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Abstract

Summarization is a technique used to extract most important pieces of information from
large texts. This thesis aims to automatically summarize the search results returned by
the Google search engine using Constraint Handling Rules and PHP. Syntactic analysis
is performed and visualization of the results is output to the user. Frequency count of
words, N-grams, textual abstract, and clusters are presented to the user.
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Chapter 1

Introduction

1.1 Motivation

As the amount of available data on the internet grows, the problem of managing the
information becomes more difficult, which can lead to information overload. This phe-
nomena is called Explosion of Information, which is the rapid increase in the amount of
published information. Search engines have entered our lives, to help in neutralizing the
information overload problem and help users find the information they need. They build
a huge cache of websites which represent only a portion of the internet. Search engines
allow users to reduce the information overload by allowing them to perform a centralized
search. However, another problem arises, too many web pages are returned to the user
upon searching for a single query. The user often has to examine tens and hundreds of
pages to find out that only a few of them are relevant. Furthermore, skimming through
the huge list of returned results containing the titles and short snippets is extremely time
consuming since the results contain multiple topics which are all mixed together. This
task would be made worse if one topic is very overwhelming but it is not what the user
desires.

Figure 1.1: Top 7 returned image search results from Google for the search query “Apple”

An example to this would be when a user, for instance, would search for “Apple”.
Figure 1.1 shows the returned Google image search results for the query [1]. “Apple” is
considered to be a hot topic according to Google statistics. Interestingly, the returned
search results from the Google search engine contain two distinct topics: the actual fruit
and the logo for the Apple Inc.. In the case where a user would be looking for the com-
pany by the name Apple, the results about the actual fruit would be considered noise to
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CHAPTER 1. INTRODUCTION 3

him. If a search engine were to classify the returned web pages into meaningful clusters
and provide summary information, it would be very helpful to the users in the explo-
ration of the returned set. In order to achieve this, CHR (Constraint Handling Rules)
could be used since if offers text analysis and natural language processing capabilities.
Constraint Handling Rules is a high-level programming language which was invented in
1991 by Thom Frühwirth. CHR is based on multi-headed, committed-choice, guarded
multiset rewrite rules and was originally invented in order to extend a host language with
constraints.

1.2 Aim of the Project

The aim of this project is to automate the summarization of Google search results which
involves reducing the content of multiple results pages into a short set of words or para-
graphs that conveys the main meaning of the text. Also one of the aims is to represent
returned web pages in an easier format to the user through clustering them. There are
tools that already provide search summaries with tag clouds consisting of keywords and
content summaries with links, such as SenseBot [2]. This automation is to be realized
through extraction of results, parsing them via CHR and presenting the output to the
user.
To be able to provide those summarizations, the following must be done. The ideal
method of extraction of data from Google search results should be found, whether its
scrapping for the result or getting the data from the Google API. Researching and im-
plementing different summarization techniques and trying to choose the best ones. Try
to come up with the best visualization of the summaries for ease of analysing them. All
of these previous steps will be discussed thoroughly throughout the next chapters.

1.3 Overview

The thesis consists of five chapters including the introduction and the conclusion. In
Chapter 2, a background view is presented. This background view explains the important
basics that are used in designing and realizing this project. Chapter 3 explains the design
and realization of the summarization tool. Chapter 4 contains a detailed explanation of
the implementation of the summarizer. Chapter 5 contains the conclusion along with
some proposed future work.



Chapter 2

Background

2.1 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) is a high-level programming language which was in-
vented in 1991 by Thom Frühwirth [4]. CHR is based on multi-headed, committed-choice,
guarded multiset rewrite rules and was originally invented in order to extend a host lan-
guage with constraints. A CHR program, is a sequence of guarded rules for simplification,
propagation, and simpagation (a mix of simplification and propagation) of conjunctions
of constraints [3].

1. Simplification rules replace constraints by simpler constraints while preserving log-
ical equivalence, e.g.

Head⇒ Guard | Body

2. Propagation rules add new constraints that are logically redundant but may cause
further simplification, e.g.

Head⇔ Guard | Body

3. Simpagation rules are a mix of propagation and simplification where the rule’s head
is divided into two parts. The first part remains in the constraint store of CHR
after the rule is fired while the second part is simplified, e.g.

Head1 \Head2⇔ Guard | Body

Guards can be used in rules if the firing of these rules depends on some condition. A
guard could be written inside the rule where it represents a condition that has to be true
for the rule to be fired.

CHR is appealing for applications in computational logic as logical theories are usu-
ally specified by implications and logical equivalences that correspond to propagation and

4
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simplification rules. CHR programs have a number of desirable properties guaranteed.
Every algorithm can be implemented in CHR with best known time and space complex-
ity, something that is not known to be possible in other pure declarative programming
languages. The efficiency of the language is empirically demonstrated by recent optimiz-
ing CHR compilers that compete well with both academic and commercial rule based
systems and even classical programming languages.

2.1.1 Prolog

Prolog is a general purpose logic programming language associated with artificial
intelligence and computational linguistics. It offers a library to host the CHR rules.
Prolog has its roots in first-order logic, a formal logic, and unlike many other programming
languages, Prolog is declarative: the program logic is expressed in terms of relations,
represented as facts and rules. A computation is initiated by running a query over these
relations. The main compiler for Prolog used in this project is SWI-Prolog [24].

2.2 Natural Language Processing

Natural Language Processing (NLP) is the computerized approach that explores how
computers can be used to understand and analyse natural language text or speech to do
useful things [6][7]. There are “levels of language” that humans use to gain understanding
of a text, thus, the more levels used by an NLP system, the more capable it is. Some of
the natural language processing applications are:

1. Summarization: Any implementation that needs to reduce a larger text into a
shorter, yet rich in information representation of the original text, needs to have a
very advanced level of NLP.

2. Information Extraction (IE): Focuses on the recognition, tagging, and extraction of
certain key elements such as persons, locations, from a large number of documents
into a structured representation. These extractions can then be utilized for a range
of applications including question-answering, visualization, and data mining.

3. Machine Translation (MT): NLP has been used in machine translation applications,
ranging from “word-based” approaches to applications that include higher levels of
analysis.
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2.2.1 Levels of languages in NLP

Phonology

At this level, spoken language is transformed into sound waves which are analysed
and encoded into a digital signal that is interpreted by various rules or through
comparison with another language model.

Morphology

In this level, every word is decomposed into the smallest units of meaning called
morphemes. For example, the word “unkindly” can be morphologically analysed
into three separate morphemes: the prefix “un”, the root “kind”, and the suffix
“ly”. Humans can break down an unknown word into its building morphemes in
order to understand its meaning because the meaning of each morpheme remains
the same across words. NLP systems also follow this logic in gaining meaning to
an unknown word. For example, when the suffix “ing” is added to a verb, it is
interpreted that the verb is taking place in the present.

Lexical

This level deals with the interpretation of single words individually. Words that have
a single meaning are replaced with a semantic representation of that meaning, where
the nature of the of the representation depends on the semantic theory used in the
NLP system. Since there is almost certainly a set of simple semantic representations
shared between words, more complex interpretations could be drawn, like humans
do.

Syntactic

At this level, words in a sentence are analysed in order to discover the grammati-
cal structure of the sentence. This typically requires both a grammar base and a
parser. The representation of the sentence is returned after the processing of this
level, which uncovers the structural dependency relationships between the words.
Meaning is conveyed through syntax in most languages because order and depen-
dency contribute to meaning. For example the two sentences: “The boy ate the
apple.” and “The apple ate the boy.” differ only in terms of syntax, yet convey
quite different meanings.

Semantic

This level focuses on the determination of the possible meanings of a sentence
by concentrating on the interactions among word-level meanings in the sentence.
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Semantic disambiguation permits one and only one sense of multi-meaning words
to be selected and included in the semantic representation of the sentence. For
example, amongst other meanings, “file” as a noun can mean either a folder for
storing papers, or a tool to shape one’s fingernails, or a line of individuals in a
queue. The meaning of the word is then determined through the consideration of
the local context, or through utilizing the knowledge domain of the document.

Discourse

This level works with units of text typically longer than a sentence, on the contrary
to syntax and semantics, which work with sentence long units. At this level, multi-
sentence texts are not interpreted as just concatenated sentences, each of which are
interpreted individually. Rather, through making connections between the sentence
units, a general meaning is extracted from the whole text. One of the used discourse
processing approaches is text structure recognition. This approach determines the
functions of sentences in the text, which, in turn, adds to the meaningful represen-
tation of the text. For example, newspaper articles can be de-constructed into text
components such as: Lead, Main Story, Previous Events, Evaluation, Attributed
Quotes, where a set of sentences belong to each of these components.

Pragmatic

This level deals with the usefulness of the used language in particular situations.
At this level, context reigns supreme over the contents of the text in understanding
its conveyed meaning. Through the availability of world knowledge, including the
understanding of intentions, and plans, extra meaning could be extracted from texts
without actually being encoded in them.

2.2.2 N-Gram

An N-gram is an adjacent N-word slice of a longer string [25]. The N-gram model is one
of the language independent approaches in statistical Natural Language Processing. An
N-gram of containing one word is called a “unigram”, two words would be referred to as
a “bigram” and a three-word sequence is called a “trigram”. For higher order N-grams,
they are referred to by their values, e.g., “four-gram”, “five-gram” and so forth. The
string “The Eiffel Tower is in Paris” could be sliced into a set of overlapping N-grams:

• Bigrams: “The Eiffel”, “Eiffel Tower”, “Tower is”, “is in”, “in Paris”

• Trigrams: “The Eiffel Tower”, “Eiffel Tower is”, ”Tower is in”, “is in Paris”

• Four-grams: “The Eiffel Tower is”, ”Eiffel Tower is in”, “Tower is in Paris”

The N-gram model is used to help in the clustering of the Google search results in this
thesis.
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2.3 Web Development

2.3.1 API

Application Programmable Interface (API) is a set of methods, protocols, and tools that
aid in the building of software applications. An API can be language-dependent or
language-independent. An example of an API is the Google API.

Google API

The Google APIs allow developers to create web applications that read and write data
to and from the Google services. As of now, these include APIs for Google Apps, Google
Analytics, Blogger, Google Base, Google Book Search, Google Calendar, Google Code
Search, Google Earth, Google Spreadsheets, Google Notebook, and Picasa Web Albums.

2.3.2 PHP

PHP, which stands for “PHP: Hypertext Preprocessor” is a widely-used open source
general-purpose scripting language that is especially suited for Web development and
can be embedded into HTML. Its syntax draws upon C, Java, and Perl, and is easy to
learn. The main goal of the language is to allow web developers to write dynamically
generated web pages quickly. One of the used capabilities of PHP, is the parsing function
which allows the developer to extract certain strings from a document using a regular
expression describing them [23]. Also, PHP was used as an interface which allowed for
the consulting of Prolog programs and the passing of inputs to them, and receiving the
output.

2.3.3 JSON

JSON (JavaScript Object Notation) is a data-interchange format. It is easy for humans
to read and write. It is easy for machines to parse and generate. It is based on a subset
of the JavaScript Programming Language. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers of the C-
family of languages, including C, C++, Java, JavaScript, Perl, Python, and many others.
These properties make JSON an ideal data-interchange language [8].

JSON is built on two structures:
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1. A collection of name/value pairs. In various languages, this is realized as an object,
record, structure, dictionary, hash table, keyed list, or associative array.

2. An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

These are universal data structures. Virtually all modern programming languages support
them in one form or another. It makes sense that a data format that is interchangeable
with programming languages also be based on these structures.

In JSON, they take on these forms:

An object is an unordered set of name/value pairs. An object begins with (left brace)
and ends with (right brace). Each name is followed by: (colon) and the name/value pairs
are separated by , (comma) as seen in figure 2.1.

Figure 2.1: An object in JSON [8]

An array is an ordered collection of values. As illustrated by figure 2.2, an array
begins with [ (left bracket) and ends with ] (right bracket). Values are separated by ,
(comma).

Figure 2.2: An array in JSON [8]

2.3.4 Atom

The Atom Syndication Format is an XML language format, wherein XML stands for
Extensible Markup Language. This format is mainly used to describe feeds which are
lists of related information [9].
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2.3.5 cURL

cURL is a free command line tool for transferring data with URL syntax, supporting
DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS,
POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, Telnet and TFTP. cURL
supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based
upload, proxies, cookies, user-plus-password authentication (Basic, Digest, NTLM, Ne-
gotiate, kerberos...), file transfer resume, proxy tunneling [10]. It is mainly used to fetch
the source code for HTML pages.

2.3.6 D3.JS

D3.js is a JavaScript library for manipulating documents based on data [11]. This library
provides amazing flexibility, and brings out the full potential of web standards such as
CSS3, HTML5 and SVG. Binding arbitrary data to a Document Object Model (DOM),
and then applying data-driven transformations to the document is its main feature. Since
its a low-level framework, full control of the data visualization is achieved, although more
work on the behalf of the developer would be needed. Some of the visualizations that can
be created with this powerful tool are shown in the figure 2.3, such as trees, force-graphs
and charts. The tree structure has been used to produce the cluster tree which will be
illustrated in the implementation chapter.

D3.js - Data-Driven Documents http://d3js.org/

1 of 1 7/1/2012 10:20 AM

Figure 2.3: Examples of the visualizations performed by D3.js [11]



Chapter 3

Design decisions and the different
approaches

In this chapter, the different approaches tried throughout the project, and the final sys-
tem architecture will be discussed. The first main part which describes the approaches
contains four sections, the methods of extracting data, the general summarization tech-
niques, the more advanced summarization techniques and finally a comparison between
two-dimensional (2D) and three-dimensional (3D) visualization techniques is presented.
The second main part will talk about the final system architecture in detail.

3.1 Extracting data

3.1.1 Google Search Results

Google Custom Search API

The Google Custom Search API allows developers to create web applications to retrieve
and display search results from Google Custom Search programmatically. With this API,
requests can be used to get either web search or image search results in JSON or Atom
format. It provides an extensive interface which allows for the complete manipulation of
the search results. However, it is limited to ten pages of search results per query and
only up to one hundred queries per day.

Scraping

Web scraping (also called web harvesting or web data extraction) is an algorithmic method
of extracting information from web pages. Web scraping may be against the terms of
use of some websites. The process fetches data from the internet by either data mining

11
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algorithms, or regular expression matching facilities of programming languages such as
(PHP or Python).
Web scraping transforms the web content of an unstructured nature which is typically
in HTML format, into structured data that can be formatted, analysed and displayed.
This is the main technique to extract the data from the Google search results HTML
page, since it allowed a maximum of one thousand pages of search results per query to
be extracted.

3.1.2 Google Alerts

Google Alerts are emails sent to the user whenever Google finds new results – such as
web pages, newspaper articles, or blogs – that match the specified search term. Google
Alerts could be used to monitor anything on the Web. For example, people use Google
Alerts to:

1. find out what is being said about their company or product.

2. monitor a developing news story.

3. keep up to date on a competitor or industry.

4. get the latest news on a celebrity or sports team.

5. find out what’s being said about themselves.

Through the accumulated Google alerts emails, a large dataset was extracted and used
as an information pool to extract the summaries from [12].

3.2 General Summarization Techniques

3.2.1 Extraction

Extraction works by selecting a subset of existing words, phrases, or sentences in the orig-
inal text to form the summary. The salient, i.e., relevant text units (typically sentences)
are determined through the lexical and statistical relevance. The weight of each text unit
is calculated, during the preprocessing phase of the document, according to features such
as the unit’s position in the source document, how often it occurs in the text, the usage of
cue phrases in such text unit. The sum of these individual weights, is the overall weight
of the text unit U:

Weight(U) := Location(U) + Frequency(U) + CuePhrase (3.1)

The model determines location weight according to whether the text unit is in the initial,
middle, or final position in a paragraph or the entire document, or whether it occurs in
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prominent sections, such as the document’s introduction or conclusion. The cue phrase
is a lexical or phrasal summary cue such as “in conclusion,” “in this paper,” “our in-
vestigation has shown,” or “as a result”. In conclusion, extraction approaches are easier
to adapt to larger text sources. Because they are limited to the extraction of passages,
sentences, or phrases, however, the resulting summaries may be incoherent.

3.2.2 Abstraction

Abstraction builds an internal semantic representation and then use natural language
processing including grammars and lexicons for parsing and generation. It also requires
some common sense, i.e., artificial intelligence, for reasoning during analysis and salience
computation. Abstraction has two main approaches.

Figure 3.1: The main two approaches of Abstraction

The first approach (top of figure 3.1) parses sentences using a linguistic method into
parse trees. These trees are then compacted by removing and regrouping parts of them.
After simplification, the original parse tree is considerably smaller becoming in essence
a structural condensate. The second abstraction (bottom of the figure) approach relies
heavily on machine reasoning and focuses on natural language understanding [13]. Anal-
ysis also includes parsing, however, the outcome is not parse trees. Instead they are text
knowledge bases which consist of the conceptual representation of the source text. In both
approaches, the transformation phase outputs an abstract representation structure of the
summary. As figure 3.1 shows, the synthesis phase is the same for both approaches: a text
generator translates the structural or conceptual representation to produce a fluent nat-
ural language abstract. Abstraction approaches provide more sophisticated summaries,
which often might contain words not explicitly present in the original text. Because they
are based on a formal representation of the document’s content, they adapt well to high
compression rates [14].
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3.3 Advanced Summarization Techniques

3.3.1 Word Frequency

It was the first method used to produce summaries by Luhn [15] where it relies on the
assumption that the frequency of a particular word in a document provides a useful
measure of its significance. As a first step, stop words were deleted. Stop words are
words that are commonly used, yet have no significance by themselves. These words are
removed from the source document prior to, or after, processing of natural language data
(text). There is no definitive list for these words, therefore any group can be categorized
as stop words. Some examples of these stop words are “the”, “is”, “a”, “in” and so on.
Luhn then compiled a list of content words sorted by decreasing frequency, the index
providing a significance measure of the word. Even though this method is very simple,
it is still used in combination with other methods [16].

3.3.2 Positioning of Sentences

Term weights are differently weighted by the location of a term, so that the structural
information of a document was applied to term weights. But this method supposes that
only several sentences, which are located at the front or the rear of a document, have the
important meaning. Hence it can be applied to only documents with fixed form such as
articles. The benefits of this approach are minor since the search results do not have a
structure with observable patterns [17].

3.3.3 Sentence Weight

Firstly, the measurement of the importance of terms via the WF (Word Frequency)
statistic values is performed. The importance of the sentence is then calculated through
the summation of the importance values of terms in the sentence. Thus, sentences with
more important terms are assigned higher importance. Then, all sentences are ranked
in order of their significance factor, and the top ranking sentences are finally selected to
form the summary.

3.3.4 Similarity of Sentences

Since the summary is based upon the Google search results, there are bound to be largely
similar, if not identical snippets. Thus to be able to detect similar strings, a comparison
between the two of them is performed and the number of characters they have in common
is returned. Finally a percentage of similarity is computed, and with this percentage,
identical strings or largely similar ones are excluded from the final summary [18].
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3.3.5 Positioning of Common Words in Sentences

Word positioning plays an important role in measuring emphasis level intended by the
author. There are two general word-positioning rules for emphasis [19]:

1. the initial and end positions of sentences are by nature more emphatic than their
middles.

2. the most prominent word, or group of words, is usually at the end of the sentence.

Also, the visualization of the word positioning might lead to the discovery of text patterns
such as lexical chains which might contribute to better understanding of the search results.

3.3.6 Relativity between Words

In order to measure relativity, the distancing between two pairs of words in a sentence is
used.

Relativity =
{

(
1

2
)g

where g is the positive distance between two words in the same sentence

3.3.7 Clustering

Since there are hundreds upon thousands of URLs returned from search engines for any
given query. The user is forced to sift through them to find the pages he/she needs. This
limitation of search technology can be attributed to the following:

1. Polysemy: the words involved in the search query have multiple meanings. For
example, a user searching for “jaguar” may be interested in either the car company
or the actual animal.

2. Phrases: a phrase may be different from words in it. e.g., the meaning of the
phrase “partition magic” (a disk partition management tool) is quite different from
the meaning of the individual words “partition” and “magic”.

3. Term dependency: the words in the query are not entirely independent of each other.
For example, a user may look for details about a product made by a particular
company and type in “Adobe Acrobat Reader”. Obviously, each word in this term
is dependent on each other.

One possible solution to this problem is to group together results from the search engine
into meaningful clusters. If the user is presented with these clusters, with some keyword
type descriptions, they can select one (or more) that fit their perceived interests [20][21].
In order to realise this clustering effect, n-grams sharing the same topic should be grouped
together according to the measure of similarity of sentences between them.
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3.4 Comparison of 2D and 3D Visualization

A study had been conducted by Sebrechts,Vasilakis, Miller, Cugini, Laskowski [22] to
compare between the usability of two-dimensional (2D) and three-dimensional (3D) user
interfaces. In regards to mental workload, navigation in text or two-dimensional (2D)
models was relatively low compared to their three-dimensional 3D counterparts. Also user
experience affected the performance of the test subjects. Response times were greatly
reduced over time under the 3D conditions and in the end was comparable to the 2D
and text conditions. It was concluded that computer skills mattered in response time un-
der the 3D conditions, such that with greater computer skills comes faster response times.

Furthermore, colour-coding turns out to be an important factor in usability, because
it provided a quick method of traversing the clusters due to grouping regardless of the
visualization tool. Searching for a title through a text list was often easier than having
to locate a title by first identifying a group. In contrast, if documents were linked in
“neighbouring” clusters, the 2D and 3D tools were easier than a text-based search. With
larger documents, 2D and 3D visualization interfaces tend to outperform the scrolling
and scanning of documents under the text based versions. Thus it was decided that the
user interface for the summarizer was to be made using a combination of a 2D and text
environment.

3.5 System Architecture

Figure 3.2: Flowchart for Summarization



CHAPTER 3. DESIGN DECISIONS AND THE DIFFERENT APPROACHES 17

As figure 3.2 shows, firstly, the Google search results are captured via scrapping. These
web pages are then analysed by PHP and result items are extracted. Generally, only
query-dependent snippets are available for each result item. Afterwards, several proper-
ties for each distinct text unit are calculated during the parsing. These properties were
described in detail in the previous sections. In the parsing, the following processes take
place:

1. stop words are removed from the text using PHP.

2. frequency count of each word is calculated using CHR.

3. indexing of the words in their respective sentences is created using CHR.

4. relativity between words is computed using CHR.

5. sentence weight is calculated based on the word frequency information using PHP.

6. calculation of sentence pairs’ similarity is carried out using PHP.

7. n-gram generation up to the fourth tier using PHP.

In the post-processing, similar sentences which have a similarity factor of 100% are
removed. Clustering is performed and then the descriptions of the clusters are created
through the union of the n-grams that shared the same topic. A tag cloud containing
the sorted words, where the size of the word is directly proportional to its frequency. An
abstract is created using the descendingly sorted relevant sentences. After being sorted in
a descending order, N-grams are listed to the user. The indexing of the top most frequent
words is plotted onto a scatter graph. From the clustering data collected, a cluster tree is
drawn, where the user has the freedom to traverse the leaves. All of these visualizations
will be later illustrated in the implementation chapter.



Chapter 4

Implementation

In this chapter, the implementation of the summarization web application, the output to
the user and the evaluation of the project shall be discussed.

4.1 Implementation

Firstly, the Google search results are captured via scrapping. These results are then
analysed by PHP, some operations are performed, then the analysed results are written
into a text file. PHP would execute a Prolog predicate through a command prompt-
like function. The predicate will then output its computations to PHP. Using these
computations, PHP would perform more analysis and output the results to the user in
either a text-format or a visualization. After certain code snippets, the respective output
to the user is displayed. The search query used during the output presentation is the
word “eiffel”.

4.1.1 Extraction of data

In order to get the data that would be analysed for summaries, a request is sent and data
is received using a cURL object to the Google servers. The following code snippet shows
how to instantiate such an object.

$options = array(CURLOPT_RETURNTRANSFER => true, // return web page

CURLOPT_HEADER => false, // don’t return headers

CURLOPT_FOLLOWLOCATION => true, // follow redirects

CURLOPT_ENCODING => "", // handle all encodings

CURLOPT_AUTOREFERER => true, // set referer on redirect

CURLOPT_CONNECTTIMEOUT => 20000, // timeout on connect

CURLOPT_TIMEOUT => 20000, // timeout on response

18
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CURLOPT_MAXREDIRS => 10, // stop after 10 redirects

CURLOPT_COOKIEFILE => "cookie.txt",

CURLOPT_COOKIEJAR => "cookie.txt",

CURLOPT_USERAGENT => "Mozilla/5.0

(Windows; U; Windows NT 6.0; en-US; rv:1.9.0.3)

Gecko/2008092417 Firefox/3.0.3",

CURLOPT_REFERER => "http://www.google.com/", );

for ($page = $start; $page < $npages; $page++){

$ch = curl_init($gg_url.$page.’0’);

curl_setopt_array($ch,$options);

$scraped="";

$scraped.=curl_exec($ch);

curl_close( $ch );

$results = array();//temp array to store all the page results

$resultsUrl = array();//temp array to store all page urls

................................................................

The received data is in the form of a basic HTML code which shall be scrapped. This
HTML code is then saved in an array.

preg_match_all(’/<div class="vsc".+?<a href="([^"]+)"

class=l.+?>.+?<\/a>/’,$scraped,$resultsUrl);

// This method retrieves the URL of the individual

search results through matching with the <a> tags.

preg_match_all(’/(?<=span class="st">).*?<\/span>/’

,$scraped,$results);

// This method retrieves the content of the individual

search results through matching with the <span> tags.

The $scrapped array contains the source code of the html returned from the curl execu-
tion. Parsing of the array is carried out using the function
preg-match-all(regular expression,original array ,modified array)

which matches with the regular expression from the original array and keeps the relevant
data in the modified array. Urls of all snippets are saved in the $resultsUrl array, and
the actual texts of the Google search results are saved in the $results array.

4.1.2 Removal of Stop Words

Now this modified array still contains useless html tags, these are removed using the
strip_Html_tags() function. Then unnecessary characters such as dots, commas and
some non-important vocabulary such as stop words were compiled into lists.
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$stringData =strip_html_tags($stringData);

$invalid = array("#39;", "&’");

$unimp1 = array("And", "The","The","It","He",.....);

//list containing stop words

$unimp2 = array("..." ,"\n","&amp;","’","\"" ,":" ,.....);

//unnecessary characters list

Next str_ireplace()and preg_replace() are used to remove the words which match
any elements from the above lists. str_ireplace() is a predefined PHP function which
searches for a certain subset of a string and replaces it with another. preq_replace is
also a predefined PHP function which performs similarly to the str_replace, however,
it does have an added feature of defining a regular expression for a pattern match. As
shown in the next code snippet, the \b tags are used to limit the pattern matching to
whole words, not any subsets, i.e., “the” is only matched, not the subset of another word
like “therefore”. The i tags on the other hand, are to apply case insensitivity matching.

$stringData = str_ireplace($invalid, "’", $stringData);

$stringData = str_ireplace($unimp2, "", $stringData);

$stringData = preg_replace(’/\b(’.implode(’|’,$unimp1).’)\b/i’,

’’,$stringData);

Finally the array is split on white spaces and each cell (which is a word )is printed into a
new line in an external text file using the function fwrite. fwrite is a predefined PHP
function used to write into a file. However, to be able to write to the file, it must be
opened first through fopen, which is also a predefined PHP function. Given a path to
the file, the fopen function, opens a stream to the file for further use.

$stringData =split(" " , $stringData);

$myFile =

"C:\\Programme\\Apache Software Foundation\\Apache2.2\\htdocs\\text.txt";

$fh = fopen($myFile, ’w’) or die("can’t open file");

foreach( $stringData as $line)

{

$line =ucwords($line);

fwrite($fh, "$line\n");

}

4.1.3 Calling the Prolog Program from PHP

Usually, command prompt could be used to call SWI-Prolog [24]. PHP has a predefined
function which simulates the command prompt, called shell_exec. This function is used
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to execute a command via shell and return the complete output of the command in a
string. The command used to call SWI-Prolog has many parts:

1. The SWI-Prolog filepath

2. The compiler options: The -f file option indicates that a file is used as the
initialisation file instead of the default .plrc (Unix) or pl.ini (Windows).

3. The filepath of the Prolog file to be consulted

4. The name of the predicate or group of predicates to be executed

5. The stack-sizes:

(a) -Gsize: Limit for the global stack which is also called term-stack or heap.

(b) -Lsize: Limit for the local stack which is also called environment-stack.

6. The running goals: The -g goal controls which predicate gets to be executed before
entering the top level. The default is a predicate which prints the welcome message.

$output = shell_exec("C:\\\Programme\\pl\\bin\\swipl

//filepath for the SWI-Prolog executable

-f C:\\\Programme\\pl\\bin\\readfile.pl

//filepath of the consulted Prolog file

-g test,halt"); //test is the predicate to be executed,

and then after test is done,

halt which is a built-in predicate is called to terminate the program.

4.1.4 Reading Parsed Data from PHP by Prolog

The text file that was written to by PHP is accessed by Prolog through the function
the readFile predicate, which opens the file, gets its content and closes it calling the
readText predicate. The idea was to read each line (which contains normally one word)
from the text file into a cell from the list.

readFile(FilePath,List):-

open(FilePath, read, Stream),

readText(Stream, List),

close(Stream),

wording(List,0,0).

The open predicate is a predefined predicate which contains three attributes, filepath,
mode, stream. The mode attribute has three possible states:
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1. read: Open the file for input.

2. write: Open the file for output. The file is created if it does not already exist, the
file will otherwise be truncated.

3. append: Open the file for output. The file is created if it does not already exist,
the file will otherwise be appended to.

The readText is a predicate that is used to read an input stream to a list of character
codes. Reading stops at the newline or end-of-file characters.

readText(Stream, [Head|Rest]):-

read_line_to_codes(Stream, Codes),

dif(Codes, end_of_file), !,

atom_codes(Head, Codes),

readText(Stream, Rest).

readText(Stream, []):-

read_line_to_codes(Stream, end_of_file),

!.

4.1.5 Indexing of Words

Now the list containing all the unigrams is traversed. For each word in the list, a cor-
responding constraint word/1 is produced, where its attribute is the actual word itself.
The atom_codes predicate has two attributes, the atom and the resulting array of ASCII
codes representing the atom. The indexing constraint has three attributes, word, sen-
tence id (S), and index of word in the sentence (Sid).

wording([Head|Rest],S,Sid):-%The list is the list of words yet to be

converted to CHR constraints

atom_codes(Head, Codes),

Codes \= [46],%check if the character is a dot.

word(Head),

indexing(Head, S,Sid),

Sid1 is Sid+1,%incrementing index in sentence

wording(Rest,S,Sid1).

wording([Head|Rest],S,Sid):-

atom_codes(Head, Codes),

Codes = [46],

S1 is S+1,%incrementing sentence id

Sid1 is 0,%reseting sentence index to 0

wording(Rest,S1,Sid1).
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The algorithm iterates over the wording list, generating a word constraint and an indexing

constraint for every element which is not a dot. The dot in the wording list signifies that
the current sentence has ended and a new sentence will begin in the next iteration. The
counter for the index of the word in the sentence is incremented only if the current ele-
ment in the list is not a dot, otherwise, sentence id is incremented and the counter for
the index of the word is reset to 0.

4.1.6 Word Frequency Calculation

The frequency of the word is represented by the constraint count/2. The attributes of
count are the word and its frequency count. The calculation of the frequency is based
upon two conditions:

1. If, one word constraint representing the word, is available in the constraint store,
simplify into a count constraint describing that word’s frequency where its fre-
quency is one.

2. If, two count constraints for the same word are in the constraint store, sum up
their frequencies into a new frequency, simplify both constraints into a new count

constraint with the new sum.

word(X) <=> count(X,1).

count(X,C), count(X,C1) <=>

C2 is C1+C,

count(X,C2).

4.1.7 Relativity between Words

Having the indexing of all the words, the relativity is calculated through measuring
the distance D between two words, W1 and W2, in the same sentence Sid, with indexes
in the sentence, S1 and S2 respectively. The relativity is calculated only if the word W1

has a lower index S1 than the index S2 of word W2, and the distance D, calculated by
subtracting S1 from S2 is lower than four. The relativity constraint contains three
attributes, the first word W1, the second word W2, and the actual relativity Dis.

indexing(W1,S1,Sid),indexing(W2,S2,Sid) ==>

S1<S2,

D is S2-S1,

D < 4,

Dis is 0.5 ** D

| relativity(W1,W2,Dis).

relativity(W1,W2,Dis1),relativity(W1,W2,Dis2) <=>

Dis is Dis1+Dis2,

relativity(W1,W2,Dis).
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4.1.8 Outputting Results to PHP

When the initial list of words is empty, and the final indexing and word constraints are
in the store. The printing/0 constraint is issued into the store to start the printing
process. This rule prints the count of each word in the store into the output stream, to
be read by PHP and deletes them through the simplification rule. The printing of the
indexing constraint is the same as the printing of the count constraint.

The stream where the two rules have written onto shall be printed on the command
window, and the Prolog program is terminated. The output is then written to a string
in PHP, which is afterwards split into two main entities:

1. The word and its frequency which is represented by two arrays which are mapped
to each other.

2. The word, its index in the sentence, and the sentence id are all mapped into three
arrays.

$output = explode("[116]", $output);

//initial array containing the frequency information.

$indexOutput=explode("[]", $output[0]);

//initial array containing the indexing information.

//These arrays are then split to their respective arrays.

//One of the splitting processes is shown below.

$count=array();//array to store frequencies from Prolog

$word=array();//array to store matching word from Prolog

//storing the words and their frequencies from Prolog

foreach( $output as $line){

$split = explode("," , $line);

$split2[0]=str_replace("count(","",$split[0]);

$split2[1]=str_replace(")","",$split[1]);

$word[$j]=$split2[0];

$count[$j]=$split2[1];

$j++;

}

After calculating and saving the word frequencies, a tag cloud is drawn where the size is
directly proportional to the frequency count as shown in figure 4.1. The user is then able
to click the word and get the links where it has occurred.
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Software (7) 2012 (4) Jun (4) Language (4) 25 (3) December (3) Des (3) Downloads (3) French (3) Group (3) Live (3) Man

(3) Objectoriented (3) Official (3) Rooms (3) Sa (3) Society (3) Visit (3) 2 (2) 4 (2) 27 (2) 1889 (2) Bertrand (2) Booking (2) Boutique (2)

Choose (2) Compiler (2) Cuisine (2) Designed (2) Development (2) Du (2) Erika (2) Experience (2) Facebook (2) Gustave (2) Heart (2) Includes

(2) Investment (2) Java (2) Jumped (2) Las (2) Located (2) Meyer (2) Na (2) News (2) Page (2) Plots (2) Programming (2) Seine (2) September

(2) Sign (2) Site (2) Solution (2) Structure (2) Technology (2) Tour (2) Vegas (2) Video (2)
Click the Tags to get the links where the word occured.

Figure 4.1: Clickable Tag Cloud for search query “eiffel”

Finally due to the availability of the indexing of all words, a scatter plot featuring
the indexing information of the top six most frequent words is plotted. The x-axis is
the sentence id of the word, whereas the y-axis represents the index of the word in the
sentence. This graph is quite helpful since it might lead to the discovery of text patterns
such as lexical chains or points of emphasis.
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Figure 4.2: Scatter Plot for Positioning of top 6 Common Words for search query “eiffel”

4.1.9 Sentence Weight Calculation

The weight of the search result snippet is computed through the summation of the fre-
quencies of the one grams that occur in the sentence. The array $weightOfSentence is
an associative array which stores the weights of the sentences. An Associative array is
a collection where each item is a (key,value) pair where the key only occurs once in
the collection. The arrays $wordin and $wordinx which are mapped together, represent
the word and its sentence id. While iterating over the word list, the count of the word
is acquired through search the frequency map for the word. The count is then added to
the weight of the sentence.

$weightOfSentence=array
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for($z=0; $z<sizeof($wordin); $z++){

if(in_array($wordin[$z],$word)){

$j=array_search($wordin[$z],$word);

$x=$count[$j];

if(!isset($weightOfSentence[$wordinx[$z]])){

$weightOfSentence[$wordinx[$z]]=$x;

} else {

$weightOfSentence[$wordinx[$z]]+=$x;

}

}

}

arsort($weightOfSentence);

After the loop terminates, all the weights would have been calculated. Afterwards, they
are sorted in descending order according to the sentence weight through the use of the
predefined PHP function arsort($weightOfSentence). Thus, the highest weighted sen-
tences are at the top, which correspond to their importance as discussed in the approach
chapter and as shown in figure 4.3. Also, a textual abstract is drawn up from the weight

Sentence 24] importance is 191

Sentence 31] importance is 179

Sentence 27] importance is 174

Sentence 30] importance is 165

Sentence 13] importance is 163

Figure 4.3: Top five weighted sentences with their scores for search query “eiffel”

information, where the sentences are ordered by their scores descendingly as shown in
figure 4.4.

Eiffel refer [edit] Engineering Eiffel Tower Paris designed Gustave Eiffel motif twin Eifel ridge redubbed Maria Pia Bridge previously .Hotel Ares Eiffel 4 star Boutique Hotel
Paris 40 Designer rooms Eiffel Tower Paris Unesco . Novotel Paris Tour Eiffel 764 rooms located heart Paris overlooking Seine stones throw Eiffel Tower hotel .Explore Official
Site Hotel Eiffel Seine threestar boutique hotel close Eiffel Tower Paris .Eiffel Analysis Design Programming Language 2nd edition June 2006 document reference Eiffel
language Eiffel method .Hotel Regina Eiffel Paris fashionable 3star hotel 64 rooms Eiffel Tower Trocadéro .Hotel Sublim Eiffel Paris Tour Eiffel hotel contribute make wonderful
experience stay Paris .Experience City Light live EarthCams live streaming Eiffel Tower Cam View HD video stream Eiffel Tower feel youre heart .930 2300 900 0000 summer
Preparing visit Exploring Eiffel tower Eiffel tower glance News Professionals ? . Eiffel Software downloads page public downloads Eiffel Software products Downloads Choose
.Erika Aya Eiffel née Erika LaBrie American woman famously married Eiffel Tower commitment ceremony 2007 founder OS .December November October September EIFFEL
SOCIETY Facebook connect EIFFEL SOCIETY sign Facebook today Sign UpLog + .25 Jun 2012 PARIS — 25yearold man Israel jumped death Eiffel Tower thwarting security
measures climbing Paris . Eiffel compiler Unix Win32 VMS supports Java threads product ESI Eiffel Software . possibly visit Paris Eiffel Tower visit world famous structure Paris
. Eiffel Tower puddled iron lattice tower located Champ Mars Paris Built 1889 entrance arch 1889 Worlds Fair . EIFFEL initiative Support Action SA proposed 7th Framework
Programme FP7 EIFFEL SA mobilizing European researchers . Eiffel Development FrameworkTM complete solution Developers choose Eiffel makes job easier increases .Eiffel
scholarships information scholarship program Excellence Eiffel Campus France website update 06 192012 . Jardins dEiffel Hotel enjoys locations Paris Invalides district left bank
steps Eiffel Tower ChampdeMars . rivets beams glass elevators Eiffel Tower replica Paris Las Vegas encompasses je ne sais quoi French counterpart .25 Jun 2012 Firefighters talk
man Eiffel Tower failed jumped levels height .French cuisine picturesque views Eiffel Tower Las Vegas Includes menu . matter technology platform development pain Eiffel
Software solution deliver quality software faster .Alexandre Gustave Eiffel December 15 1832 – December 27 1923 French civil engineer architect graduate École Centrale des
Arts .Official Free Software Foundation GNU Eiffel compiler tools libraries generate C code Java bytecode SmallEiffel changed 6 September 2002 .Eiffel Group offers 2 3 4 bhk

Figure 4.4: Abstract summary produced from sentence weighting for search query “eiffel”
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4.1.10 N-gram generation in PHP

Sequences of N-grams are discovered through checking if they are all present in the same
sentence and if they are consecutive. The algorithm illustrated below iterates over the
list of all words $allWords. $allWords is a 2D array, where the first index points out
the sentence id of the word and the second index is the index of the word in its respective
sentence. During iteration, keys are generated from consecutive N-grams, and placed in
associative 2D arrays.
These arrays have two attributes, the $count, which is the number of occurrences of the
N-gram sequence and the $stringId which is the sentence. There are three arrays for the
N-grams, $ngram2, $ngram3 and $ngram4 which represent 2, 3, 4-grams respectively. If
however, a key already exists in the array, its respective $count attribute is incremented
by one, and the sentence where it occurred is concatenated with the stringId attribute.

$ngram2=array();//stores 2 grams and their frequencies

$ngram3=array();//stores 3 grams and their frequencies

$ngram4=array();//stores 4 grams and their frequencies

//counting and storing of ngram frequencies

for($z=1; $z<=sizeof($allWords); $z++){

for($x=0;$x<sizeof($allWords[$z])-1; $x++){

$key = $allWords[$z][$x].",".$allWords[$z][$x+1];

// generating 2-gram keys

if(array_key_exists($key,$ngram2)) {

$ngram2[$key]["counts"]++;

if(!in_array("{\"name\":\"".$string[$z]."\"}"

,$ngram2[$key]["stringId"])){

array_push($ngram2[$key]["stringId"],"{\"name\":\"".$string[$z]."\"}");

}

} else {

$ngram2[$key]=array(’counts’=> 1,’words’=>$key,’stringId’=>

array("{\"name\":\"".$string[$z]."\"}"));

}

}

}
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4.1.11 Filtering of Generated N-Grams

After the generation of the N-grams and the calculation of their frequencies, they are
filtered out of low priority sequences. Low priority sequences are sequences that have a
frequency lower than a certain threshold which is two in this project. Also, all N-gram
arrays are then copied into one array called $ngrams. The algorithm below shows the
process in the bigram array, the same process is also applied to the other N-gram arrays.

$ngrams=array();

foreach($ngram2 as $key => $element) {

foreach($element as $valueKey => $value) {

if($valueKey == ’counts’ ){

if( $value < 2){

unset($ngram2[$key]);

} else {

$ngrams[$key][’counts’] = $ngram2[$key][’counts’];

$ngrams[$key][’words’] = $key;

$ngrams[$key][’stringId’]=$ngram2[$key][’stringId’];

}

}

}

}

Next, the N-grams that are subsets of other N-grams are removed. The check for subsets
is completed through the use of the function substr_count(). substr_count() is a
predefined PHP function which returns the number of times a substring has occurred in
a String. Shown in the code snippet below is the process of filtering the bigrams which are
subsets of trigrams, the same algorithm is used to remove trigrams subsets from 4-grams.

foreach($ngram3 as $key3 => $element3){

foreach($ngram2 as $key2 => $element2){

if(substr_count($key3,$key2)){

unset($ngram2[$key2]);

unset($ngrams[$key2]);

}

}

}
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Finally, all N-grams are sorted descendingly according to their frequency count using
the predefined PHP function usort as illustrated below. These N-grams are then dis-
played to the user as shown in figure 4.5.

2-Grams found

Eiffel,Software(5)

Eiffel,Society(3)

Las,Vegas(2)

Eiffel,Paris(2)

Jun,2012(2)

Measures,Climbing(2)

Bertrand,Meyer(2)

Gustave,Eiffel(2)

Programming,Language(2)

Eiffel,Compiler(2)

3-Grams found

Rooms,Eiffel,Tower(2)

Paris,Tour,Eiffel(2)

Eiffel,Tower,Paris(2)

22,Hours,Ago(2)

4-Grams found

Eiffel,Tower,Thwarting,Security(2)

Tower,Thwarting,Security,Measures(2)

Death,Eiffel,Tower,Thwarting(2)

Jumped,Death,Eiffel,Tower(2)

Man,Israel,Jumped,Death(2)

Israel,Jumped,Death,Eiffel(2)

25yearold,Man,Israel,Jumped(2)

Array ( [0] => Array ( [0] => Programming,Language [1] => Bertrand,Meyer ) [1] => Array ( [0] => Gustave,Eiffel [1] => Eiffel,T

Figure 4.5: Displayed N-grams for search query “eiffel”

usort($ngram2,’cmp’);

//write the frequencies of 2grams to the html

echo "</br>2-Grams found</br>";

foreach($ngram2 as $result){

echo $result["words"]."";

echo "(".$result["counts"].")<br> ";

}

4.1.12 Clustering N-Grams

Since the sentence set for each N-gram has been has been compiled, the clustering algo-
rithm is applied. The algorithm works through iterating of the N-gram pool $ngrams,
and comparing two N-grams at a time using their sentence sets. If there is an intersection,
and none of the N-grams are in any subarray in the array$cluster, a new subarray is
containing these two N-grams is then pushed into $cluster. If however, there was an
intersection, and one of the N-grams is in a subarray, the other N-gram is pushed into
the same subarray.
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$cluster=array();

foreach($ngrams as $key1 => $element1){

foreach($ngrams as $key2 => $element2){

if($key1 != $key2){

if(array_intersect($ngrams[$key1][’stringId’]

,$ngrams[$key2][’stringId’])){

if(multi_search($key1,$cluster)==-2){

if(multi_search($key2,$cluster)==-2){

array_push($cluster,array($key1,$key2));

} else {

array_push($cluster[multi_search($key2,$cluster)],$key1);

}

}

elseif(multi_search($key2,$cluster)==-2){

array_push($cluster[multi_search($key1,$cluster)],$key2);

}

}

}

}

}

4.1.13 Visualizaing the Clusters

Using the clustering data made available by the clustering algorithm, a visual cluster tree
is drawn using a modified D3.js visual library for a tree layout as shown in figure 4.6.
The tree is divided into levels, wherein the root node, i.e., the top level represents the
search query entered by the user, in this example, “eiffel”. The first sublevel contains the
actual clusters of the N-grams, wherein each cluster is represented by the union of the
N-grams in that cluster. The clusters are:

1. Programming,Language - Bertrand,Meyer: This indicates that “eiffel” is a pro-
gramming language which might be created by Bertrand Meyer.
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2. Gustave,Eiffel - Eiffel,Tower,Paris: This points out that Gustave Eiffel is somehow
related to the Eiffel Tower in Paris.

3. Eiffel,Software - Eiffel,Compiler: Eiffel compiler is a software.

4. Eiffel,Tower,Thwarting,Security - Tower,Thwarting,Security,Measures: This is an
interesting cluster because it has detected news articles about a 25 year old Israeli
who jumped from the top of the Eiffel Tower.

5. Eiffel,Paris - Paris,Tour,Eiffel - Rooms,Eiffel,Tower: This entry describes the rooms
available in hotels near the Eiffel Tower.

The second sublevel decomposes the each cluster into its building N-grams. Finally, the
third sublevel shows the snippets where the N-grams occurred.

eiffel

Eiffel,Paris - Paris,Tour,Eiffel - Rooms,Eiffel,Tower

ower,Thwarting - Eiffel,Tower,Thwarting,Security - Tower,Thwarting,Security,Measures

Eiffel,Software - Eiffel,Compiler

Gustave,Eiffel - Eiffel,Tower,Paris

Programming,Language - Bertrand,Meyer

Tower,Thwarting,Security,Measures

Eiffel,Tower,Thwarting,Security

Death,Eiffel,Tower,Thwarting

Jumped,Death,Eiffel,Tower

Israel,Jumped,Death,Eiffel

Man,Israel,Jumped,Death

25yearold,Man,Israel,Jumped

22,Hours,Ago

Measures,Climbing

Bertrand,Meyer

Programming,Language

Eiffel,Compiler

Eiffel,Software

Eiffel,Tower,Paris

Gustave,Eiffel

Rooms,Eiffel,Tower

Paris,Tour,Eiffel

Eiffel,Paris

Figure 4.6: Cluster tree of the N-grams for search query “eiffel”
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4.2 Evaluation

In this section, the developed web application will be compared feature-wise with other
similar tools that perform summarization and clustering. After some researching, none of
the online tools discovered had all the features of the web application, so a partial feature
review is performed. Unfortunately, none of the reviewed tools show their approach.

4.2.1 SenseBot

SenseBot is a semantic search engine, meaning that it attempts to understand what the
result pages are about [5]. It uses text mining to parse Web pages and identify their key
semantic concepts. It then performs multidocument summarization of content to produce
a coherent summary. It provides the user with bullet points containing relevant topics,
with their sources on the web. It also provides a simple tag cloud, which when any item
is clicked, tries to focus the search on that item under the search topic the user originally
entered.
In summary, SenseBot provides a tag cloud and a textual summary with links about a
certain query.

4.2.2 Knowledge Graph - Google

Knowledge Graph is the latest refinement to Google’s search engine product that seeks
to provide users with more relevant and in-depth responses to search queries. Along
with the standard search results you’re used to seeing, Google’s search results page now
displays instant results related to the user queries - a search for Taj Mahal immediately
brings up a list of facts, photos, and a map of the famous landmark, as well as quick links
to other popular uses of the search term (like the musician or the casino in New Jersey).
There are a multitude of sources behind this data - Google cites Freebase, Wikipedia,
and the CIA World Factbook, and other commercial datasets, but also notes that “it is
augmented at a much larger scale” and tuned based on what the average user searches
for. As of now, the knowledge graph database currently holds information about 500
million people, places and things. More importantly, though, it also indexes over 3.5
billion defining attributes and connections between these items.
Searching for “Eiffel” on the knowledge graph quickly displays a list of facts, photos, and
a map of the Eiffel tower. It also provides the user with a link to “Gustave Eiffel”. The
Knowledge graph does offer clustering as seen previously, but is yet limited to what is
currently in its databases. With more time, that database might be expanded to provide
more clustering to the search term.
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Conclusions

5.1 Conclusion

Since the advent of search engines, the information overload problem has been, to a certain
extent, alleviated. Search engines allowed users to reduce the information overload by
allowing them to perform a centralized search. However, another problem arises, too
many web pages are returned to the user upon searching for a single query. The user
often has to examine tens and hundreds of pages to find out that only a few of them are
relevant.

The goal of this project was to automate the summarization of google search results.
And to visualise the outcome from the semantic analysis performed by CHR and PHP.

The work done in this project is as follows, Google search results were extracted using
scrapping. Stop words were removed by PHP, and the processed text was sent to Prolog.
CHR rules in Prolog were used to compute the frequency, indexing, and the relativity
between words. These computations were sent back to PHP to be visualized and used in
other calculations such as generating the N-grams, calculating the sentence weight, and
clustering the N-grams. All of this analysis is presented to the user using a variety of
visualizations, such as text based, graph based and tree based.

5.2 Future Work

In this section, future enhancements are presented by improving some of the current
features.

5.2.1 Optimization and Parallelization of CHR rules

When faced with large amounts of data for analysis, the project’s CHR implementation
took an increasing amount of time. In order to enhance the speed of CHR execution,

33
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first, optimizations to the code must be considered. If optimizing did not improve exe-
cution time, multi-threading could be implemented for better user interaction with the
application.

5.2.2 Improving the similarity measure between sentences

Since the similarity measure is reliant on character order when comparing strings, a new
enhanced version should be implemented where its not affected by the word position in
the sentence. This would give probably higher similarity percentages between sentences
allowing their removal or merging with others.

5.2.3 Enhancing the Produced Textual Summary

Instead of displaying all the search result snippets in a paragraph ordered in descending
order according to their weights. Merging of mostly similar sentences should be per-
formed. Also, some natural text language processing abstraction based summary could
be implemented to provide much shorter, yet more informative summaries, rather than
concatenated sentences produced through extraction.

5.2.4 Improving the User Interface

The web application does contain a lot of statistics in a text based format, so the text
must be reduced through the use of charts, graphs or other visualization techniques for
better traversal of the data presented.
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