexicon will be discussed for each word category on its own.

5.2.3.1 Nouns

First of all further type distinctions between different nouns are made. Nouns are divided
into actor, concept, item, thing and plural. This would enable the enhancement of the
meaningfulness of the poem, whenever needed, by restricting the interacting noun types
of a sentence or a stanza.

5.2.3.2 Verbs

Depending on the verb type, each verb can be succeeded by a different sentence structure.
For each verb we then add different entries for each possible continuation of the sentence,
after said verb. If the sentence continuation list contains a word of the type ‘proposition’,
then a list of the possible propositions, that can be used, is also added. A verb entry line
thus has the form:

42 CHAPTER 5. LEXICON

verb tense;number of syllables;stress pattern list;syllables list;verb;
sentence structure list; prepositions list;

Each possibility of a continuing the sentence after the verb is stored in a line of its own
as each one will be handled as a different possibility whenever the poetry generator is
choosing its words. As each verb can be continued with a different sentence structure,
as discussed, each verb line contains different information; e.g. not all verbs will have
a propositions list. Due to this fact, we need to add semicolons representing the sixth
and seventh elements of any verb entry, even if these elements are empty and not needed
for the current verb. This is done, in order to avoid the unnecessary failure of reasoner
queries involving verbs when generating a poem.

5.2.3.3 Pronouns

Pronouns have types of the form ‘pronoun$_$letter$_$person’, where the letter
is either ‘o’ for object pronouns,‘a’ for possessive adjective, ‘p’ for possessive pronouns
and ‘r’ for reflexive pronouns; representing the four pronoun types. The person entry
consists of the person number, followed by either the letter ‘s’ or ‘p’, for singular and
plural persons, respectively.

The remaining pronoun type, namely the subject pronouns, are stored with a different
type format than the remaining pronouns; ‘actor_pronoun’. This is so, because these
pronouns can be used as actors and thus need to have the prefix ‘actor’ to their type,
in order to be included in the search for actors by the reasoner. Information about the
acting person is stored in the 6th position of each of these subject pronouns, as it is
important to be able to differentiate between singular and plural actors, as well as actors
in the third singular person, which require the verbs following them to be in s-form.

Also, all pronouns have an additional element at the very end containing either ‘m’,
‘f’ or ‘n’ for masculine, feminine and neutral, respectively.

5.2.3.4 Prepositions

In case of prepositions, the word ‘preposition’ is appended after the preposition itself-
separated by an underscore- in the word type entry. The type of each preposition is
prefixed with the actual preposition, as prepositions cannot be interchanged and an exact
match needs to be achieved whenever searching for a preposition to use.

Also some prepositions are subsets of each other, such as ‘in’ and ‘inside’, causing the
reasoner to receive both ‘in’ and ‘inside’, when requesting ‘in’, as the ‘grep’ predicate only
looks for lines starting with a certain substring. To avoid this mismatch, prepositions
that are subsets of others are prefixed with the letter ‘s’ in their type. The type of the
preposition ‘in’ would thus be ‘sin_proposition’. It is important to update the preposi-
tion lists of the verbs, to compensate for the changes in the preposition type. A verb

5.2. GENERATION 43

requiring the preposition ‘in’ would instead have ‘sin’ written in its preposition list; e.g.
verb;1;1;t,r,ah1,s,t;trust;prep,obj;sin;.

Some verbs require two prepositions after them but only have one preposition list. For
these cases individual entries are created where the preposition type has both prepositions
as a prefix but the word element itself has them both separated by a space so that they
appear correctly whenever they are displayed in a poem. An example of such an entry is
upto_preposition;2;1,0;ah1,p,t,ah0;up to;.

5.2.3.5 Articles

The only article added to the lexicon is ‘a’ because the other differentiations, namely ‘an’,
‘the’ and possessive pronouns are handled by the poetry generator itself.

44 CHAPTER 5. LEXICON

Chapter 6

Implementation of the Reasoner

In this chapter we will discuss the realization of the solution approach discussed in the
previous chapter, through CHR.

Constraint Meaning
candidate(V,I,W) W is the final candidate for position I of verse V

word(V,I,W) W is the actual word in position I of verse V
last_word(V,I) The word with index I is the last word in verse V
pattern(V,G,S) G and S are the remaining grammar and stress pattern lists of

verse V, respectively
count(V,I) The word with index I is the current word to be processed in

Verse V
suObject(S) The list S contains the subjects and objects of the poem

Table 6.1: List of Constraints

After having described the lexicon structure and its generation, we will go into the
details of the reasoner component. The main constraints used by the reasoner are de-
scribed in Table 6. The CHR rules define the interaction of the main constraints with
each other and the application of the actions (prolog predicates) on them, in order to
prune the candidate list; all the while satisfying all the poetry constraints.

6.1 Initialization and Termination

Before starting to generate any poems, the system has to add some initial constraints,
which are considered the internal inputs of the reasoner. First, the grammar pattern
list G is added to the constraint store, to be used as a basis for the poem generation.
The list can be given the exact pattern required in advance; however, that would be

45

46 CHAPTER 6. IMPLEMENTATION OF THE REASONER

very tedious and would always generate similar poems. However, the format of the verb
entries in the lexicon allows us to know how the sentence pattern should continue after
any chosen verb. Thus, only subject and verb are given to the grammar pattern list.
Also whenever a conjunction needs to be added between two sentences this should be
stated specifically in the grammar pattern list. An article is forced to always appear
before a noun, but it can be retrospectively removed or modified, depending of the final
noun chosen. In order for the poetry generation process to start, we need to generate the
constraint pattern(V,G,S). A sample grammar pattern list G, representing a poem could
be: [article,actor,verb,conjunction,article,actor,verb]. The stress pattern list
S, contains the stress pattern of the number of syllables, allowed in verse V. The count/2
constraint is also needed, as it keeps track of the number of words allowed in each verse.
Note, that the stress pattern list is only equivalent to the current line, while the grammar
pattern list spans the whole poem. Thus, whenever the stress pattern list is empty
(more details in the following), we initialize a new pattern/3 constraint for the following
verse, with the remaining elements of the grammar pattern list and a new stress pattern
list. The CHR rules, enable this separation between the two lists and provide for more
flexibility in realizing the required features of poems. For example, if we choose that the
poem will follow a monotone rhythm, the same initial stress pattern list is given to the
pattern/3 constraint, of all the verses. Whenever a new verse is started, a last_word/2
constraint, with the previous verse number and the count index it had reached, is added.
The poem is only fully generated, whenever the grammar pattern list becomes empty. As
the current implementation of CHR follows the refined operational semantics, the rules
will always be applied from top to bottom. Thus the final rule is the one responsible
for generating a word/3 constraint for any candidate word that has passed through all
the rules. Although the word/3 constraint symbolizes a final poem word, it can still be
changed retrospectively whenever needed, which shows the flexibility of using CHR.

6.2 Basic Grammaticality and Poeticness

The actual poetry generation process, where all the pruning occurs, consists of two basic
rules:

Rule 1 @ pattern(Verse,[H|T],TargetMetre), count(Verse,Count)
<=> grep(lexicon, H, TypeCandidates),
narrow_down(TypeCandidates,TargetMetre,MetreCandidates),
random_choose(MetreCandidates,Candidate),
candidate(Verse,Count,Candidate), update.

Rule 1 consists of two pruning steps. The first one occurs, while selecting the words
from the lexicon, using the grep predicate; by only “grepping” lines that start with
the current head of the grammar pattern list. The resulting list contains the so called
TypeCandidates. The second pruning step is realized, by the narrow_down predicate,

6.2. BASIC GRAMMATICALITY AND POETICNESS 47

which takes as input the TypeCandidates and the TargetMetre(the current stress pattern
list), and produces the MetreCandidates list. The MetreCandidates list is generated by
only keeping words from the TypeCandidates, whose stress pattern is a prefix of the
TargetMetre. Now that all the remaining words are viable, we randomly choose one of
the words to become a candidate for the current position. The random_choose predicate
allows for backtracking, to try out a different words, in case no solution can be reached.
The update constraint is a black-box for the remaining maintenance operations that
occur in the rule. That is, the update of the stress pattern list by removing the number
of syllables used by the chosen word and the removal of the used head of the grammar
pattern list. Finally, the whole pattern constraint is updated with the new lists.

Rule 2 @ candidate(Verse2,ID2,ExWord2)\ last_word(Verse2,ID2),
candidate(Verse1,ID1,ExtWord1), last_word(Verse1,ID1)
<=> Verse1 is Verse2+1, Verse1 mod 2 =:= 0 |
get_type(ExWord1,Type), grep(lexicon,Type,TypeCandidates),
narrow_down_rhyme(TypeCandidates,ExWord2,RhymeCandidates),
random_choose(RhymeCandidates,Candidate),
candidate(Verse1,ID1,Candidate), update.

Rule 2 handles the verse ends, where we need to enforce the additional constraint
of rhyme, when choosing a word. Here, we notice how important the multi-headed rule
matching really is, as we only want this rule to be applied, whenever two candidate
words, that are also in positions indicated by the last_word constraints, exist. Also the
guard conditions, ensuring that the two words, are in two verses that should actually
rhyme, should also be satisfied. For example the shown guard conditions represent the
rhyme scheme: ‘aabb..’. Because we now need to replace a word, with another one of
the same type, we need to access the type of the candidate word to be replaced. After
the two pruning steps explained in the rule 1 have been applied, we preform the final
pruning step; namely extracting the RhymeCandidates from the TypeCandidates. The
narrow_down_rhyme predicate checks, if the words, in the TypeCandidates, rhyme with
the other existing word, and adds those to the RhymeCandidates. This is done with the
help of the rhyme predicate, which takes the pronunciation list of two words and locates
the final stressed syllable (i.e. with stress 1) and the consonant preceding it. Two words
rhyme, if all their syllables, starting the final stressed syllable, are identical, and the
consonants, preceding said final stressed syllable, are different.

These two rules alongside the lexicon are enough to produce poems, as discussed in
Chapter 5. The poem presented before is generated using only those two rules:

the maid amends except the numbers
flogging till linguist solely summons
contrite charades detailed or raped
import diseased or tipster shaped

48 CHAPTER 6. IMPLEMENTATION OF THE REASONER

6.3 Additional Grammatical Constraints

The basic rules defined above, coupled with a complete predefined grammar pattern list,
are sufficient to generate poetic texts, as shown above. However, we had mentioned, that
only a basic grammar pattern list will be input and the expansion will occur automatically.
This extension reduces the number of external data needed for the reasoner, making it
more autonomous. The grammatical quality of the generated poems is also improved.

Fix Rule @ count(Verse,Count),candidate(Verse,ID,ExistentWord)\
pattern(Verse, [Type|T],TargetMetre) <=> (ID is Count+1;
ID is Count+2), get_type(ExistentWord,ExistentType),
fix(Type,ExistentType,FixedType),
pattern(Verse, [FixedType|T],TargetMetre).

This rule applies most of the modifications to the grammar pattern list in advance,
whenever a new candidate is chosen, in order to ensure that any chosen word is correct
to start with. This makes the generation process more efficient. This is also necessary,
because the selection of each word depends on the existing candidate words and thus, any
change in the already chosen words needs to be carefully conducted as not to disrupt the
rhyme and rhythm, in particular. One example modification enabled by the above rule,
is replacing the type of a base form verb with an ‘s’ form one, whenever the subject of the
sentence is in the third singular form. This is done by checking the the type of the existent
word, that, either directly or indirectly, precedes the word to be chosen. This is to take
into consideration, the possibility of the existence of adjectives between a subject and a
verb. The fix predicate, fixes the type of the words to be chosen, according to the type
of the existing word, if necessary. The modified word type is added to the stress pattern
list, and the generation process can proceed normally. Another important modification is
the expansion of the grammar pattern list following a verb. Whenever a candidate word
of type verb is selected, some rules similar to the fix rule, apply additional modifications
to the grammar pattern list. Such verb-specific modifications are:

• Adding the grammar continuation list of the verb to the existing grammar pattern
list

• Replacing words of type preposition with the possible prepositions depending on
the verb

• Randomly replacing an object with one of the different noun types

• Randomly deciding to place an adjective or and adverb before any noun

• Extra restrictions on sentence structure

6.4. ADDITIONAL POETICNESS CONSTRAINTS 49

Other than the case of backtracking to find a rhyming word pair, there is only one
instance where the retrospective fixing of already placed candidates occurs. This happens
when dealing with articles because an article precedes a certain word and thus can only
be modified after said word has been chosen. In case of pronouns the article is removed,
while words starting with a vowel require the replacement of ‘a’ with ‘an’, and plural
nouns sound better when preceded with the article ‘the’ instead of ‘a’. These fixes are
relatively simple because the constraints can be replaced using the CHR rules, and any
additional updates are automatically handled by the reasoner.

These additional fixes can produce poems and English sentences of of higher quality,
like the ones presented in 5:

A Miss felt alive about the hug
She sadly charms the boy into singing

6.4 Additional Poeticness Constraints

In addition to the initial poeticness constraints, there are many extensions that can be
implemented to enhance the poeticness of the generated poems.

1. Repetitions: The choice of some words could be skipped, and other already existing
words could be put is these positions instead. This is manipulated by specifying the
certain words that should be repeated, and then whenever choosing a word with the
same type, the existing one is inserted. Another possibility is to choose to duplicate
whole verses that are considered fundamental for the poem. The repetition interval
can be specified. For example the verse can be repeated at the end of each stanza
or after each verse etc.

2. Enjambment: Enjambments are a by-product of the chosen design of the reasoner
inputs. As the grammar patter list spans the whole poem and the rhyme pattern is
specified for each verse separately, some sentences can span multiple verses leading
to enjambments.

3. Metaphors: As previously discussed, metaphors are actually automatically incor-
porated because of the nature of the implementation approach. However, they can
also be explicitly enforced, if required. For the time being, this is done for the sub-
set of metaphors with the comparative ‘like’. Whenever the word ‘like’ is chosen
by the reasoner it is ensured that the word following it is from another theme and
that a direct metaphor is generated. It can be specified that the two words linked
by the comparative are of the same word type or this constraint can be relaxed to
allow for more creative metaphors.

4. Form: The form of the poem can mean two separate things:

50 CHAPTER 6. IMPLEMENTATION OF THE REASONER

(a) The actual form of the poem, which consists of the number of verses and
stanzas, their length, the rhythm and rhyme scheme etc. All these can be
specifically defined and manipulated by the grammar and stress pattern lists
and the chosen rhyme scheme

(b) The narrative form of the poem, meaning the flow of the story expressed by
the poem. Poems usually have a specific thematic construction or setup. For
example a poem can start by talking about a general situation and then apply
it to specific individuals, or vice versa. Also a poem, could be a detailed
description of an environment or a specific thing. It could be a story, in case
of a ballad, and so on. Some of these structures can be implemented by the
reasoner, through enforcing extra constraints on the structure of the grammar
pattern list, as this deals with the choice and order of the word types in the
poem. As mentioned before, this is one major use of structure of the lexicon.

6.5 Coherence

An extra step that can be taken, in order to improve the coherence of the poem, other
than the theme-based lexica, is putting a constraint on the choice of the subjects and
objects of the poem. This is achieved by the following rule:

Coherence Rule @ suObjects(A), pattern(Verse, [H|T],TargetMetre),
count(Verse,Count) <=> H = ’subject’; H = ’object’ |
choose_candidate(C), append(C,A,A1),
random_choose_unique(A1,Candidate),
candidate(Verse,Count,Candidate),
(suObjects(A);suObjects(A1)), update.

Each time a new subject or object is to be chosen, a candidate is chosen normally,
following Rule 1 and Rule 2. Then, it is added to the list A, which contains the subjects
and objects of the poem, so far. From this list, one element is chosen randomly and it
is used as the subject or object of the list, respectively. The only restriction that can be
applied on the choice, is checking that the subject of the sentence is not the same as the
object, which is done by the predicate random_choose_unique. However, this constraint
can be intentionally relaxed, or if no solution is found with this additional constraint.
If the candidate C was used as the subject or object, then the new list containing C is
added, else the old one is kept. This procedure, ensures that the number of subjects
and objects acting in the poem is limited, without sounding too constrained; which adds
more coherence to the flow of the poem. The number and type of the subjects and
objects can also be specified and set. Additionally, the exact subjects and objects can
be chosen beforehand through the suObjects constraint. The user can either decide to
add additional actors to the specified ones or restrict them to the actors he chose. The
restriction of the number of acting subjects and objects of the poem, could cause some

6.6. CHOICES 51

minor discrepancies in the rhyme of the poem, but they are negligible, in comparison to
the achieved improvement in the poems’ quality. The following poem, that was displayed
in 5 shows said improvement:

friendship breathed or brightly trusted
lovely marriage wedded and divorced
a wife touching after dearest lust
firing over music and caress
tear adored and kindly missed
lone affairs divorced and kindled
a boy dreaming on devout romance
never dreaming men behind eclipse

6.6 Choices

The user can manipulate everything about the poem that should be generated. The high
freedom in the manipulation of the poem’s features is enabled because of the nature of
CHR. The different requests, simply mean the application of certain constraints through
their respective rules and the relaxation of some others. Without performing any changes
to the generation code, minor specifications, are enough manipulate the generated poem.
As mentioned throughout this chapter and previous one, the grammar and rhyme pattern
lists alone, play a powerful role in generating different types of poetry and in expressing
the various poetic features. Depending on the required poem type and characteristics,
the system chooses from a set of predefined grammar pattern and stress pattern list pairs,
to generate the required poems. For example, if a sonnet should be generated the system
initializes a rhythm pattern list with the exact number of verses of the Shakespearean
or any other sonnet type and sets the rhythm and rhyme scheme to corresponding ones.
It then generates a grammar pattern list that would contain enough sentences to fill the
whole sonnet. It should be noted, that because of the separated nature of the grammar
and rhythm pattern lists, it could sometimes be the case that the required poem form
is not exactly reached, if the grammar pattern list is consumed prematurely, before all
the required rhythm pattern lists have been used. The opposite could also happen,
where rhyme lists become empty before the whole grammar pattern list has been used,
which could lead to sometimes uncompleted sentences. However, this could be handled
by adding fail-safe constraints to avoid these situations or fix them if they arise. Also,
additional specific grammar and rhythm pairs could be specified by the user and the
reasoner would generate the poems accordingly. The user can also choose the theme,
actors and specific words that should appear in the poem. The user has all the freedom
to add or define specific metaphors or metaphor structures, he wants to appear in the
poem.

52 CHAPTER 6. IMPLEMENTATION OF THE REASONER

Chapter 7

Semantics

7.1 Concept

The quality of the generated poems using CHR so far, has been proven to be compa-
rable to human generated poetry. So far, the meaningfulness feature has been realized
through coherence alone and the rest of the meaningfulness was realized through under-
specification. Our interpretation of meaningfulness can however be extended to semantic
relatedness. The reasoner was enhanced by adding a semantic function that chooses the
semantically related words, that match the other poetry constraints instead of the per-
forming the final word selection randomly, as shown in 4. To achieve the highest efficiency,
the semantic network of each word is generated beforehand and stored externally in a file,
with the word name. This highly optimizes the generation process, because the semantic
relations list can be generated by reading the information from the specific pre-generated
files, which saves the repetitive execution of the same task.

7.2 Semantic Network Generation

In this section we will discuss the generation of the semantic network files of each word.
To prove the concept, this was initially only performed for nouns of type ‘concept’, be-
fore extending it to all the words that appear in each theme-based lexicon. It should
be noted, that the generation of semantic networks, would only be meaningful for cer-
tain word types. For example, pronouns, conjunctions and similar words do not need
a semantic relations network. the generation of the semantic networks is also imple-
mented in CHR, to extract the necessary information from the Prolog Wordnet files,
which makes the task very straightforward. The algorithm takes a specific base word
denoted by the base_word/1 constraint and starts adding related words for it, through
the related_word/1 constraint. After all the related words have been found, they are
added to a relations list which is written to a text file, that has the name of the base word.
In Wordnet, the words are identified by their IDs or sense keys, as each word can belong

53

54 CHAPTER 7. SEMANTICS

to different synsets and thus has multiple IDs. The first step after adding the base word,
is getting the all its IDs from the different synsets and adding related/1 constraints
for them. The related/1 constraint is the main constraint used for the generation of
the semantic networks. At this point, all the information required for finding the words
related to the base word, has been acquired , and the actual generation can begin. Due
to the format of the Prolog files of Wordnet and the choice of CHR as the programming
language, the related words, are found only by accessing the relevant Wordnet files, con-
taining the facts of predicates representing the different relations given by Wordnet. The
general rule used for this procedure is:

Semantic Relations @ related(ID), operator(Operator) ==>
wordnet_operator(Operator,ID,Rel_ID) | s_short(Rel_ID,Rel_W),
related_word(Rel_W), related(Rel_ID).

For every related(ID) constraint, if the Wordnet operator Operator is defined for the
specific ID, then the ID Rel_ID of the related word is returned, and the word Rel_W
corresponding to rel_ID is extracted from the s_short/2 predicate. This predicate is
a shortcut version of the Wordnet s/5 predicate, that only gives the words and their
corresponding IDs with disregard to all the additional information. A related_word
constraint is added for Rel_W and a related constraint is added for the Rel_ID. This
allows the system to look for indirect relations. For example, if the operator in question
is the antonym, then the antonym of the base word, should be considered as a new
word for which the related words should be found. However, this would lead to a huge
list of relations that trace every word to all its possible origins which would breach the
concept of semantic relationship, for the purposes of our work. Because, we need the
words to be closely related to each other if we want to improve the meaningfulness and
the semantic coherence of the generated poetry. Thus, for some of the operators, only the
related_word constraint is added while the rel_ID is discarded. It can be decided based
on taste or different criteria, which operators are allowed to propagate their found words,
and which should only be used for extracting direct relations. The Semantic Relations
rule is a propagation one, because the related(ID) should be used to find the other
relations of the word from the other Wordnet operators. The program can be run for
all the required words, to generate their respective semantic networks. This also enables
the modification and extensions of the semantic networks externally, without doing any
changes to the reasoner.

7.3 Integration

In the following we will discuss the integration of the generated semantic networks, to
enhance the semantics of the generate poems.

Whenever a candidate constraint of a word type with a semantic network is added
the Update Semantic List rule is applied. Initially, this rule is only applied on words
of type ‘concept’, but this can easily be extended to all relevant word types later.

7.3. INTEGRATION 55

Update Semantic List @ candidate(Verse,Count,Candidate)\
semantic(L)<=> concept(Candidate)|
grep(CandidateSemanticNetwork, RelatedWords),
append(RelatedWords,L,L1), semantic(L1).

The rule is applied, if the concept(Candidate) hold, i.e. if the word is of type ‘concept’.
If this is the case, the whole semantic network CandidateSemanticNetwork in the file of
the candidate is ‘grepped’ and stored in RelatedWords. This list is append to the already
existing list L containing the semantically related words of all the words, that appeared
in the poem so far.

So, whenever a final word should be chosen from a pruned candidate list, the random
work selection is replaces by a matching with the list contained in the semantic con-
straint. The rules explained in 6 are all accordingly modified. For example, Rule 1 will
have the following form:

Updated Rule 1 @ semantic(RelatedWords) \
pattern(Verse,[H|T],TargetMetre), count(Verse,Count)
<=> grep(lexicon, H, TypeCandidates),
narrow_down(TypeCandidates,TargetMetre,MetreCandidates),
choose_related(MetreCandidates, RelatedWords, Candidate),
candidate(Verse,Count,Candidate), update.

The main modification, is thus in the predicate choose_related/3, which chooses a
Candidate from the MetreCandidates that appears in the RelatedWords list, if it
is found. If no match between the MetreCandidates and RelatedWords is found, a
Candidate is chosen randomly, like in the original Rule 1. The smeantics is thus han-
dled as a soft constraint to ensure the termination of the program. An optional measure
for the semantic coherence could be given, where the value is increased each time a word
has to randomly selected. The semantics of the generated poems, could be enhanced by
locally considering the semantic relation for each sentence separately, instead of for the
whole poem poem, at once. Also the semantic network itself can be extended in different
ways to allow for more semantics. As mentioned before this can be used to improve
the quality of the generated metaphors, by linking two different semantic networks to
generate a metaphor. However, the current extension, is enough to prove the concept of
improving the meaningfulness of the poem, through the incorporation of a basic notion
of semantic networks.

56 CHAPTER 7. SEMANTICS

Chapter 8

Evaluation

8.1 Quantitative Evaluation

As is any creative work of art, the evaluation of poetry is very subjective. It is hard to
find a measure to define, what is good poetry, or even what is acceptable poetry. For
the purposes of evaluating our work and achieving the aim of this thesis, a survey was
conducted to quantitatively evaluate our work. The aim of the survey, is to prove that
the poetry generated by our system is comparable to human generated poetry. Thus, we
want to prove that the generated poetry is good enough to be generated by humans. The
survey also aimed at trying to rate the quality of the generated poems, with respect to
a set of features. The question whether the computer generated poems are better than
human generated ones or not, is a purely subjective one, thus it will not be tackled here.

The survey consisted of 6 questions that cover different points, needed to support our
claim. It was posted online on https://www.surveymonkey.com/s/8TNQMP2, and the
results analyzed here have been collected over a one month period. A total of about a
hundred opinions have been gathered. The partakers of the survey were unaware of the
purpose of the survey or that automatic poetry generation was involved in order to avoid
premature assumptions and biased opinions.

8.1.1 Survey

The first two questions of the survey presented 3 poems each, to be ranked by the user
according to preferability. The first set consisted of one computer generated poem, and
two poems by famous poets.:

1. Tear adored and kindly missed,
Lone affairs divorced and kindled.
A boy dreaming on devout romance,
never dreaming men behind eclipse. 1

1Computer generated

57

https://www.surveymonkey.com/s/8TNQMP2

58 CHAPTER 8. EVALUATION

2. I was a child and she was a child,
In this kingdom by the sea,
But we loved with a love that was more than love
I and my Annabel Lee
With a love that the wingèd seraphs of Heaven
Coveted her 2

3. Love is more thicker than forget,
more thinner than recall,
more seldom than a wave is wet,
more frequent than to fail. 3

The second set consisted of one computer generated poem, and two poems posted
online by amateur poets:

1. It feels intense, so it misses,
to hide from a storm, still an adult kisses
a hooked lip. 4

2. Kiss me like my lips are a forest fire.
And all your lungs need to breathe are flames 5

3. To lay a kiss on your lips,
so gentle and delicate
is like picking the drops of dew
off the petals of a rose. 6

The second type of questions, is a comparison of two poems, to decide which one of
them is generated by a human poet. Again the first set consists of one poem generated
by the system developed in this thesis and the other is a poem by a famous poet.

1. He trusts a Tear to sing along,
When he dances with the Hearts.
He hates to trust in a Romance, where
He loves to miss to dance with a Care 7

2. When Friendship or Love our sympathies move,
When Truth, in a glance, should appear,
The lips may beguile with a dimple or smile,
But the test of affection’s a Tear 8

2from “Annabel Lee” by Edgar Allan Poe
3from “Love is more thicker than forget” by E. E. Cummings
4Computer generated
5“Kiss” by WreckingballX, http://hellopoetry.com/words/210/kiss/poems/, 2014
6by Peter Oliveri, http://www.lovepoemsandquotes.com/LovePoem76.html, 2014
7Computer generated
8“The Tear” by Lord Byron

http://hellopoetry.com/words/210/kiss/poems/
http://www.lovepoemsandquotes.com/LovePoem76.html

8.1. QUANTITATIVE EVALUATION 59

For this questions, the second set also compares the computer generated poem, with
a poem or a poetic quote by a famous poet.

1. Safety tears a tear,
or feels for a fear,
heats a youthful love,
or loves a hooked dove.
Safety hides a dear
breath, or heats a fear,
hopes to break a tear,
Or loves a fear. 9

2. Someone who does not run
toward the allure of love walks
a road where nothing lives.
But this dove here senses
the love-hawk floating above,
and waits, and will not be driven
or scared to safety. 10

After completing the first four questions, which aim at testing the comparability of the
generated poetry with existing human written poetry, the reader is taken to a different
set of questions. The second part of the survey, is designed to give insight about the
quality of the generated poems. This is done in two parts:

The reader is given two computer generated poems and should choose from limited
options, to give a rating for a certain set of features. The two poems are two from the
ones used in the first question set, to keep the evaluation coherence:

1. He trusts a Tear to sing along,
When he dances with the Hearts.
He hates to trust in a Romance, where
He loves to miss to dance with a Care

2. Safety tears a tear,
or feels for a fear,
heats a youthful love,
or loves a hooked dove.
Safety hides a dear
breath, or heats a fear,
hopes to break a tear,
Or loves a fear.

9Computer generated
10by Rumi in “The Book of Love: Poems of Ecstasy and Longing”

60 CHAPTER 8. EVALUATION

The user rates the two poems in terms of:

• Rhythm (the tempo and flow): choice between ‘yes’ and ‘no’

• Rhyme: choice between ‘yes’ and ‘no’

• Message (the idea behind the poem) : choice between ‘clear’ and ‘unclear’

• Language (is it understandable): choice between ‘understandable’, ‘odd’ and ‘un-
clear’

• Style (the poetic style): choice between ‘very poetic’, ‘somewhat poetic’ and ‘un-
poetic’

The final question handles the figurative language separately. Here, the reader is
presented only with the first poem of the two he or she just rated, and should decide
whether it contains figures of speech? The reader can choose from the following options:

1. No figures of speech

2. Figures of speech of poor quality

3. Figures of speech of average quality

4. Figures of speech of good quality

5. Figures of speech of great quality

After answering the six questions, the user has completed the survey and the results
are ready to be analyzed.

8.1.2 Results and Analysis

For the time being, only about a hundred opinions have been gathered and thus only a
preliminary evaluation can done. In the following we will present the obtained results and
analyze their implication on the work done in this thesis. The results of each questions
will be analyzed separately:

1. Figure 8.1 shows that the computer generated poem was ranked first against the two
other poems written by famous poets, by around 20% of the readers. In total around
60 % of the readers, ranked the computer generated poem, first and second, meaning
considered it better than atleast one of the two poems written by famous poets.
This shows that the poem is comparable to renowned poems and can sometimes
even be considered of higher quality. This is the case, because the user is not
suspecting that one poem should be scrutinized more than the others and is more
receptive to imagination and creativity.

8.1. QUANTITATIVE EVALUATION 61

Figure 8.1: Results of Question 1

Figure 8.2: Results of Question 2

62 CHAPTER 8. EVALUATION

Figure 8.3: Results of Question 3

2. In Figure 8.2, we see, that the computer generated poem was rated first in only
14 % of the cases and better than atleast one of the amateur written poems in
40% of the cases. This shows the subjective nature of poems, because even though
the computer generated poem, is now tested against poems written by amateurs,
it fares worse than against those written by professionals. Also, it shows that the
system generates poems of varying quality, which holds for any human.

3. In Figure 8.3, 40% of the raters mistakenly identified the computer generated poem
as written by a human. This proves exactly how comparable the poetry generated
by our system, actually is. If readers, can accept the computer generated poetry, as
human poetry against poems by famous poets, then the quality of this poem must
atleast be good enough from their point of view.

4. Figure 8.4 presents an even better result of 47% for the computer generated poetry,
which is almost half of the reviewers. Again, this proves the point explained above
and highly supports the claim of the thesis

5. Figure 8.5 analyzes the different features present in the produced poems.

• 56% agreed that the first poem has rhythm, while 80% could hear the rhythm
in the second one. This shows that the rhythm feature has been achieved.
What needs to be noted is, that rhythm cannot be always heard when reading

8.1. QUANTITATIVE EVALUATION 63

Figure 8.4: Results of Question 4

a poem, because it depend on the pronunciation and language of the reader.
Also, most readers do not read the poems out loud, which is usually required
to extract the rhythm.

• The first poem has a loose rhyme and thus 70% reviewers said it contained
no rhyme. The second poem has a strict rhyme scheme, which almost all the
readers agreed with. This shows that the rhymer is accurate.

• 64% of the readers found the message of the first poem clear, while 44% found
the second one also clear. These results show that the meaningfulness property
has been achieved, to the most part.

• The language of both poems was understandable to an average of 68% of
the reviewers, and unclear to around 9%; while an average of 22% found the
language odd. This shows that the grammaticality feature was also achieved
to the most part, which leads to understandable text. This also tells us that
the text has to be adjusted bit, to remove the instances that result in the
oddity.

• Finally, the style of the poems was considered somewhat poetic by a total
of 54%, and very poetic by 31%. This shows, that 85% thought the poems
satisfy the poeticness feature, and more than a quarter of the reviewers found
it of high poetic quality, compared to the 15% that did not find the poeticness
feature. This and the results of the first two features, show that the poeticness

64 CHAPTER 8. EVALUATION

Figure 8.5: Results of Question 5

8.1. QUANTITATIVE EVALUATION 65

Figure 8.6: Results of Question 6

feature has also been satisfied, to the most part.

6. From Figure 8.6, we can extrapolate, that the claim of achievement of figurative
language and metaphors through underspecification has been satisfied. This is so,
because only 8% considered the poem to be lacking any figures of speech, while the
remaining 92% all found the poem’s language figurative. Additionally, around 50%
of the readers considered the resulting figures of speech to be of good and even great
quality (18 %). This shows, that not only figurative language has been achieved,
but that it is of acceptable good quality.

To sum up the results of the survey, we can say that they support our claim, that
the developed system, generates poems satisfying the three properties of grammaticality,
meaningfulness and poeticness. It also proved, that the generated poems are comparable
to, and can match, those written by humans; with different experience and skill levels.

66 CHAPTER 8. EVALUATION

8.2 Comparison

In the following, we will briefly present the poetry generated by only the most relevant
poetry generators discussed in section 3, and compare it to the poetry generated by the
system developed throughout this thesis.

The following is a snippet of a translated poem, generated by the final version of the
system presented in Gervás (2013). It shows that the produced poems are not always
grammatically correct, meaningful or coherent, in contrast to the poetry generated by
our system.

Alas, my index! Oh, yellow
lemon!....
Do not even find them, put them away
in two little boxed, brother, as if
for white girls.

The system represented in Manurung et al. (2012) will be discussed next. While
McGonnagall produces poems, that are very constrained and grammatically correct, it has
the disadvantage of being a knowledge-intensive approach, while at the same time relying
on a small lexicon, in comparison to the work presented in this paper. McGonnagall
also aspires to create poems that are very similar in form and content to existing poems,
because it maximizes semantic similarity. This causes the poems to sound too repetitive
and lack room for interpretation, as shown in the example:

A very african lion,
who is african, dwells in a waste.
Its head, that is big,
is very big.
A waist, that is its waist, it is small.

Finally, we will consider the poems generated in Toivanen et al. (2013). From the
following example, we can see that poems, which are not very meaningful, coherent or
grammatically correct can be generated by the system:

Music swells, accent practises, theatre hears!
Her delighted epiphanies bent in her universe:
And then, singing directly a universe she disappears!
An anthem in the judgments after verse!

While the three existing systems rely on information from existing poetry corpora,
our system does not depend on any external information, other than the lexicon, in order
to generate poetry. This results in unique, entirely artificially generated poems, unlike
the ones produced by existing systems, that take their basis and essence from human
made poetry. At the same time, the resulting poetry has proven to be comparable to
human written poetry, without relying on it.

8.3. WEB APPLICATION 67

8.3 Web Application

The final method of presentation and evaluation of the poetry generation system and
the achieved results, is the development of a web application for the poetry generation
and the resulting poetryThe web application, allows the user to specify the properties
of the requested poems and is then provided with a computer generated poem. The
user can choose the theme of the poem, as well as its form, rhythm pattern, rhyme
scheme and acting persons. The list of user defined options can be extended at any
given time. Other than getting real-time poems, the user can also access a repository
of already generated poems.Additionally, the user can get an overview of the approach
used for poetry generation, as well as accessing the used lexicon. The user can suggest
modifications and alterations to the lexicon. Later, this should be extended with a serious
game, that would allow the user to help in the lexicon generation.

Finally, the user can choose to help evaluate the generated poetry by following the
link for the survey, or by leaving his or her comments and suggestions.

68 CHAPTER 8. EVALUATION

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, a hybrid approach, for generating poems satisfying the three properties of
poeticness, grammaticality and meaningfulness, was developed and system following said
approach was implemented. The approach does not require existing corpora or external
information to generate acceptable poems, which ensures that the produced poems are
unpredictable and unique, unlike other approaches that rely on corpora of existing poems.
The poetry generation process relies solely on a specially designed lexicon (and the derived
sub-lexica) and the reasoner rules written in CHR. This makes it a suitable model of the
process of human poetry writing, as humans do not rely on corpora or other poems
in order to write new poems, but only on their vocabulary (lexicon), knowledge of the
language rules and talent (program code). The generated lexicon provides the reasoner
with all the necessary information and contains a large number of words, which is not the
case in most of the poetry generation systems. Rather than generating the whole poem
text and revising it against the poetry constraints after each iteration like most systems
do, the system updates the information for choosing the following words through the
syntax and metre pattern, each time a new word is to be added to the poem. This is done
to ensure correctness in advance and minimize backtracking. Thus, at any given step all
constraints for grammaticality, poeticness and meaningfulness are satisfied simultaneously
by pruning the list of possible candidates to fulfill the constraints. An evaluation of the
poetry generated by the system, showed that it is comparable to human written poetry.
This thesis proves that CHR can be used to develop a hybrid system capable of generating
good poetry matching that of humans.

9.2 Future Work

As this thesis deals with natural language generation of creative poetic texts, there are al-
ways extensions that can be added towards improving the quality of the produced poems

69

70 CHAPTER 9. CONCLUSION AND FUTURE WORK

and widening the scope of the work. The process of generating the main lexicon and the
theme-based lexica could be fully automated. Open-Callais Reuters (2014) can be used
to generate the sub-lexica. The lexicon could also be extended to include information
about the gender of nouns, to enable interchanging them with their corresponding pro-
nouns, when needed. Also, the differentiation between different adverb types could allow
for their better placement, resulting in poems that are more grammatically correct. The
semantic relation function could be defined for each sentence independently, to improve
the coherence and semantics of the poem, while maintaining another value for the seman-
tic relatedness of the whole poem. The value of semantic coherence and meaningfulness
could be calculated for each generated poem. The system could incorporate a more so-
phisticated system for handling figurative language and generating metaphors. Because
the system is lexicon-based, it is easily portable to other languages, besides English with,
minor changes, given a similar lexicon of the target language. Another possible approach,
is the use of CHR Grammars (CHRG) Christiansen (2004) to define a grammar for the
sentences of the poem, to handle the grammaticality instead of the used approach. The
results of the two approaches should be compared, to choose the superior one. Also,
the grammar structure and style of the poem could be learned from existing authors, to
reproduce similar poems according to the request of the users. This can be done similar
to the approach used in Sneyers and De Schreye (2010). The reasoner could be optimized
further to improve the efficiency of the poetry generation system. A more extensive eval-
uation could be performed. One option would be the anonymous, online posting of the
generated poetry in random poetry websites, to get the feedback of a poetry-familiar
audience. Also a web application, for generating poetry, analyzing and evaluating its
results, should be hosted. This would be beneficial in gathering data and improving the
results. Towards this end, the poetry generation system could become more interactive,
in the form of a serious game, which would allow the user to manipulate the resulting
poetry, to help the system learn and gather data, to improve its future performance.

Bibliography

Alan Beale. Unofficial alternate 12dicts package (alt12dicts). 2014. URL http://aspell.
sourceforge.net/wl/.

Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Automatic music compo-
sition using answer set programming. CoRR, 2010.

Donna M. Campbell. Poetry terms: Brief definitions. 2014. URL http://public.wsu.
edu/~campbelld/amlit/poeterms.htm.

Henning Christiansen. CHR grammars. CoRR, cs.CL/0408027, 2004. URL http://
arxiv.org/abs/cs.CL/0408027.

Simon Colton, Jacob Goodwin, and Tony Veale. Full face poetry generation. In Proceed-
ings of the Third International Conference on Computational Creativity, pages 95–102,
2012.

Belén Díaz-Agudo, Pablo Gervás, Pedro Antonio González-Calero, S Craw, and A Preece.
Poetry generation in colibri. In Proceedings of the 6th European Conference on Case
Based Reasoning, Aberdeen, Scotland, 2002. URL http://nil.fdi.ucm.es/sites/
default/files/DiazetalECCBR2002.pdf.

Agirrezabal et al. Pos-tag based poetry generation with wordnet. 2013.

Poetry Foundation. Learning lab. 2014. URL http://www.poetryfoundation.org/
learning/.

Thom Frühwirth. Theory and practice of constraint handling rules. The Journal of Logic
Programming, 37(1-3):95–138, 1998.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

Pablo Gervás. Wasp: Evaluation of different strategies for the automatic generation of
spanish verse. In Symposium on Creative & Cultural Aspects and Applications of AI
& Cognitive Science, University of Birmingham, England, 2000 2000a. URL http:
//nil.fdi.ucm.es/sites/default/files/GervasAISB2000.pdf.

71

http://aspell.sourceforge.net/wl/
http://aspell.sourceforge.net/wl/
http://public.wsu.edu/~campbelld/amlit/poeterms.htm
http://public.wsu.edu/~campbelld/amlit/poeterms.htm
http://arxiv.org/abs/cs.CL/0408027
http://arxiv.org/abs/cs.CL/0408027
http://nil.fdi.ucm.es/sites/default/files/DiazetalECCBR2002.pdf
http://nil.fdi.ucm.es/sites/default/files/DiazetalECCBR2002.pdf
http://www.poetryfoundation.org/learning/
http://www.poetryfoundation.org/learning/
http://nil.fdi.ucm.es/sites/default/files/GervasAISB2000.pdf
http://nil.fdi.ucm.es/sites/default/files/GervasAISB2000.pdf

72 BIBLIOGRAPHY

Pablo Gervás. An expert system for the composition of formal spanish poetry. JOURNAL
OF KNOWLEDGE-BASED SYSTEMS, 14:200–1, 2000b.

Pablo Gervás. Exploring quantitative evaluations of the creativity of automatic poets. In
Proc. of the 2nd Workshop on Creative Systems, Approaches to Creativity in Artificial
Intelligence and Cognitive Science, the 15th European Conf. on Artificial Intelligence
(ECAI 2002), 2002.

Pablo Gervás. Computational modelling of poetry generation. In Artificial Intelligence
and Poetry Symposium, AISB Convention 2013, University of Exeter, United Kingdom,
2013.

Pablo Gervás, Dep Sistemas, and Informaticos Programacion. Automatic generation of
poetry using a cbr approach. In In CAEPIA - TTIA 01 Actas Volumen I. CAEPIA,
2001.

Jerry R. Hobbs. Metaphor, metaphor schemata, and selective inferencing. Technical
Report 204, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA
94025, Dec 1979.

Ray Kurzweil. Ray kurzweil’s cybernetic poet. 2001. URL http://www.
kurzweilcyberart.com/poetry.

S.R. LEVIN. Linguistic Structures in Poetry. 1962. URL http://books.google.com.
eg/books?id=3ddAb1_x6aoC.

Robert P Levy. A computational model of poetic creativity with neural network as
measure of adaptive fitness. In Proceedings of the ICCBR-01 Workshop on Creative
Systems. Citeseer, 2001.

Bonacia Ltd. Young writers. 2014. URL https://www.youngwriters.co.uk/index.

Hisar Manurung. An evolutionary algorithm approach to poetry generation. 2004.

Hisar Manurung, Graeme Ritchie, and Henry Thompson. A flexible integrated archi-
tecture for generating poetic texts. Technical report, The University of Edinburgh,
2000a.

Hisar Maruli Manurung. Chart generation of rhythmpatterned text. In Proc. of the First
International Workshop on Literature in Cognition and Computers, 1999.

Hisar Maruli Manurung, Graeme Ritchie, and Henry Thompson. Towards a computa-
tional model of poetry generation. In In Proceedings of AISB Symposium on Creative
and Cultural Aspects and Applications of AI and Cognitive Science, pages 79–86, 2000b.

Ruli Manurung, Graeme Ritchie, and Henry Thompson. Using genetic algorithms to
create meaningful poetic text. J. Exp. Theor. Artif. Intell., 24(1):43–64, 2012.

http://www.kurzweilcyberart.com/poetry
http://www.kurzweilcyberart.com/poetry
http://books.google.com.eg/books?id=3ddAb1_x6aoC
http://books.google.com.eg/books?id=3ddAb1_x6aoC
https://www.youngwriters.co.uk/index

BIBLIOGRAPHY 73

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs
(2Nd, Extended Ed.). Springer-Verlag New York, Inc., New York, NY, USA, 1994.

Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

H Oliveira. Automatic generation of poetry: an overview. Universidade de Coimbra,
2009.

Hugo Gonçalo Oliveira, F Amilcar Cardoso, and Francisco C Pereira. Exploring different
strategies for the automatic generation of song lyrics with tra-la-lyrics. In Proceedings
of 13th Portuguese Conference on Artificial Intelligence, EPIA, pages 57–68, 2007a.

Hugo Gonçalo Oliveira, F Amılcar Cardoso, and Francisco Câmara Pereira. Tra-la-lyrics:
An approach to generate text based on rhythm. In Proceedings of 4th International
Joint Workshop on Computational Creativity, pages 47–55, 2007b.

Thomson Reuters. Open callais. 2014. URL http://www.opencalais.com/.

Lussonnal P Rubaud J and Braffort P. Alamo: Atelier de littérature assisté par la math-
ématique et les ordinateurs. 2000. URL http://indy.culture.fr/alamo/rialt/
pagaccalam.html.

Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1):181–234, 2002.

Jon Sneyers and Danny De Schreye. Apopcaleaps: Automatic music generation with
chrism. In 11th International Society for Music Information Retrieval Conference (IS-
MIR 2010), Utrecht, The Netherlands (August 2010) Submitted, 2010.

Jukka M Toivanen, Matti Järvisalo, and Hannu Toivonen. Harnessing constraint program-
ming for poetry composition. In Proceedings of the Fourth International Conference
on Computational Creativity, page 160, 2013.

Jukka Toivanen et al. Corpus-based generation of content and form in poetry. In Pro-
ceedings of the Third International Conference on Computational Creativity, 2012.

Carnegie Mellon University. The cmu pronouncing dictionary. 2014. URL http://www.
speech.cs.cmu.edu/cgi-bin/cmudict.

Princeton University. About wordnet. 2010. URL http://wordnet.princeton.edu.

Sarah Witzig. Accessing wordnet from prolog. Artificial Intelligence Center, The Univer-
sity of Georgia, 2003. URL http://www.ai.uga.edu.

M Tsan Wong and A Hon Wai Chun. Automatic haiku generation using vsm. In Proceed-
ing of 7th WSEAS International Conference on Applied Computer & Applied Compu-
tational Science. World Scientific and Engineering Academy and Society, 2008.

http://www.opencalais.com/
http://indy.culture.fr/alamo/rialt/pagaccalam.html
http://indy.culture.fr/alamo/rialt/pagaccalam.html
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://wordnet.princeton.edu
http://www.ai.uga.edu

	Contents
	Introduction
	Preliminaries
	Constraint Handling Rules
	Syntax
	Example

	Poetry
	Definition
	The Three Properties
	Characteristics and features

	Resources
	CMU Dictionary
	Alternate 12 Dicts Package
	Wordnet

	Approaches and Techniques for Poetry Generation
	Grammar- and Template-Based Approaches
	The Poetry Creator
	RACTER
	The ALAMO Group
	Others

	Generate and Test Approaches
	Manurung's chart system
	WASP
	ASPID
	Tra-la-Lyrics

	Evolutionary Approaches
	MCGONAGALL
	POEVOLVE

	Case-Based Reasoning Approaches
	COLIBRI
	ASPERA

	Constraint Programming and Corpus-based Approaches
	Constraint- and Corpus-Based Poetry Generation
	Full-FACE

	Other Approaches
	Stochastic Language Modelling
	POS-Tag Based
	Vector Space Model

	System Architecture
	Grammaticality
	Grammar Pattern List
	Grammar Correction

	Poeticness
	Basic Features
	Figures of Speech
	Form

	Meaningfulness
	Theme-based Lexica
	Poem Actors' Restriction

	Lexicon
	Design
	Generation
	Java
	CHR
	Additional Information

	Implementation of the Reasoner
	Initialization and Termination
	Basic Grammaticality and Poeticness
	Additional Grammatical Constraints
	Additional Poeticness Constraints
	Coherence
	Choices

	Semantics
	Concept
	Semantic Network Generation
	Integration

	Evaluation
	Quantitative Evaluation
	Survey
	Results and Analysis

	Comparison
	Web Application

	Conclusion and Future Work
	Conclusion
	Future Work

	References

