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Abstract

Constraint Handling Rules (CHR) is a high-level programming language extension which

introduces declarative multiset semantics. Although originally designed in the early

1990s, the number of implementations is still small. While there are adaptions for

popular imperative programming languages such as C and Java, its most popular host

language is Prolog. As a result, the dissemination of CHR is currently restricted almost

entirely to research community.

In this thesis we present an implementation of CHR in JavaScript. By embedding it into

the dominating web programming language which recently got adopted for server-side

frameworks as well, we open this declarative approach to a broad range of developers

and new use cases.

The embedding of CHR in JavaScript gives the chance to easily create applications with

CHR in combination with front-end functions. As a result, we created a web-interface

to explore the evaluation of Constraint Handling Rules interactively This visual CHR

tracer is based on the created interpreter called CHR.js, whose main target is the full

extensibility of CHR. To remain competitive with existing CHR implementations, we

created a transpiler for precompilation of CHR.js source code.
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1
Introduction

Any application that can be written in JavaScript, will

eventually be written in JavaScript.

— Jeff Atwood, Founder of Stack Overflow1

The first chapter introduces the research presented in this thesis and its general structure.

We present the motivation to port Constraint Handling Rules to JavaScript, define the

implementation goals and give a short introduction to the used methodology and targeted

environments.

1Coding Horror: The Principle of Least Power, http://blog.codinghorror.com/
the-principle-of-least-power/ (2007)

1
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1. Introduction

1.1. Motivation

Since its creation in the early 1990s, Constraint Handling Rules (CHR) has been evolved

from a language extension specifying constraint-solvers to a general-purpose program-

ming language. Today’s applications of CHR cover many and varied areas in of computer

science. For example it is used for spatial and temporal reasoning, software testing

and compiler construction. It combines techniques like forward and backward chaining,

bottom-up and top-down evaluation, integrity constraints, tabling and memorization. Its

general-purpose approach is the reason, Thom Frühwirth, the creator of Constraint

Handling Rules, often refers to it as "the lingua franca of computer science" [Frü09b].

While CHR combines a wide range of techniques, to obtain this title it lacks of one

important requirement: propagation. Although there are implementations for most of

the popular programming languages, including Java, C and Haskell, its most prominent

hosting language remains Prolog restricting its current employment almost entirely to

the research community.

Measured against dissemination and popularity, the opposite applies for JavaScript:

In the last years it made the step from the predominant language of the web to a

general-purpose programming language. Today it is certainly the most favored pro-

gramming language at GitHub, the largest Git repository hosting service in the world.

More than one third of the popular applications on GitHub are written in or related to

JavaScript [BVHC15]. Douglas Crockford, who developed the JavaScript Object Notation

(JSON), once stated that that every personal computer in the world had at least one

JavaScript interpreter installed on it and in active use[Cro01]. It is very likely that this

assumption is accurate.

By porting CHR to JavaScript, we can benefit from the broad propagation of runtime

environments. Whereas currently the runtime system of the host language has to be

installed first (for example SWI-Prolog or Java), a CHR implementation written entirely in

JavaScript can be used in any browser without modifications. In addition CHR itself is

very suitable to the typical event-based architecture of JavaScript, which can be easily

described in a declarative way by Constraint Handling Rules.

2



1.2. Related Work

1.2. Related Work

There are several implementations of CHR in different languages. The particular host

language is referred to in parentheses, therefore we speak for example of CHR(Prolog),

CHR(Java) and CHR(C) systems for the host languages Prolog, Java and C. We aim to

create a CHR(JavaScript) implementation, which does not exist so far.

1.2.1. Existing CHR systems

When developed, CHR was set up as a language extension for Prolog. A historical

overview of CHR implementations can be found in [Sch05]. As of today, Prolog is

still the predominant host language for CHR, with the KU Leuven CHR [SD04] as the

state-of-the-art CHR system [Sne15]. It is available for all major Prolog implementations,

including SWI-Prolog and SICStus Prolog.

The first formalization of the compilation of CHR in Prolog in 1998 [HF98] has since

then been the basis for implementations and optimizations in other languages like

HAL [HDLBSD05, Duc05].

Recently CHR has been ported to imperative programming languages as well. A basic

compilation scheme for CHR, which can be used for various programming paradigms, is

discussed in [Sch05]. In [VWWSD08], the different conceptual and technical difficulties

encountered when embedding CHR into an imperative host language, are presented.

Today there are two major CHR implementations in imperative languages:

CCHR [WSD07], a CHR(C) system, is today’s fastest CHR implementation. Its CHR(Java)

counterpart, called JCHR [VWSD], is based on JACK [AKSS02], a general constraint

library for Java.

1.2.2. Logic Programming in JavaScript

While there is currently no CHR implementation for JavaScript, there are at present

several Prolog implementations in JavaScript for instance Yield Prolog [Tho13] and

3



1. Introduction

JScriptLog [Hol09]. Pengines [LW14], a recent approach to use Prolog on websites,

communicates over HTTP with a server running a SWI-Prolog instance and would

likewise be a possibility to call CHR constraints in the browser. Nevertheless it does not

solve the original problem as a server accepting these Prolog remote procedure calls

persists necessary. Therefore Pengines is comparable to WebCHR [Kae07], which also

dispatches calls on CHR constraints via HTTP to a backend server, in this particular

case running SICStus Prolog 4.

J. F. Morales et al. presented a lightweight compiler of (constraint) logic programming

languages to JavaScript in 2012 [MHCH12]. It does not support CHR and is based on

a special module system which requires implementation of (C)LP rules in a JavaScript

dialect. In contrast our aim is to embed CHR in existing JavaScript source code and

either execute on runtime or pre-compile to plain old JavaScript.

1.3. Implementation Goals

Our contribution in this thesis is the implementation of a CHR(JavaScript) system. It

orientates at the following implementation goals:

Resembling to existing CHR systems The syntax used by the Javascript adaption of

CHR should be familiar for CHR- as well as JavaScript-experienced developers.

The user should be able to use regular JavaScript variables and expressions. On

the other hand it may be possible to easily adapt existing CHR source code, written

for example for CHR(Prolog) systems, by only changing syntactic elements specific

for the host language.

Support for different runtime environments Because today every browser ships with

a JavaScript interpreter, we want to ensure the suitability of our implementation

for every modern browser. In addition, the server framework node.js shall be

supported.

Extensible tracing options Being executable in the web, CHR can be opened to the

public. We want to improve the understanding of CHR programs by providing

4



1.4. Scope of this Thesis

various tracing options. With these tracing options it should be possible to create a

web application to interactively trace and debug CHR programs in the browser.

Efficiency Although the previous implementation goals have first priority, we want to

create an efficient CHR system. Unlike existing CHR implementations, JavaScript

is an interpreted programming language and in general just-in-time compiled, so it

might not be possible to compete with C or Java implementations.

Supplementary to the previous points our implementation is licensed as open source.

The GitHub repositories are referenced in Appendix A.

1.4. Scope of this Thesis

Because JavaScript is a multi-paradigm programming language, influenced by both

traditional imperative programming languages like C as well as functional languages, we

examine how existing compilation approaches for these programming paradigms are

suitable for JavaScript. Due to its special execution cycle as an event loop, we present

optimizations particularly suitable for JavaScript.

To support the full semantics of CHR as well as extensible tracing options, we introduce

a compilation scheme for a CHR interpreter. This JavaScript module, called CHR.js,

uses just-in-time (JIT) compilation of Constraint Handling Rules. Unlike existing CHR

systems, this allows to specify and adapt rules dynamically at execution time. This is a

necessary requirement to create a feature-rich web-based tracer.

The big disadvantage of a JIT compilation pattern is obvious: The expressiveness of

dynamic rule declarations comes with a trade-off in efficiency and execution time. So

our contribution consists of a second compilation scheme, which is more comparable

to existing CHR systems in C and Java. The resulting JavaScript module called babel-

plugin-chr pre-compiles CHR.js source code to native JavaScript, but does not support

all of the features of the JIT version. Especially the support for tracing options and

parallelism have been dropped for better single-thread performance.

5



1. Introduction

To benchmark this pre-compiled CHR application, we present a benchmark suite called

CHR-Benchmarks. It compares existing CHR implementations and supports the most

popular CHR systems of SWI-Prolog, CCHR and JCHR.

As a fourth software component we present a web-based CHR tracer, online available at

http://chrjs.net/. It is an example application of the CHR.js interpreter.

1.5. Road Map

This thesis is divided in several parts. We start with an introduction in the two relevant

programming languages Constraint Handling Rules in Chapter 2 and JavaScript in

Chapter 3. There we present the execution cycle of JavaScript and explain and present

multiple means to handle asynchronous functions. These two chapters are the basis for

the general compilation scheme of the CHR.js interpreter.

In Chapter 4 we start with the language definition of CHR embedded in JavaScript and

present the general compilation scheme for the CHR.js interpreter. To demonstrate the

expressiveness of the CHR.js module, we outline the interactive and web-based tracer

for CHR http://chrjs.net/ in Chapter 5.

We continue in Chapter 6 with an improved but synchronous compilation scheme which is

used in the babel-plugin-chr pre-compiler. Here we also present the applied optimizations

to increase the JavaScript performance specifically for the V8 JavaScript Engine.

Finally the benchmark suite for existing CHR systems is presented. We compare the

execution time of ahead-of-time compiled CHR.js programs with equivalent in Prolog,

Java and C host languages. To get a relation to the languages’ native implementations,

we also examine programs written just in JavaScript and C.

In Chapter 7 we discuss the two compilation schemes in general and consider the

question, if they could be combined into a single module.

6
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2
Background: Constraint Handling Rules

CHR has the potential to become a lingua franca, a hub which

collects and dispenses research efforts from and to the various

related fields.

— Jon Sneyers, Co-Author of the KU Leuven CHR System1

This chapter introduces the examined programming language CHR. After a presentation

of the syntax and semantics of CHR, we introduce the compilation schemes of existing

CHR systems. This is the basis for the definition of the CHR.js language extension and

its two underlying compilation schemes presented in Chapter 4.

We restrict ourselves to a short introduction of the syntax and semantics of CHR, as they

are the basis for the compilation process. For more detailed introductions to CHR we

1In [Sne09]
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2. Background: Constraint Handling Rules

refer to [Frü98, SVWSDK10, Frü09a]. The material in this chapter consists of the usual

definitions as in the above literature.

2.1. Introduction

Constraint Handling Rules, which is usually referenced to as CHR, was first defined

by Thom Frühwirth in 1991 [Frü91]. Originally created to implement new constraint

solvers in a high level programming language, it has its origins in the logic and constraint

programming. Today CHR is used as a general-purpose programming language with

a wide range of applications, though still be used only as a language extension to its

so-called host language.

As the name “Constraint Handling Rules” suggests, CHR adds a method to specify a

set of rules that rewrites multisets of constraints into simpler ones until a final state is

reached, where no rule can be applied. Unlike its most popular host language Prolog,

CHR is a committed-choice language and consists in general of multi-headed and

guarded rules.

2.2. Syntax

Before we go into more detail about the syntax and semantics of CHR, we want to define

the requirements to its host language.

2.2.1. Host Language Requirements

We assume that every host language has at least one data type with the following two

operations:

1. the creation of a new, unique value and

2. equality testing based on two given identifiers.
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Functions, operations and identifiers defined in the host language are so-called built-in

constraints. The host language must specify at least the basic constraints true and

fail with the following meanings: true is a constraint which is trivially satisfied, fail

is the contradictory constraint.

2.2.2. Constraints

In contrast to built-in constraints, CHR constraints (or user-defined constraints or con-

straints for short) are defined by their occurrence in CHR rules. A CHR constraint is

denoted by its functor, a pair of the constraint’s name and its arity, i.e. the number

of its arguments. Names do not have to be unique, while constraints with the same

functor generally represent the same entity. As an example, the functors of the required

basics constraints as stated above are true/0 and fail/0. The requirements of the

constraint’s name are dependent on the host language, in general lower-case identifiers

are preferred.

2.2.3. Constraint Store

All constraints which are known to be true will be placed in a so-called constraint store.

For example, in a trivial CHR program with no rule at all, every given constraint will be

placed in the constraint store as seen to be true.

Overall the remaining content of the constraint store represents the result of the given

CHR program.

2.2.4. Program and Rules

By defining rules it is possible to manipulate the content of the constraint store. A CHR

program is defined by a finite number of CHR rules in a concrete order. Although already

included in the acronym ”CHR“, we will refer to a single rule in the program as ”CHR rule“

in the following.
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2. Background: Constraint Handling Rules

Each rule can be a simplification, propagation or simpagation rule. It contains an

optional name, a head, an optional guard and a body. The head is a conjunction of CHR

constraints, the guard a conjunction of built-ins, while the body can be a conjunction of

CHR as well as built-in constraints. The syntax and meaning of the execution of each

rule depends on its type.

A rule is optionally preceded by Name @ where Name is an identifier. The name of a

rule does not effect the execution of the CHR program at all and is only used for tracing

and debugging purposes, however no two rules may have the same name.

In the following we denote constraints in the head of a rule in the form Hi; they are called

head constraints. Constraints of the guard are called guard constraints and denoted by

Gi, body constraints as Bi. The number i > 0 is used to reference a particular constraint.

Every rule is applied if and only if all guard constraints (G1, . . . , Gn) are satisfied. If the

optional guard is omitted, it is considered to be true/0.

Simplification Rule

The syntax of a simplification rule is:

Name @ H1, . . . , Hn ⇐⇒ G1, . . . , Gm | B1, . . . , Bl

With the simplification rule we can specify replacements in the constraint store: The con-

straints (H1, . . . , Hn) are removed from the constraint store, the constraints (B1, . . . , Bl)

of the body are added.

Propagation Rule

The syntax of a propagation rule is:

Name @ H1, . . . , Hn =⇒ G1, . . . , Gm | B1, . . . , Bl

In opposite to the simplification rule, the head constraints (H1, . . . , Hn) stay in the

constraint store while the constraints (B1, . . . , Bl) of the body are added. Because in

this way the constraint store is just supplemented, we define, that a propagation rule

fires only a single time for a given ordered set of head constraints (H1, . . . , Hn).
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2.3. Semantics

Simpagation Rule

The syntax of a simpagation rule is:

Name @ H1, . . . , Hk \ Hk+1, . . . , Hn ⇐⇒ G1, . . . , Gm | B1, . . . , Bl

This rule is a mix of the simplification and propagation rule: The head constraints

(H1, . . . ,Hk) remain in the constraint store; they are called kept constraints. The head

constraints (Hk+1, . . . ,Hn) of a simpagation rule are removed from the constraint store

and therefore called removed constraints.

Generalized Simpagation Form

In the simpagation rule, neither the set of kept nor removed constraints is allowed to

be empty (i.e. 1 ≤ k ≤ n). However it is obvious that the simplification rule is only a

special case of a simpagation rule with k = 0. The same applies for the propagation

rule by using k = n. For simplicity we therefore define a generalized simpagation form:

Name @ H1, . . . , Hk \ Hk+1, . . . , Hn ⇐⇒ G1, . . . , Gm | B1, . . . , Bl

with 0 ≤ k ≤ n and n ≥ 1

(H1, . . . ,Hn) are head constraints, with at least the set of kept or removed constraints is

not empty. Although no CHR system allows the specification of rules in the generalized

simpagation form, we will refer to it in the description of the compilation process in

Chapter 4.

2.3. Semantics

The traditional way to prove characteristics of CHR programs is to conclude from its

logical semantics. Although it is possible to translate each CHR rules into an equivalent

logical formula [Bou04], this declarative semantics is lacking definitions on how to

handle non-determinism. In this section, we therefore concentrate on the operational

semantics as defined in [Abd97, AF98]. The refined operational semantics as presented

11



2. Background: Constraint Handling Rules

in Section 2.3.2 is applied in every major CHR system and therefore the basis for our

implementation in equal.

2.3.1. The Theoretical Operational Semantics ωt

The operational semantics ωt of CHR are based on a transition system. A single state

represents a moment in the execution of CHR, the transitions between correspond to

the applied CHR rules.

The state transition system presented in this section is based on [Sch05], an adopted

version of [DSDLBH04].

Execution State

The execution state is a 4-tuple σ = < G,S,B, T > with the following components:

• Goal G, a conjunction of both user-defined and built-in constraints;

• Store S, a conjunction of user-defined constraints that can be matched with

constraints in the rule heads;

• Built-ins B, a conjunction of built-in constraints that have been passed to the host

language;

• Propagation history T , a set of sequences that represents the already applied

rules with their related constraints.

The propagation history is used to prevent trivial non-termination of propagation rules as

described in Section 2.2.4. We assume every rule to have a (generated) unique name.

Similar applies for every user-defined constraint c: We denote every CHR constraint

c with a unique integer i and denote c#i for this particular constraint. In this way, it is

possible to save the applied rules with the identifiers of the matched constraints in the

propagation history T .

Given an initial goal G, the program execution starts with the initial state

< G, ∅, true/0, ∅ >.
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State Transition Rules

For the transition rules we cite [Sch05] in Figure 2.1. The symbol ] defines the multiset

union, meaning constraints of the same form remain multiple times in the resulting set.

Figure 2.1.: The transition rules of the operational semantics (based on [Sch05], p. 20)

1. Solve:
〈{c} ]G,S,B, T 〉n �solve 〈G,S, c ∧B, T 〉n

2. Introduce:
〈{c} ]G,S,B, T 〉n �introduce 〈G, {c#n} ] S,B, T 〉(n+1)

3. Apply:
〈G,H1 ]H2 ] S,B, T 〉n �apply 〈C ]G,H1 ] S, θ ∧B, T ′〉n
where there exists a rule r in the program P of the form

r@H ′1 \H ′2 ⇐⇒ g |C
and T ′ is the supplemented propagation history.

In the last transition rule we denote the substitution θ to make the rule heads H ′1 and H ′2
match existing constraints in the store H1 ]H2 ] S. The matching algorithm depends on

the host language (where this substitution is added to as requirement θ ∧ B). In logic

programming languages this is simply unification. In JavaScript we use the destructuring

mechanism, as specified in the JavaScript introduction in Section 3.5.5.

The solve transition rule resolves a built-in constraint by adding it to the built-ins store B.

The introduce transition rule adds a new constraint c to the CHR constraint store S. In

the last rule, a CHR rule given in generalized simpagation form is applied. Therefore,

the head constraints are matched with existing ones in the constraint store as described

before. Before applying the CHR rule in this apply transition, the guard g must be proven.

If this transition applies for a CHR rule r, this rule r is fired.
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2. Background: Constraint Handling Rules

Starting from the initial state, these transitions are applied until either no more transitions

are applicable (successfull derivation) or the built-ins B evaluate to fail/0 (failed

derivation).

This sequence of transitions is not deterministic at all: If multiple transition rules can

apply for the current execution state, the order of their applications is not specified in

the operational semantics ωt. Due to this non-determinism, neither the result state of a

program is well-defined nor the property if the program terminates at all.

2.3.2. The Refined Operational Semantics ωr

In order to achieve a more deterministic execution, the refined operational semantics ωr

has been proposed in 2004 [DSDLBH04]. Today all major CHR systems implement this

refined operational semantics.

The overall idea of the refined operational semantics orientates at the application of

CHR in stack-based programming languages that CHR is compiled to: Constraints are

treated as procedure calls, meaning that once a new constraint is added to the store, all

matching rules for this constraint will be applied. If such a rule adds another constraint,

we pause the execution of the origin constraint and call all the matching rules according

to the new constraint. As soon as this is completed, we resume with the first constraint.

The overall execution stops as soon as all appropriate rules are fired or a failed derivation

has occurred.

In this way we define an order for the applications of the apply transition. However there

is a second source for non-determinism: Being a multiset, the choice of the next goal in

G is not defined. The refined operational semantics ωt therefore defines G as an ordered

sequence of goals, so we are no longer free to choose any constraint from G to either

solve or introduce into the store.

The execution state of the refined operational semantics is very similar to the one of

ωt: σ = < A,S,B, T >, with S, B and T with respect to ωt. Unlike in the previously

presented execution state, A is a sequence of goals called execution stack, with a strict

order in which the top-most constraint is called the active constraint. Because ωr is
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an instance of the ωt semantics, there is a mapping between the execution states and

transition rules of both semantics, as presented in [DSDLBH04].

Although the refined operational semantics clarify some execution orders, it is still non-

deterministic [Sch05]. One source of non-determinism is that we did not specify an order

to get partner constraints, if more than one possibility exists. Partner constraints are

these constraints in a rule’s head that must be present, to make a rule applicable in joint

with the active constraint.

While the open sources for non-determinism could be removed by specifying a more

restricted operational semantics, they are often used by compilers to apply optimiza-

tions [HDLBSD05]. The non-determinisms also allow the usage of various data struc-

tures, for example for a highly efficient constraint store.

2.3.3. Existing Extensions and Variations

The three basic rule types presented in Section 2.2 are part of every CHR system. In

addition extensions and variations of the basic CHR syntax were proposed. In general

their aim is to modify or supplement the rules in order to change the execution cycle and

semantics of the CHR program. A comprehensive overview of existing extensions and

variations can be found in [SVWSDK10].

Because the aim of this work is to implement a basic compilation of CHR in JavaScript,

we do not support any language extension so far. Because of its notability for an

optimized compilation in future, we only want to give a short introduction into so-called

pragmas.

Rule Pragmas

Pragmas are a method for the user to modify the compilation of the CHR program by

special rule annotations. A pragma allows to explicitly set restrictions to fire a given

rule. Unlike built-in constraints of the guard, their fulfilment is not proved at runtime but

affects the runtime code generated by the compiler. They are supported by the major

CHR(Prolog) systems, for example SICStus Prolog [CF14].
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2. Background: Constraint Handling Rules

Historically there are two pragmas: passive and already_in_head. The latter one

is a remnant of the original syntax of Frühwirth in 1991 [Frü91], when his proposition was

called “Simplification Rules” and included only simplification and propagation, but no sim-

pagation rule. With the introduction of explicit simpagation rule the already_in_head

pragma became obsolete, but is still supported by some CHR systems.

Listing 2.1: Example for passive pragma

1 r1 @ a , b ==> c

2 r2 @ a , b # Id ==> d pragma passive(Id)

With the help of the passive pragma it is possible to explicitly define the entry points of

a rule. Considering the example in Listing 2.1, the rule r1 would generate an entry point

for both constraints a/0 and b/0. In opposite, rule r2 generates only an entry point

for a/0, because the passive pragma states explicitly that b/0 can not be active in

this rule. If the constraint b/0 is added to a constraint store which already contains a/0,

only rule r1 would fire.

2.4. Example Program: gcd/1

In this section we give an example of a typical CHR program: The calculation of the

greatest common divisor (GCD) using the subtraction-based Euclidean algorithm. It will

be used as the reference example throughout the entire thesis.

Listing 2.2: Euclidean algorithm as pseudo-code

1 function gcd(a, b)

2 while b > 0

3 if a > b

4 a := a - b

5 else

6 b := b - a

7 return a

8 end
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Consider the substraction-based, non-recursive Euclidean algorithm given as pseudo-

code in Listing 2.2. It takes two positive integers a and b and returns its GCD.

To give an appropriate definition of this algorithm in CHR, we represent every input

number as gcd/1 constraint. In order to calculate the GCD of the numbers 6 and 9, the

goal would therefore be the set gcd(6), gcd(9). An advantage of this representation

is obvious: The CHR program can easily be used to calculate the GCD of more than two

input values. The two rules to calculate the GCD in CHR by using the subtraction-based

Euclidean algorithm are presented in Listing 2.3. The calculated result is the single

gcd/1 constraint that remains in the constraint store.

Listing 2.3: Euclidean algorithm in CHR

1 gcd1 @ gcd(0) <=> true.

2 gcd2 @ gcd(N) \ gcd(M) <=> 0 < N, N <= M | gcd(M-N).

The first simplification rule gcd1 removes all gcd/1 constraints with an argument of 0.

This rule is similar to the loop condition specified in line 2 of Listing 2.2.

The second simpagation rule gcd2 can be applied for every two gcd/1 constraints with

positive arguments (which we assume), because the guard 0 < N, N <= M will always

be true for one ordering of the active with its partner constraint. With the help of the

rule gcd2 the gcd/1 arguments will be subtracted by each other until one is zero and

therefore is removed by the first rule gcd1.

A detailed successful derivation of the goal gcd(6), gcd(9) under both the theoretical

operational semantics ωt as well as the refined operational semantics ωr can be found

in [Sch05].

2.5. Compiling CHR

Several approaches to compile CHR have already appeared in the literature. In this

section we present the basic compilation schemes of CHR depending on the targeted

host language. This will be later used to reason implementation details of our CHR.js

contribution and compare it to existing CHR systems.

17



2. Background: Constraint Handling Rules

2.5.1. Head Normal Form

Before we go into existing CHR systems and their compilation schemes, we want to

present a transformation step that is used by all major CHR systems: bringing each rule

in a so-called head normal form (HNF) [VWWSD08].

The HNF is special instance of the generalized simpagation form. It has the following

generic form:

Name @ c
[j1]
1 (X1,1, . . . , X1,a1), . . . , c[jk]

k (Xk,1, . . . , Xk,ak
) \

c
[jk+1]
k+1 (Xk+1,1, . . . , Xk+1,ak+1), . . . , c[jn]

n (Xn,1, . . . , Xn,an) ⇐⇒

G1, . . . , Gm | B1, . . . , Bl

Similar to the generalized simpagation form presented in section 2.2.4, the constraints in

the rule head are numbered from left to right. As stated before, for a simplification rule is

k = 0, a propagation rule is represented by k = n.

In addition, we define the occurrence number ji of a constraint in c[ji]
i . This is the ji’th

occurrence of the constraint ci in the CHR program. The occurrences are numbered

from top to bottom in order of rules and from right to left in a particular rule. In this

way, removed occurrences of a constraint that appears in both the kept and removed

heads are applied first, which is conform to the refined operational semantics ωr of

section 2.3.2.

Another requirement of the head normal form is the uniqueness of the variables in the

rule’s head. If a variable occurs more than once in the rule’s head, we introduce fresh

variables and make the equalities explicit in the guard of the rule. Moreover, even finite

arguments are replaced by variables and bound in the rule’s guard.

The Listing 2.4 shows the normalized version of the gcd/1 example program of sec-

tion 2.4.

Listing 2.4: Normalized Version of the Euclidean algorithm of Listing 2.3

1 gcd1 @ gcd[1](P) <=> P = 0 | true.

2 gcd2 @ gcd[3](N) \ gcd[2](M) <=> 0 < N, N <= M | gcd(M-N).

18



2.5. Compiling CHR

This head normal form is used as input of the compilation schemes presented in the

next sections. Because we only want to introduce the basic compilation idea of existing

CHR systems, we assume basic knowledge of their targeted host languages.

2.5.2. CHR in Logic Programming Languages

Due to its origin as a language extension to built constraint solvers, the implementation

of CHR in logic programming languages is well covered in literature. Since the reference

implementation in SICStus Prolog in 1999 [HF99], several optimization techniques have

been presented for the compilation into logic host languages. The implicit execution stack

of Prolog maps very well to the ordered execution stack A of the refined operational

semantics ωr: If a new constraint is added, all of its occurrences are handled as a

conjunction of Prolog goals and therefore executed before any other added constraint.

Consider a rule given in HNF as presented in section 2.5.1. To represent constraints

handle their occurences and the CHR properties, we introduce the following Prolog

predicates:

• ci/ak, e.g. gcd/1

Predicate to call a constraint, that means to create the specified constraint, add it

to the constraint store and apply all appropriate rules.

• insert_in_store_ci/(ak + 1), e.g. insert_in_store_gcd/2

This predicate is used to add the given constraint to the store. This generates

a unique identifier which is returned as the last component, which is why it is of

arity ak + 1. This identifier is passed to the following predicates as an additional

argument.

• ci_occurences/(ak + 1), e.g. gcd_occurrences/2

A predicate which is created by the compiler to apply all occurrences ji of the

constraint ci/ak.

• ci_occurrence_ji/(ak + 1), e.g. gcd_occurrence_1/2

This predicate implements the concrete handler for the ji’th occurrence of the

constraint ci.
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2. Background: Constraint Handling Rules

Although the predicates insert_in_store_ci and ci_occurrences might be defined

multiple times, if a constraint is defined with multiple arities, they are unambiguous in

Prolog because of their distinct functors.

The general compilation scheme for a constraint ci/ak is shown in Listing 2.5.

Listing 2.5: Generated Prolog code for the Euclidean Algorithm

1 gcd(I) :-

2 insert_in_store_gcd(I,ID),

3 gcd_occurrences(I,ID).

4

5 insert_in_store_gcd(I,ID) :-

6 chr_store_add(gcd(I),ID).

7

8 gcd_occurrences(I,ID) :-

9 gcd_occurrence_1(I,ID),

10 gcd_occurrence_2(I,ID),

11 gcd_occurrence_3(I,ID).

The ci_occurrence_ji/(ak + 1) clauses will loop through all partner constraints for the

constraint ci with respect to the given rule. It also proves the guard and applies changes

to the constraint store. The three generated occurrence predicates are presented in

Listings 2.6, 2.7 and 2.8.

Listing 2.6: Generated Prolog code for the gcd/1 occurrence in rule gcd1

1 gcd_occurrence_1(I,ID) :-

2 % check that the constraint has not been removed by

3 % a previous occurence

4 chr_constraint_alive(ID),

5

6 % check that the rule has not already been applied

7 chr_not_in_history(gcd,1,[ID]),

8
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9 % prove the guard of the HNF

10 I == 0,

11

12 chr_add_to_history(gcd,1,ID),

13 chr_kill_constraint(ID).

Listing 2.7: Generated Prolog code for the right gcd/1 occurrence in rule gcd2

1 gcd_occurrence_2(I,ID) :-

2 chr_constraint_alive(ID),

3

4 % find partner constraints

5 chr_lookup(gcd(N),ID_1),

6

7 chr_not_in_history(gcd,2,[ID_1,ID]),

8 0 < N,

9 N <= I,

10 chr_add_to_history(gcd,2,[ID_1,ID]),

11 chr_kill_constraint(ID),

12 K is I-N,

13 gcd(K).

Listing 2.8: Generated Prolog code for the left gcd/1 occurrence in rule gcd2

1 gcd_occurrence_3(I,ID) :-

2 chr_constraint_alive(ID),

3 chr_lookup(gcd(M),ID_2),

4 chr_not_in_history(gcd,3,[ID,ID_2]),

5 0 < ID,

6 ID <= M,

7 chr_add_to_history(gcd,3,[ID,ID_2]),

8 chr_kill_constraint(ID_2),

9 K is M-I,
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10 gcd(K).

The predicates with a chr_ prefix are used to handle the runtime components of a

CHR program, namely the constraint store and propagation history, and implementation

details. Their signatures are as follows:

• chr_store_add(Constraint,ID)

• chr_lookup(Constraint,ID)

• chr_constraint_alive(ID)

• chr_kill_constraint(ID)

• chr_not_in_history(Constraint_Name,Occurrence_Number,IDs)

• chr_add_to_history(Constraint_Name,Occurrence_Number,IDs)

It is obvious that the basic compilation scheme presented in Listing 2.5 can be optimized

at various places. For example it is not necessary to test if the given constraint is still

alive in line 17, because this is the very first occurrence of for gcd/1. More optimization

techniques can be found in [HF99], [HDLBSD05] and [Sch05].

2.5.3. CHR in Imperative Programming Languages

There are two major CHR systems written in imperative programming languages:

• JCHR [VWSD], a CHR system for Java and

• CCHR [WSD07], a CHR system for C, which is currently the fastest implementation

of CHR.

Both implementations are discussed in [VWWSD08], where a general compilation

scheme for imperative programming languages is introduced. This work also presents

the challenges of porting CHR, which was originally designed to work with logic program-

ming languages, to C and Java. Some language constructs, which are very common for

Prolog users, are unlikely in these languages:
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• Logical Variables

Many traditional CHR examples are based on logical variables. They allow the

specification of constraints with not-yet-known properties. In imperative program-

ming languages, variables can be reassigned multiple times. In opposite, Java

and C are static typed, that means we can not arbitrarily assign values but have to

declare the variable’s type at compilation time.

• Pattern Matching

In CHR a given active constraint is used as a pattern and gets compared with

any head constraint to find appropriate rules. This one-way pattern matching is

basically implemented with the help of unification (=/2 in Prolog). Imperative

programming languages generally do not implement a comparable mechanism.

Instead, they support type-based comparisons.

• Search

The search for appropriate partner constraints (c.f. chr_lookup/2 in

Section 2.5.2) can be easily implemented in Prolog by using backtracking. Impera-

tive programming languages have to use optimized data structures to support fast

queries against the constraint store and propagation history.

Before we go into detail about the compilation process for imperative languages, we

introduce the adapted CHR syntax used by JCHR and CCHR. These examples will later

be used to explain a similar adoption of CHR for JavaScript.

Syntax of JCHR

Similar to our CHR.js implementation goals, the aim of JCHR and CCHR was to create a

CHR system that is familiar to both Java respectively C and CHR developers. Therefore

the syntax established by the CHR(Prolog) systems of SICStus Prolog and SICStus

Prolog have been slightly adapted to fit into the targeted host languages.

Listing 2.9 shows the specification of the gcd/1 constraint handler in JCHR. The CHR

rules are specified in a special rules {. . .} block. Their syntax is very similar to Prolog.
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Listing 2.9: Euclidean algorithm gcd/1 handler in JCHR

1 public handler gcd {

2 public constraint gcd(long);

3

4 rules {

5 gcd(0) <=> true.

6 gcd(N) \ gcd(M) <=>

7 0 < N, N <= M | gcd(LongUtil.sub(M, N)).

8 }

9 }

When this code is compiled with K.U. Leuven JCHR, it creates a new class GcdHandler

that can be used in a normal Java program. An example application of the GcdHandler

is shown in Listing 2.10.

To use JCHR, the user has to define the constraint handler in a separate file first. This file

gets compiled with JCHR, which creates the related *Handler class that can be used

in any Java program. The *Handler class provides special methods to add constraints

or query the constraint store.

Listing 2.10: Example usage of the compiled GcdHandler of Listing 2.9

1 import java.util.Collection;

2

3 public class Example {

4 public static void main(String[] args) {

5 GcdHandler handler = new GcdHandler();

6

7 handler.tellGcd(6);

8 handler.tellGcd(9);

9

10 // lookup all gcd constraints in the store

11 Collection<GcdHandler.GcdConstraint> gcds =

12 handler.getGcdConstraints();
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13

14 // there should remain a single GCD

15 assert gcds.size() == 1;

16 }

17 }

Syntax of CCHR

CCHR has a very similar approach: The CHR rules are specified in a special cchr {. . .}

block. While in Java a file per class is required, we can embed the CHR rules directly to

the C file. The gcd/1 example adapted for CCHR is used shown in Listing 2.11. The

main function calculates the GCD of 6 and 9.

Listing 2.11: Euclidean algorithm gcd/1 in CCHR

1 #include <stdint.h>

2 #include <stdio.h>

3 #include <string.h>

4

5 #include "gcd_cchr.h"

6

7 cchr {

8 constraint gcd(uint64_t);

9

10 gcd1 @ gcd(0ULL) <=> true;

11 gcd2 @ gcd(N) \ gcd(M) <=>

12 0 < N, N <= M | uint64_t K=M-N, gcd(K);

13 }

14

15 int main(int argc, char **argv) {

16 uint64_t a1 = 6;

17 uint64_t a2 = 9;

25



2. Background: Constraint Handling Rules

18

19 cchr_runtime_init();

20 cchr_add_gcd_1(a1);

21 cchr_add_gcd_1(a2);

22 cchr_runtime_free();

23 return 0;

24 }

The general syntax of the CHR rules remains similar to Prolog. The only significant

change is that semicolons are used as delimiters between multiple rules. The constraint

solver can be used with functions prefixed by cchr_, which are comparable to the

methods provided by the JCHR-generated *Handler class.

Basic Compilation Scheme

The compilation scheme for logic programming languages presented in Section 2.5.2

can be adopted to a procedural computation style by replacing Prolog predicates with

methods. We use imperative pseudo-code to introduce a basic compilation scheme

based on [VWWSD08]. Although this scheme is conform to the refined operational

semantics ωr, it is not very efficient. Optimization techniques are presented in the same

place, but dependent on the particular target language.

Similar to the compilation in logic programming languages, we create a method for every

CHR constraint. They again call methods for every occurcence of the active constraint.

This scheme is shown in Listing 2.12.

Listing 2.12: Basic compilation scheme in imperative languages

1 procedure ci(X1,. . .,Xak
)

2 ID = chr_create_constraint(ci,[X1,. . .,Xak
])

3 chr_store_add(ID)

4 ci_occurences(ci(X1,. . .,Xak
),ID)

5 end
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6

7 procedure ci_occurrences(ci(X1,. . .,Xak
),ID)

8 ci_occurrence_1(X1,. . .,Xak
,ID)

9 . . .

10 ci_occurrence_ji(X1,. . .,Xak
,ID)

11 end

Listing 2.13 shows the compilation scheme for the ci_occurrence_ji method, repre-

senting the ji’th occurrence of the constraint ci in the CHR program specified in HNF

according to Section 2.5.1.

Listing 2.13: Compilation of the ji’th occurrence of the constraint ci

1 procedure ci_occurrence_ji(ci(Xi,1,. . .,Xi,ak
),IDi)

2 // find partner constraints

3 foreach (c1(X1,1,. . .,X1,a1)#ID1 in lookup(c1)

4
. . .

5 foreach (ci−1(Xi−1,1,. . .,Xi−1,ai−1)#IDi−1 in lookup(ci−1)

6 foreach (ci+1(Xi+1,1,. . .,Xi+1,ai+1)#IDi+1 in lookup(ci+1)

7
. . .

8 foreach (cn(Xn,1,. . .,Xn,an)#IDn in lookup(cn)

9 if all_different([ID1,. . .,IDi−1,IDi,IDi+1,. . .,IDn])

10 if chr_all_alive([ID1,. . .,IDi−1,IDi,IDi+1,. . .,IDn])

11 if G1 and . . . and Gm

12 if chr_not_in_history(c1,ji,[ID1,. . .,IDn])

13 chr_add_to_history(c1,ji,[ID1,. . .,IDn])

14 kill(IDk+1)

15 . . .

16 kill(IDn)

17 B1

18 . . .

19 Bl

20 endif
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21 endif

22 endif

23 endif

24 end

25 . .
.

26 end

27 end

28 . .
.

29 end

30 end

The nested foreach loops are basically the procedural equivalent to the backtracking-

based chr_lookup/2 in the Prolog version. For every combinations of the active

constraint and its partner constraints we prove that all found constraints are still alive

(l. 10) and the guard is satisfied (l. 11). If the rule is applicable, it is added to the propaga-

tion history, the constraint store is updated and the body constraints are called (ll. 13-19).

Because the body constraints (B1, . . . , Bl) are called sequentially and before the next

combination of partner constraints is processed, the refined operational semantics ωr is

enforced.

2.6. Summary

In this chapter we introduced CHR, the source programming language for our compiler.

Its general syntactic elements have been presented as well as the refined operational

semantics ωr, which is implemented by all major CHR systems as of today.

To get an overview of the existing CHR systems, we have examined the syntax and call

semantics of CHR(Prolog), CHR(Java) and CHR(C) implementations. Moreover, basic

compilation schemes for these logic and imperative host languages were presented.

They are basis for our approach of compiling CHR into JavaScript with the help of

CHR.js.
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2.6. Summary

The CHR program gcd/1 to calculate the greatest common divisor with the help of the

subtraction-based Euclidean algorithm will be picked up as reference example in the

following chapters.
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3
Background: JavaScript

In node.js everything runs in parallel, except your code.

— Felix Geisendörfer, Core Committer of node.js1

This chapter introduces the target programming language JavaScript. Our aim is to

present its execution cycle in modern runtime environments. Because of their importance

for the compilation process, a short introduction in often used JavaScript elements is

given. At the end we define the targeted runtime environments and give an outlook

in very recent improvements of the programming language JavaScript, from which the

compilation process could benefit in future.

1debuggable: Understanding node.js, http://debuggable.com/posts/
understanding-node-js:4bd98440-45e4-4a9a-8ef7-0f7ecbdd56cb
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3. Background: JavaScript

3.1. Introduction

JavaScript is a multi-paradigm, untyped and interpreted programming language. It was

created in 1995 by Brendan Eich [Eic05], who was working for Netscape, the corporation

behind the Netscape Navigator. Although the name “JavaScript” was chosen to suggest

a connection to the popular programming language Java, both languages have very little

in common.

The language is standardized in the ECMAScript language specification, with JavaScript

as its most popular implementation. Due to its strong connection to the web, the use of

JavaScript has been increased similar to the world wide web, and as of today, the majority

of all websites are equipped with dynamic contents provided by JavaScript. Especially

the usage of JavaScript for building asynchronous website with AJAX (Asynchronous

JavaScript and XML) has increased its popularity. Therefore, all major browsers support

JavaScript out-of-the-box.

JavaScript is traditionally implemented as an interpreted language, but more recent

browsers perform just-in-time compilation. Due to the better and better performance

of JavaScript applications, it has been evolved to a general-purpose programming

language not only suitable for the web. Today’s most popular approach for a general

use of JavaScript is node.js [TV10], which allows to run it server-sided and even build

desktop applications and hardware drivers in JavaScript.

Especially in the era of browser wars at the end of the 1990s, JavaScript was very

platform-dependent. The first standardization by the European Computer Manufacturers

Association (ECMA for short) in 1997 [EK97] achieved a first portability between browsers

of different organisations.

The most recent version of the ECMAScript specification is the sixth version, often

referred to as ES6 or ES2015 or by its codename Harmony. Although finalized in June of

2015, not all JavaScript implementations support the full syntax improvements. Because

the changes are backwards-compatible to version 5 (December 2009), the improvements

are adopted gradually.
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3.2. Targeted Runtime Environments

As stated before, all of today’s major browsers support JavaScript out-of-the-box. Never-

theless they use different implementations as the runtime environment, which differ in

optimization techniques, execution time and implementation-specific language exten-

sions.

The major implementations of JavaScript runtime environments are:

• V8, used by the web browsers Google Chrome and Opera, as well as in node.js;

• SpiderMonkey, used by most Mozilla products, including the Firefox web browser;

• JavaScriptCore, used in the Safari web browser;

• Nashorn and Rhino, which allows to embed JavaScript in Java applications.

Because CHR.js is written for usage in both web browsers and server-side environments

using node.js, our approach is geared to the V8 implementation of JavaScript. However,

it only uses standard ECMAScript and is therefore executable in all of the other runtime

environments, too. Differences might only occur in specific optimizations targeting the

just-in-time compilation of V8.

The standardization of ES6 has been recently finalized in June 2015, thus we only

use several new language elements. However, the design of the CHR.js language as

specified in Chapter 4 already orientates on the ES6-specific syntax element of so-called

tagged template strings. If the used runtime environment does not support the used

ES6 syntax, we recommend the usage of a transpiler. With the help of a transpiler

it is possible to translate new ES6 syntax to plain old ECMAScript 5, which is widely

supported.

Many ES6 features were added to Google’s V8 with the release of version 4.5 in July

2015. We therefore assume a version greater or equal for CHR.js. This V8 version is

shipped with the Google Chrome web browser since version 45, released in September

2015. node.js uses V8 4.5 since its version 4.0, which was equally released in

September 2015. We do not recommend to use CHR.js with the prior node.js releases
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of version 0.x (the node.js version numbers 1.x, 2.x and 3.x were skipped because

of compatibility reasons), as they are shipped with very old V8 versions.

3.3. The JavaScript Event Loop

The syntax of JavaScript is influenced by C. Being a multi-paradigm programming

language with functional and object-orientated influences, the code is easily readable for

everyone familiar with these kind of languages. Although we assume a basic knowledge

of JavaScript in this work, we want to introduce the execution cycle of JavaScript as it is

different to the languages listed before and unlikely to most other imperative programming

languages.

Listing 3.1: Example code of nested functions

1 function f()

2 g()

3 h()

4 return 0

5 end

6

7 f()

In most traditional imperative programming languages there is a strict stack-based exe-

cution cycle which will be illustrated with help of the pseudo-code example of Listing 3.1:

Assuming a function f is initially called and that in its body it calls another function g, the

current program state (that means program counter, stack pointer, etc.) is saved at the

stack and g gets executed. Once the execution of g is terminated, we return to the save

program state and continue the execution of f, for example by calling the next function h

in the body of f.

This stack-based execution cycle has disadvantages when it comes to blocking tasks:

If the function g in this example is a query to a remote database, the whole program

gets blocked until the result of g is returned and the execution can continue with the
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application of h. We therefore call f a blocking function. If h does not need the result of

the blocking function g, it could be executed in parallel.

In most programming languages this consideration results in a concurrency model based

on multiple threads. However, in JavaScript this problem is solved with the help of the

event loop: It adds a second layer, the message queue, to the sequence of tasks and

therefore allows the concurrency of blocking functions.

The message queue stores an ordered list of messages to be processed by the runtime

environment. Each message is handled as described in the stack-based execution

cycle, which means it is processed until the function returns. The difference is that in

the function’s body we can register event handlers which might add messages to the

message queue in future. In the example given before, the blocking function g which

sends a request to a remote database would register an event handler that shall be

executed once the response is received.

The function g registers the event handler and returns immediately. The execution of the

function f is resumed, that means h gets called. Once f terminates, the next message

of the message queue is taken and processed. This constant lookup for messages in the

message queue can be described as a loop which is given in pseudo-code in Listing 3.2.

Listing 3.2: Blocking implementation of the event loop

1 while queue.waitForMessage()

2 queue.processNextMessage()

3 end

This code example clarifies why this execution cycle is called event loop: It simply

is a loop constantly looking for new messages representing events. While the event

loop is used for a better handling of blocking functions, for itself it is blocking – the

queue.waitForMessage() stops as long as the message queue is empty and also

the queue.processNextMessage() is blocking. This is reasonable, because the

event loop is in general implemented as part of the runtime environment, that means in

another programming language as JavaScript. Because JavaScript runtimes environ-

ments are single-threaded, this also illustrates that every message is processed until it
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terminates. That means no two functions are executed at the same time. Even when

a new message arrives, they are handled in the order of the message queue. On the

other hand, all work that is not done by JavaScript (for example database queries, HTTP

requests, I/O), is executed in the background concurrently and only adds a message to

the message queue once it is finished. This behaviour resulted in the quotation of Felix

Geisendörfer mentioned at the beginning of this chapter: “In node.js everything runs in

parallel, except your code.”

Figure 3.1.: Visual representation of the event loop2

Figure 3.1 illustrates the behaviour of the event loop, including the traditional stack,

the message queue and the heap, a mostly unstructured region of memory where

instantiated JavaScript objects are stored.

2By the Mozilla Developer Network, https://developer.mozilla.org/en-US/docs/Web/
JavaScript/EventLoop
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3.3.1. Synchronous and Asynchronous Functions

As stated before, even with the event loop it is not possible to run multiple JavaScript

functions in parallel.3 The event loop execution cycle only improves the way to handle

functions that are waiting for non-JavaScript processes to finish (like I/O) and therefore

blocking.

Consider the JavaScript example given in Listing 3.3. This function is blocking as well,

although it does not require any external process. To make it even worse, its execution

blocks any other message on the event loop as long as the for-loop is not completely

finished. However, this can not be improved with the use of the message queue if we

really want to process all 1000000 items – either the stack or the message queue is

used to loop through the items.

Listing 3.3: Blocking function in JavaScript

1 function f () {

2 var limit = Math.pow(10,10)

3 for (var i = 0; i < limit; i++) {

4 // do something

5 }

6 }

In other functions it is possible to decide whether to process functions via the stack-

based execution or the message queue fits better. To make use of the message queue

mechanism, we use an asynchronous function. This is a function which gets a callback

as one of its parameters. This event handler is called with the returned value. Listing 3.4

presents a JavaScript code example of an asynchronous, non-blocking database query.

Following the JavaScript conventions, the event handler is passed as the very last

argument to the function queryDbAsync.

3In Chapter 5, where the implementation of the interactive CHR tracer chrjs.net is presented, we introduce
a method to run multiple JavaScript functions in parallel using Web Workers.
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Listing 3.4: Asynchronous database query in JavaScript

1 function queryDbAsync (query, callback) {

2 database.request(query, function onFinish (result) {

3 // function is called when the query has been finished

4

5 // pass the result to the given callback

6 callback(result)

7 })

8 }

In opposite, Listing 3.5 shows the equivalent blocking database call. Functions which

return their result with the help of the return statement, are called synchronous

functions.

Listing 3.5: Synchronous database query in JavaScript

1 function queryDbSync (query) {

2 var result = database.request(query) // blocking, which might

3 // take some time

4 // ... finally

5 return result

6 }

The distinction between asynchronous and synchronous as well as non-blocking and

blocking functions matters especially when it comes to browser performance and user

feedback: When the event loop is blocked by a sychronous function, in most browsers

the user can not interact with the website any more, because JavaScript is single-

threaded and used for the rendering of the website too. It is therefore recommended to

outsource processor-intensive calculations to non-JavaScript processes or spawn child-

processes of JavaScript (natively possible in node.js or with the help of Web Workers

in the browser). Another possibility is to give the event loop the chance to switch to

another task by explicitly adding a new message to the event loop that will later resume

the time-consuming calculation.
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3.3.2. Queueing Messages

JavaScript provides multiple ways to add new messages to the message queue:

• setTimeout(callback, time),

• setImmediate(callback) (not in the ECMAScript standard) and

• process.nextTick(callback) (only in node.js).

With the help of these functions, it is possible to add the event handler provided as

parameter callback to the event queue. In case of setTimeout, the callback is

invoked after the given time, the other two functions call the event handler immediately

after all other operations have been finished. Listing 3.6 presents a variation of the code

given in Listing 3.3. The overall calculation is split into smaller parts. Because of the

usage of setImmediate, we give other events the chance to be executed in between.

Listing 3.6: Queued implementation of Listing 3.3

1 var limit = Math.pow(10,10)

2 var chunkLimit = Math.pow(10,5)

3 function f (k) {

4 for (var i = k; i < k+chunkLimit; i++) {

5 // do something

6 }

7

8 if (i == limit)

9 return

10

11 setImmediate(function () {

12 f(i)

13 })

14 }

Another way to structure asynchronous functions is the usage of Promises, which are

introduced in Section 3.5.6.
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3.3.3. Stack Size

Unlike most C and C++ compilers, JavaScript has no tail call optimisation (TCO).4 With

TCO it is possible to optimize the execution of a function with tail recursion. Instead of

generating a new stack frame the current one is reused.

The actual available stack size depends on the used JavaScript runtime environment

and the used system. Splitting large calculations into asynchronous functions is way

to prevent exceeding the stack size. This is a result of the fact, that the event loop is

continued only when the current calculation has been finished. That means the stack is

completely cut down when polling a new message from the message queue.

This method to prevent a JavaScript RangeError will be illustrated in Section 3.4 again.

3.3.4. Garbage Collection

It is worth mentioning garbage collection (GC) here. Similar to other imperative pro-

gramming languages, JavaScript runtime environments perform GC to free memory by

destroying unreferenced variables and objects in the heap. As JavaScript does not have

explicit memory management, this process can not be controlled manually and is instead

managed by the runtime environment. The time when the GC is executed depends on

its implementation. The only thing specified among the various runtime environments

is the GC not being active within the execution of a function. This is another reason

dividing a large calculation in smaller chunks is worth considering.

3.4. Example Program: gcd(a,b)

In this section we want to discuss the implementation of the Euclidean algorithm to

compute the greatest common divisor as presented in Section 2.4. We will present

different implementations with respect to the function properties presented before. This
4Tail call optimisation has been specified in the ECMAScript 6 standard in June of 2015. However it is

currently implemented by no JavaScript engine. Only Babel, a JavaScript transpiler, supports TCO in
parts.
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section will later be referred to when we discuss our implementation approaches of

CHR.js and possible optimizations in Chapter 6. Unlike the CHR implementation, we

restrict ourselves to the calculation of the GCD of exactly two positive integer values.

3.4.1. Iterative Implementation

The first implementation approach simply translates the pseudo-code of Listing 2.2 into

equivalent JavaScript. It is presented in Listing 3.7. An example call is given in line 11.

Listing 3.7: Iterative implementation of gcd()

1 function gcd (a, b) {

2 while (b > 0) {

3 if (a > b) {

4 a = a - b

5 } else {

6 b = b - a

7 }

8 }

9 return a

10 }

11 // Example call:

12 console.log(gcd(6,9))

This implementation is blocking and synchronous. If it is called with large input values,

the while loop of line 2 is executed until the GCD is found. While this approach is

straight-forward and very efficient, it will block the entire application until finished.

3.4.2. Recursive Implementation

Listing 3.8 presents a recursive implementation of the gcd function. Instead of mutating

the variables a and b directly, we pass the adapted argument into a recursive call.
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Although this implementation is tail-recursive, it does not get optimized as already dis-

cussed in Section 3.3.3. As a consequence, it is not possible to call this implementation

of gcd with fairly large inputs without JavaScript throwing a MaxRange error. This is due

to the fact that this implementation is blocking like the previous one, but because of the

recursion a new stack frame is generated for each call of gcd.

Listing 3.8: Recursive implementation of gcd()

1 function gcd (a, b) {

2 if (b == 0)

3 return a

4 if (a > b)

5 return gcd(a-b, b)

6 return gcd(a, b-a)

7 }

This can not be avoided by simply pass a callback as suggested in Listing 3.9. Because

the definition of gcd still does not include any asynchronous function that adds a new

message to the message queue (c.f. Section 3.3.2) it remains blocking and recursive,

equally resulting in an exceeded stack size for large input values.

Listing 3.9: Recursive implementation of gcd(), with callback parameter

1 function gcd (a, b, callback) {

2 if (b == 0)

3 callback(a)

4 else if (a > b)

5 gcd(a-b, b, callback)

6 else

7 gcd(a, b-a, callback)

8 }

42



3.4. Example Program: gcd(a,b)

3.4.3. Asynchronous Implementation

As suggested before, we have to explicitly pause the calculation and resume it in a

new event. This can be achieved by using setTimeout(callback, 0), which is sup-

ported by all JavaScript runtime environments. We adapt the recursive implementation

of Listing 3.8 by adding setTimeout calls in a way that the execution is continued in

one of the next steps of the event loop. This asynchronous implementation is presented

in Listing 3.10.

Listing 3.10: Asynchronous implementation of gcd()

1 function gcd (a, b, callback) {

2 if (b == 0) {

3 callback(a)

4 } else if (a > b) {

5 setTimeout(function () {

6 gcd(a-b, b, callback)

7 }, 0)

8 } else {

9 setTimeout(function () {

10 gcd(a, b-a, callback)

11 }, 0)

12 }

13 }

By this adoption we can prevent the exceeding of the stack size because only a single

stack frame is generated per message in the event loop. On the other hand, this

comes with an enormous decrease of performance: According to the specification of

HTML 5 [HH11], the minimum delay of setTimeout calls is four milliseconds.

A common approach to profit from both the advantages of asynchronous functions using

the message queue as well as the good performance of the stack-based execution

is to call setTimeout only for every n’th invocation, with n as near as possible to

the maximum stack size. This approach is illustrated with the second asynchronous
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implementation of Listing 3.11. Because the stack size is platform-dependent, we use

n = 1000 in this example.

Listing 3.11: Asynchronous implementation with moderate use of setTimeout()

1 var i = 0

2 var chunkLimit = 1000

3 function gcd (a, b, callback) {

4 i++

5 if (b == 0) {

6 callback(a)

7 } else if (a > b) {

8 if (i % chunkLimit) {

9 gcd (a-b, b, callback)

10 } else {

11 setTimeout(function () {

12 gcd(a-b, b, callback)

13 }, 0)

14 }

15 } else {

16 if (i % chunkLimit) {

17 gcd(a, b-a, callback)

18 } else {

19 setTimeout(function () {

20 gcd(a, b-a, callback)

21 }, 0)

22 }

23 }

24 }
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3.5. Syntax

The implementation examples of the previous section already gave an insight to the

syntax of JavaScript. In opposite to CHR, describing the syntax of the targeted language

JavaScript is out of the scope of this work. In this section we want to concentrate only

on syntactic elements that are worth a closer examination – either because of their

importance for the compilation process or because they are very recently defined as part

of the ECMAScript 6 standard and therefore not yet well known, even for experienced

JavaScript developers.

3.5.1. Prototype-based Inheritance

The prototype-based inheritance model of JavaScript is of the first category. It is a major

construct of the language, but often confusing for developers familiar with class-based

programming languages like Java and C++.

JavaScript does not provide a traditional class implementation.5 Instead, JavaScript has

only one construct: objects. Each object has an internal link to another object called its

prototype, a general form of the object. This prototype has a prototype of its own, and so

on. This link from the initial object over all of its prototypes is called the prototype chain.

It ends once an object with null as its prototype is reached, which has by definition no

prototype.

When the property ’b’ of an object a is accessed (written as a.b or a[’b’]), the

property ’b’ is searched for along the prototype chain until the first occurrence is found.

So ’b’ is either specified in the object a itself or in the nearest prototype along the chain

containing a ’b’ property.

The values of the objects can be of any type. It is even possible to define a function,

then the this keyword refers to the object. This way it is possible to define methods on

objects. Listing 3.12 shows an example of the definition of an object, including a function

as property.
5Although the ECMAScript 6 standard defines the class keyword, it is just syntactic sugar and wraps

around JavaScript’s prototype-based inheritance model.
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Listing 3.12: JavaScript object example

1 var person = {

2 prename: ’John’,

3 surname: ’Doe’,

4 name: function () {

5 return this.prename + ’ ’ + this.surname

6 }

7 }

8 console.log(person.name()) // ’John Doe’

With the definition of a person as presented in Listing 3.12 it would be necessary to

define the name() function for each and every person. This could be prevented by using

a named function (that means to simply define the function name() in the global scope,

as the this reference can be bound dynamically). A better approach is to create a

Person prototype, which is similar to the definition of a class in languages like Java and

C++.

A new prototype can be created by simply define a new function. When called with the

new keyword, memory for the new instance gets allocated. Methods of this prototype

can be defined by adding them to the prototype property of this new defined function.

An example definition of the Person prototype is presented in Listing 3.13.

The advantage of specifying methods in the prototype property is that the function is

created only once and can be used by any instance. A disadvantage can be the process

of looking up the prototype chain to access a property not defined in the object itself.

With prototype it is possible to realize an equivalent of traditional class inheritance: It is

possible to explicitly define the prototype chain of an object or prototype, which results in

an inheritance model similar to Java and C++.

Unlike these programming languages, JavaScript does not provide a way to for infor-

mation hiding. Keywords like public, protected and private simply does not exist.

Every property defined along the prototype chain can be accessed by the instantiated

object. Although it would be possible prevent the exposure of internal variables us-
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ing closures, this has enormous downsides regarding memory usage and possible

optimizations.

Listing 3.13: Example for the creation of a prototype

1 function Person (prename, surname) {

2 this.prename = prename

3 this.surname = surname

4 }

5

6 Person.prototype.name = function () {

7 return this.prename + ’ ’ + this.surname

8 }

9

10 var john = new Person(’John’, ’Doe’)

11 console.log(john.name()) // ’John Doe’

This resulted in naming conventions used by JavaScript developers: private properties

and functions are in general prefixed by an underscore _. Because in the CHR.js module

we want to allow using constraint and rule names beginning with an underscore, we use

the convention to start private properties with a capital letter.

A more detailed introduction of the prototype-based inheritance model is out of scope of

this work. However, because CHR rules, constraints and even the used compilers have

been implemented using prototypes, a basic comprehension of JavaScript prototypes is

necessary to understand our contribution.

In the next subsections we will shortly introduce further JavaScript elements which were

added very recently to the ECMAScript standard in June of 2015 and are therefore not

yet very common, but intensively used for our compilation process.

3.5.2. Template Strings

With JavaScript versions prior to ECMAScript 6 it is not easily possible to define multi-

line strings. Neither "" nor ” support strings spreading over multiple lines without
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modification in the source code. Because we want to make the specification of CHR

rules as easy as possible, we decided to use ES6 template strings (“) for these purposes.

An example creation of a multi-line string containing multiple rules in presented in

Listing 3.14. It includes placeholders specified within curly braces ${ ... }. This

syntax will be later use to evaluate built-in constraints within rules as well as a comfortable

method to generate source code in the compiler.

Listing 3.14: JavaScript multi-line strings using template strings

1 var name = ’John Doe’

2 var activity = ’travel’

3

4 var greeting = ‘Hello ${ name },

5 how was your ${ activity }?‘

3.5.3. Tagged Template Strings

Template strings can not only be used to create multi-line strings containing placeholders.

It is possible to prefix the template string with a function name (the template handler )

which takes the string and values of the placeholders as arguments. This syntax, called

tagged template strings, was added in ES6 to support to directly embed domain-specific

languages (DSL) into JavaScript. Because in our contribution we want to enhance the

native JavaScript syntax with CHR as DSL, we use this new syntax to specify the CHR

rules. An example usage of tagged template strings is given in Listing 3.15.

Listing 3.15: Example usage of tagged template strings

1 function text (parts, name, activity) {

2 return parts[0] + name + parts[1] + activity + parts[2]

3 }

4

5 var greeting = text‘Hello ${ ’John’ },

6 how was your ${ ’travel’ }?‘
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The first parameter of the template handler is an array of the input string being split at

each placeholder. Therefore in the example of Listing 3.15 parts is

[’Hello ’, ’,\nhow was your ’, ’?’].

3.5.4. Arrow Functions

Template strings are basically syntactic sugar and could be expressed with JavaScript

syntax prior to ECMAScript 6, too.6 In general this holds true arrow functions. They

provide an easy way to define (often anonymous) functions and are similar to lambda

expressions of functional languages. The traditional way to calculate the squares of an

array of numbers is shown in Listing 3.17. Arrow functions provide a shorter syntax,

which Listing 3.16 illustrates. There the square function has been replaced by the arrow

function (x) => x*x.

Listing 3.16: Example usage of arrow functions

1 console.log([ 1, 2, 3 ].map((x) => x*x)) // [1, 4, 9]

Listing 3.17: ES5 equivalent of Listing 3.16

1 function square (x) {

2 return x * x

3 }

4 console.log([ 1, 2, 3 ].map(square)) // [1, 4, 9]

We will use the arrow function syntax together with template strings to easily specify

guards in CHR rules. This syntax is also used as a convenient way to implement the

optimized compiler in Chapter 6.

3.5.5. Desctructuring Assignments

As mentioned in Section 2.5.3, imperative programming languages generally do not

have an equivalent of the unification used for the pattern matching in CHR(LP) systems.
6This is what transpilers like Babel typically do: Translate very new language features into equivalent code

for older runtime environments.
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With ES6, a new JavaScript expression has been introduced which might fill this gap:

destructuring assignments. With these it is possible to define a pattern at the left-hand

side of an assignment. Some examples for destructuring assignments are provided in

Listing 3.18.

Listing 3.18: Example usage of destructuring assignments

1 // a = 1, b = 2

2 [a, b] = [1, 2]

3

4 // a = 1, b = 2, rest = [3, 4, 5]

5 [a, b, ...rest] = [1, 2, 3, 4, 5]

6

7 // a = 1, b = 2

8 ({a, b} = {a:1, b:2})

9

10 // a = 1, b = 2, rest = { c: 3, d: 4 }

11 // part of ECMAScript 7

12 ({a, b, ...rest} = {a:1, b:2, c:3, d:4})

With destructuring assignments it is even possible to provide nested patterns which

makes it suitable for an unification replacement in CHR.js.

3.5.6. Promises

As a last syntax element of JavaScript we want to elaborate in this work, we consider

promises, which provide a convenient way to structure asynchronous functions. The

asynchronous implementation of gcd() in Listing 3.10 already illustrates a problem

many JavaScript programs face: callbacks are often nested (here: callback within

gcd within setTimeout, line 5ff.) which leads to source code which is hard to maintain.

For the developer, the event loop has the disadvantage of program flow being not easily

readable from the source code.
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One way out of the so-called “callback hell” is the usage of promises. Simply put, they

provide a syntax to specify the program flow by chainable functions instead of nested

callbacks. The resulting waterfall model is a better representation of the execution cycle

provided by the event loop.

A basic example of a promise is shown in Listing 3.19. By calling new Promise(), a

promise is created which provides a then function (and is therefore called a thenable

object) which is used to process the result. A promise is called to resolve to the

result. Unlike traditional event handlers using callbacks, a promise is guaranteed to

resolve only once. To start the promise chain, we will use the predefined function

Promise.resolve(), which simply creates a promise that always resolves, but has

undefined as result.

Listing 3.19: Example definition of a promise

1 var promise = new Promise(function(resolve, reject) {

2 // do something, probably asynchronous

3 var result = ’e.g. dataset’

4

5 if (/* success */) {

6 resolve(result);

7 }

8 else {

9 reject(new Error(’Failed’));

10 }

11 })

12

13 promise.then(function (result) {

14 // process result

15 })

While this example might not look like an improvement to the traditional callback version,

the advantages are clear once multiple promises are used. As illustrated by the example
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in Listing 3.20, the promises can be chained by their then function. The catch function

fetches any error that might occur while processing the promise chain.

Listing 3.20: Promise chaining

1 promise1.then(function (result1) {

2 return promise2

3 }).then(function (result2) {

4 return promise3

5 }).then(function (finalResult) {

6 // do something

7 }).catch(function (error) {

8 // somewhere in the chain an error occurred

9 })

In CHR.js we will use promises to represent each constraint. In this way it is easily

possible to process multiple input constraints – either in sequence or even in parallel, as

presented in Section 4.5.

To compare the different implementation ideas of gcd(a,b), we present in Listing 3.21

an implementation similar to Section 3.4 using only promises.

Listing 3.21: Implementation of gcd() using promises

1 function p (v) { // v = [a, b]

2 if (v[1] === 0) {

3 return v[0]

4 }

5 if (v[0] > v[1]) {

6 return Promise.resolve([v[0]-v[1], v[1]]).then(p)

7 }

8 else {

9 return Promise.resolve([v[0], v[1]-v[0]]).then(p)

10 }

11 }
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12

13 function gcd (a, b) {

14 return Promise.resolve([a, b]).then(p)

15 }

16

17 // Example call:

18 gcd(6, 9).then(function (res) {

19 console.log(res)

20 })

The definition of p in Listing 3.21 makes use of the fact, that when a promise returns

another one, it is handled like called within the then() property. As a result, the following

two expressions are equal:

1 // Variation 1: Nested promises

2 promise1.then(function (v1) {

3 // process v1

4 return promise2.then(function (v2) {

5 // process v2

6 return promise3.then(function (v3) {

7 ...

8 })

9 })

10 })

11 // Variation 2: Chained promises

12 promise1.then(function (v1) {

13 // process v1

14 }).then(function (v2) {

15 // process v2

16 }).then(function (v3) {

17 ...

18 })
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3.6. Code Structuring

JavaScript has no native support for the inclusion of scripts and modules. In the world

of the web, required third-party libraries were simply added to the <head> section of

the HTML document. This is a very simple mechanism to load JavaScript modules on

websites and very frequently used even today. The only thing web developers have to

consider are naming conventions, because all loaded JavaScripts expose their interfaces

to the global scope.

The server-side JavaScript runtime environment node.js had to provide a different way

to split a large JavaScript code base across multiple files. In opposite to browser

environments, it provides a require() function to include JavaScript code. This

resulted in a simple but powerful module system. Because files and modules are in

one-to-one correspondece, it is possible to load the file rules.js of the same directory

by calling require(’./rules.js’). On the other hand it supports global packages

which are specified only by their name, that means the explicit directory (here: ./) is

omitted. Global packages can be installed with the help of npm, a package manager for

node.js.

In the code examples we will use the var identifier = require(location)

syntax to refer to the used module by its location. If the code fragments should be

executed in a browser environment – where the require() function is not defined –

it can by simply used by the given identifier. This is a result of the fact, that the

libraries we created as part of this work use the same names for both browser-builds

and builds for node.js.

3.7. Summary

In this chapter we introduced JavaScript, the targeted language of our compilation

process. We presented its execution cycle based on event loop and message queue.

Its comprehension is necessary for design decisions in the development of a feature-

rich CHR(JavaScript) system. It is also the basis for optimizations. At the end the
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advantage and disadvantage of synchronous and asynchronous, blocking and non-

blocking implementations has to be balanced, as the gcd() example of 3.4 has shown.

In Section 3.5 we introduce some syntax elements of the recent ECMAScript 6 standard

that are important for both the compiler construction as well as the CHR.js language

design. The implementation of tagged template strings to support DSLs was essentially

for our approach of embedding CHR into JavaScript. The introduction of these syntax

elements already indicates the language design of CHR.js, which will be discussed in

the following chapters.
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4
CHR.js – A CHR(JavaScript) Interpreter

They say we only use a fraction of our brain’s true

potential. Now that’s when we’re awake. When we’re

asleep, we can do almost anything.

— Dominick “Dom” Cobb, in Inception (2010)

In the previous chapters we introduced the two programming languages relevant for our

work. The short introduction to JavaScript already contained most of the components

necessary to compile CHR into JavaScript. In this chapter we want to add the last ingre-

dients: the definition of the CHR.js language, its parsing grammar and the compilation

idea.

As a result, we present a feature-rich implementation of a CHR(JavaScript) system.

The created JavaScript module, called CHR.js, will be used as an interpreter for CHR
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embedded in JavaScript. Although this just-in-time compilation approach has disadvan-

tages regarding execution performance, it allows us to manipulate the execution of CHR

programs at runtime, which is a requirement for the implementation of graphical and

web-based tracers. An example application, which uses most of the tracing abilities

provided by CHR.js, will be presented in Chapter 5.

For an improvided performance, in Chapter 6 we will introduce a precompiler which

takes JavaScript source code with embedded CHR.js and translates the contained CHR

rules in a compilation step, similar to the approach used by JCHR and CCHR. Keeping

this in mind, the definition of the CHR.js language in this chapter covers both use-cases,

so that at the end the JavaScript code containing CHR rules can be either executed

directly in an interpreter mode or being precompiled to improve performance.

4.1. Overview

The CHR.js module consists of the following components:

Runtime Components No matter how the given CHR rules look like, to execute a

CHR.js program a number of components is always needed. We will introduce

JavaScript prototypes to represent a single constraint, the constraint store, the

propagation history, etc.

The Parsing Grammar To analyse a given string consisting of one or more CHR rules,

our contribution contains a grammar that describes the CHR.js language in a

formal way and is as well the basis for the parsing step of the compilation.

Compiler After the source code has been analysed by the parser, the compiler gener-

ates actual JavaScript code to handle the specified constraints.

In the following sections we introduce the three components and give usage examples.

The CHR.js manual, a more technical introduction for developers and users, can be

found in Appendix C.1.
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4.1.1. Integration

The concrete way to integrate CHR.js into a JavaScript project depends on the runtime

environment (c.f. 3.6). In browser-based applications, the chr.js (or chr.min.js as

minified version) must be included. It exposes a global CHR variable which provides

access to the library.

For the usage with node.js the module has been published at npm, JavaScript’s most pop-

ular package manager, under the name “chr”. By calling var CHR = require(’chr’)

the library can be assigned to the variable CHR, too.

In the following sections we assume that the module has already been loaded in the CHR

variable.

4.2. Runtime Components

In [VWWSD08], the data structures and their methods needed for imperative host

languages have been presented: a representation for a single constraint, the constraint

store and the propagation history. Our implementation seizes on the mentioned interfaces

and adapt them to work best with JavaScript. In most cases, this includes the definition

whether a method should be synchronous or asynchronous. The data structures are

defined by prototypes (c.f. Section 3.5.1).

In addition to these data structures, we add a helper object for common tasks used

in the runtime and data structures to manage the rules. The latter is not needed in

the work of [VWWSD08], because there the implementation of an ahead-of-time (AOT)

compilation is discussed.

The runtime components are exposed as properties to the CHR object, meaning the

constraint constructor can be used via CHR.Constraint, the propagation history via

CHR.History, etc.1 In addition, the node.js module provides a single endpoint for the

runtime components which can be used by calling require(’chr/runtime’).

1The related sources can be found in the /src directory, for example src/constraint.js for the
constraint constructor.
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4.2.1. Constraint: CHR.Constraint

The Constraint prototype stores all data of an actual constraint. It can be created

by calling new Constraint(name, arity, argumentsArray). Unlike the other

runtime components, the Constraint prototype is only used for data storage. In order

to avoid so-called hidden classes, which can result in big performance decreases, this

prototype is used. In general a hidden class is generated for every object that is not

instantiated by using a prototype. Because V8’s JIT-compiler has no knowledge about

the general construction and usage of this object, it can not be optimized. We avoid

these hidden classes by explicit JavaScript prototypes where possible.

Properties

name The name of the constraint as string.

arity The constraint’s arity as positive integer.

functor The functor of the constraint is often used and therefore added automatically

at construction.

args The arguments of the constraint, given as array.

id The id of a constraint is generated when it is added to the constraint store. Until

then it remains null.

alive Flag, whether the constraint is still alive or had been removed from the constraint

store.

Methods

The Constraint prototype exposes only a single method: toString(). It generates

a string representation similar to CHR(Prolog) systems, for example gcd(6).
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4.2.2. Store: CHR.Store

The constraint store is the data structure that contains all alive constraints. It has no

constructor parameters.

Properties

length The number of stored constraints. This property should be read only.

invalid Flag whether the constraint store is invalid, that means the built-in false/0

has been added.

Methods

The following methods are adaptions of the proposition of [VWWSD08].

reset() Method to truncate the constraint store. In practice it does not matter if the

constraint store is reset or a fresh Store instance is used. However the reuse of

the existing instance leads to better performance in V8.

add(constraint) Adds a constraint to the store.

kill(id) Method to kill and delete a constraint from the store.

alive(id) Checks whether the constraint specified by the given identifier is still alive.

allAlive(arrayOfIds) Checks whether all constraints specified by an array of

identifiers are still alive.

args(id) Returns the arguments of the constraint specified by the given identifier.

lookup(name,arity) Returns an array of ids of all alive constraints matching the

given name and arity.

Additionally the constraint store exposes the following methods:

invalidate() Method to reset the store and set the invalid flag.
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forEach(callback) Similar to JavaScript’s native Array.forEach(callback)

this method iterates over the stored and alive constraints and executes the given

callback for each of them. The order of the iteration is not guaranteed.

map As an equivalent to JavaScript’s native Array.map(callback) this method iter-

ates over all stored and alive constraints and returns the result of the callback for

each. This execution of this method is synchronous and returns an array.

toString() Method which returns a ASCII-based table representation of the contents

of the constraint store.

Events

The constraint store emits several events. It is possible to add event listeners by call-

ing store.on(eventName, eventHandler), where eventHandler is a function

invoked once the event appears.

Two events are supported: add and remove. Both pass the added or killed constraint to

the specified constraint handler. A usage example is presented in Listing 4.1.

Listing 4.1: Registering event listeners for the constraint store

1 var store = new CHR.Store()

2 store.on(’add’, function (constraint) { /* process it */ })

3 store.on(’remove’, function (constraint) { /* process it */ })

While we will use JavaScript promises for the asynchronous behaviour of CHR.js, we

use traditional callbacks for the events of the constraint store. Promises can be executed

only once, whereas it is reasonable use-case to fetch the removal of constraints with

multiple event listeners. Also we expect that these listeners are only used for debugging

output and to trigger user interface updates, which are not required to block the further

CHR.js execution.
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4.2.3. Propagation History: CHR.History

The propagation history is used to prevent the repetitive execution of rules with identical

constraints. It takes no constructor argument and has no public properties at all. In

addition to the proposition of [VWWSD08], we add a method to explicitly ask for the

existence of an entry in the propagation history, not just its absence.

Methods

add(rule,arrayOfIds) Adds an entry to the history for the given rule. The used ids

of the constraints have to be specified as an array.

notIn(rule,arrayOfIds) Asks whether the given tuple is not in the propagation

history.

has(rule,arrayOfIds) Asks whether the given tuple is already in the propagation

history.

Because a rule is only applied if it was not fired with the identical constraints before, the

notIn method is generally used.

4.2.4. Rule: CHR.Rule

The CHR.Rule constructor is used to store a single CHR rule and all of its properties.

In general it is instantiated automatically after using the parser. However it is possible

for the user to create a new CHR.Rule instance manually. Then it expects the object

generated by the parser as its first argument. Options, for example to explicitly define

the variable scope of the rule, can be passed as a second argument to the constructor.

Given the object generated by the CHR.js parser, it automatically generates the source

code to make the rule applicable for a Constraint instance.

63



4. CHR.js – A CHR(JavaScript) Interpreter

Properties

The Rule object is used to provide an easy access to the contained constraint occur-

rences. So a rule which has the constraint with the functor a/0 in its head will generate a

dynamic property rule[’a/0’], which is an array with all occurrences of this constraint

(as it is possible to occur multiple times in the rule’s head). Because we want to avoid

naming conflicts in the properties, all static properties of the Rule prototype begin with

an uppercase letter. By definition CHR constraints must start with a lowercase letter.

The order of the occurrence handlers saved in the rule[functor] array coincide to the

order of the refined operational semantics ωr, meaning from right to left in case of multiple

occurrences. However it is possible to re-order or even add or remove occurrence

handlers manually to dynamically change the semantics of a CHR.js program.

Scope The outer scope of the variable of the rule. With this property it is possible to ex-

plicitly add variables to the scope. For example, by setting

rule.Scope = { a: 42 }, the rule gets access to the variable a. It is only

possible to add variables to the scope because JavaScript provides no mechanism

to hide variables in it.

Replacements It is possible to define placeholders for built-ins in rules. This mecha-

nism is presented in detail in Section 4.3.2. In the Replacements property these

placeholders can be specified.

Name Every rule has a (at least generated) name which is stored in this property.

Methods

ForEach(callback) Similar to JavaScript’s native Array.forEach(callback)

function this method iterates over all saved functors and applies the given callback

for each.

Fire(chr,constraint) Method that applies the rule for the given constraint. Be-

cause for every functor an array of occurrences is saved, this method iterates over

the occurrences appropriate for the given constraint and applies this rule. As
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the rule has to be executed in the global context of the CHR instance chr, it has to

be passed as an argument. Otherwise the rule would have no knowledge about

other rules in the program.

This Fire() method returns a promise which is resolved when all occurrences

have been applied.

Breakpoints

The Rule prototype has another special property: Breakpoints. Similar to the event

listeners of the constraint store they provide a way to interfere with the execution of the

CHR program. Unlike event listeners, these breakpoints are not called as fire-and-forget

but are real promises. That means that the application of the rule is paused until the

breakpoint promise is resolved.

The Rule prototype implements the following Breakpoint:

onTry Pauses the rule application for each occurrence that is applicable. An object is

passed to the promise which refers to the current rule, occurrence, the matching

constraint and information about the location of this rule in the original CHR.js

source code.

By default the Rule.Breakpoints.onTry property is assigned to

Promise.resolve() which always immediately resolves.

4.2.5. CHR.js Program: CHR.Rules

A CHR.js program consists of a number of CHR rules. They are stored in the Rules

prototype. Because a single rule should be addressable as rules[ruleName], each

rule is saved as a property to this object. To avoid naming conflicts, the properties of the

Rules prototype therefore begin with an uppercase letter as well.

This prototype should never be manually instantiated. It is automatically created for every

CHR instance. There, the properties, methods and breakpoints of the Rules prototype

can be addressed via chr.Rules.
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Properties

The only property of the Rules prototype is Order. It stores the order to use the saved

rules as an array. Similar to the Rule prototype it is possible to change this order at

runtime to dynamically change the behaviour of the given CHR program.

Methods

Add(ruleObj,replacements) Method that creates a new Rule according to the

ruleObj, which is an object generated by the CHR.js parser. As the second

argument the replacements used by the Rule prototype can be specified.

Reset() Removes all saved rules. This is a comfortable way to reset a given CHR

instance by calling chr.Rules.Reset().

ForEach(callback) Similar to JavaScript’s native Array.forEach(callback)

function this method iterates over all saved rules and applies the given callback for

each.

SetBreakpoints(promise) Method to assign the given promise to all saved rules,

that means to set rule.Breakpoints.onTry on each.

RemoveBreakpoints() Similar to SetBreakpoints(), but resets all rule break-

points to Promise.resolve().

4.2.6. Helpers

For common tasks we include an object with helper methods. It is accessible via

chr.Helpers. Because it exposes only static methods, it does not have a con-

structor and prototype. In node.js, the helper methods can also be used by calling

require(’chr/runtime’).Helper.

Static Methods

The Helpers object contains the following static methods:
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allDifferent(array) Function which returns true if all values in the given array

are unique, otherwise false.

forEach(arrayOfArray,iteratorCallback,endCallback) This function is a

supplement for JavaScript’s native Array.forEach(iteratorCallback) func-

tion. Instead of iterating over all values in an array, this version expects an array

of arrays and iterates over all permutations of the contained values. An example

application and its output is presented in Appendix B.1.

Dynamic Caller

In addition to the two static methods presented before, a third function, which is very im-

portant for the execution of CHR.js, is defined in the Helper object:

dynamicCaller(constraintName). It is a higher-order function in JavaScript, re-

turning a function itself. By calling dynamicCaller(constraintName) a function

with the name constraintName is created. This function then can be used to add

a new constraint to the constraint store and trigger the rule application. It will be ex-

posed as chr[constraintName]. The gcd/1 constraint can therefore be called with

chr.gcd(6).

Listing 4.2: Definition of Helper.dynamicCaller (extract)

1 function dynamicCaller (name) {

2 return function () {

3 // ’functor’, ’arity’ and ’args’ are defined

4 // based on the given call arguments

5

6 var constraint = new Constraint(name, arity, args)

7 this.Store.add(constraint)

8

9 var rules = []

10 this.Rules.ForEach(function (rule) {

11 if (rule[functor]) {

12 rules.push(rule)
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13 }

14 })

15

16 var self = this

17 return rules.reduce(function (curr, rule) {

18 return curr.then(function () {

19 return rule.Fire(self, constraint)

20 })

21 }, Promise.resolve())

22 }

23 }

An extract of the definition of dynamicCaller is presented in Listing 4.2. After the

constraint is created and added to the constraint store, all rules are iterated to get all

occurrences for this functor. In line 17ff a new JavaScript promise is created by reducing

the array of applicable occurrence handlers to a single promise chain. This basically

transforms the array to an expression of the form:

1 Promise

2 .resolve()

3 .then(function () {

4 return occurrenceHandler[0]

5 })

6 .then(function () {

7 return occurrenceHandler[1]

8 })

9 ...
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4.3. Parsing CHR.js Rules

The demand for a further prototype CHR is not obvious, because the CHR.Rules proto-

type already stores all information about a CHR.js program – what else is needed? The

reason for a superior CHR prototype comes from the consideration that we also want

to provide an easy syntax to define CHR rules in JavaScript. Although Rules.Add()

already provides a way to add new rules, we aim for a shorter syntax using tagged

template strings (c.f. Section 3.5.2). In the following we assume a CHR instance has

been assigned to the chr variable, meaning:

1 var chr = new CHR()

This CHR.js instance both stores the runtime properties and works as a template handler

to define new rules. It is worth mentioning that it is possible to create multiple CHR

instances in parallel to generate different solvers.

In sections 2.5.3 and 2.5.3 we presented usage examples for JCHR and CCHR. Both

have in common, that the CHR rules are defined in a special code block respectively

class and can therefore be easily embedded into existing plain-old Java and C code.

In our contribution we follow this approach and specify the CHR rules within a special

tagged template string. As a result, the overall source code remains valid JavaScript

code, so that existing development tools like transpilers and static code analysers can

still be used.

4.3.1. Example Program: gcd/1

We start the definition of the CHR.js language by considering our classical example:

The calculation of the greatest common divisor. Its definition in CHR is known from

Section 2.4. In Listing 4.3 the equivalent definition in CHR.js is shown.2

2In JavaScript the backslash \ is an escape character in strings, for example used to specify the linebreak
\n. Therefore, to use a backslash in a string, it is necessary to escape it too, that means to write \\.
We omit the second backslash in our code listings for better readability and comparison to other CHR
systems. Being a very common pitfall for syntax errors, CHR.js supports also the normal slash / instead
of the backslash in simpagation rules.
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Listing 4.3: Rules for gcd/1 in CHR.js

1 chr‘

2 gcd1 @ gcd(0) <=> true

3 gcd2 @ gcd(N) \ gcd(M) <=> 0 < N, N <= M | gcd(M-N)

4 ‘

This syntax is very similar to JCHR and CCHR, the CHR rules are specified in a tagged

template string with the template handler chr.

In the next two subsections we want to give a deeper introduction to the syntax supported

by the CHR.js language. We focus on the specification of CHR rules with the help of the

chr() function first. The syntax to call constraints once defined and work with a CHR.js

program is presented in Section 4.5.

4.3.2. Syntax

The syntax for the definition of rules is very similar to most existing CHR systems.

Simple rules can be specified the same way as in CHR(Prolog), as long as one uses the

JavaScript equivalent of Prolog operators.3 Moreover, different rules are either separated

by a newline or semicolon instead of a point.

Listing 4.4 shows the basic definition of the three CHR rule types. Here and if not other

stated we assume that the template handler chr is an instantiated CHR.js solver.

Listing 4.4: Example definition for all three rule types

1 chr‘

2 propagation @ a , b ==> c, d

3 simplification @ e , f <=> g, h

4 simpagation @ i \ j <=> k, l

5 ‘

3For example the equality check in JavaScript is performed using == or === (type-safe), instead of the
often used unification = in Prolog.
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Built-in Constraints

Unlike JCHR, CCHR and CHR(Prolog) systems, we do not need to explicitly declare

CHR constraints in CHR.js. Our contribution goes the other way round: It is always

assumed that the identifiers provided in the head of the rules are CHR constraints,

following the syntax introduced in 2.2.4. Because in the guard only built-ins are allowed,

we do not need any explicit declaration here.

The rule’s body is the only part of a rule where both built-in and CHR constraints

are allowed. We therefore define that any identifier in the body is handled as a CHR

constraint. To use built-ins in the body, we introduce a special syntax.

As presented in Section 3.5.2, (tagged) template strings already provide a way to include

native JavaScript expressions into a DSL: placeholders. Using the ${...} syntax,

built-in constraints can be referenced.

At this point it is important to remember that the ${...} syntax passes an expression,

not the JavaScript source code to the template handler. That means, that for ${ 1+2 }

the template handler only gets the value 3; for ${ console.log(’Test’) } the

console.log command is immediately executed and its result (which is undefined)

is passed to the template handler. Actually our intention is to pass a function that is

executed only when the rule fires.

Due to this consideration, we make use of the short arrow function syntax introduced in

Section 3.5.4. Instead of passing the expression directly as in ${ expression }, it is

specified in an anonymous function: ${ () => expression }, which is invoked for

each rule application. A working example which uses the built-in console.log() is

shown in Listing 4.5.

Listing 4.5: Example usage of a synchronous built-in

1 chr‘

2 hello <=> ${ () => console.log(’Hello!’) }

3 ‘
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The arrow function specified with the ${ () => expression } syntax is synchronous

and blocking. This is fine if we want to execute a synchronous command like

console.log(). But in the case of an asynchronous function this is not sufficient. This

use-case is not unusual: Consider the program should send an HTTP request in case of

the rule application and not continue until this request has been finished.

Therefore asynchronous functions are supported too. They have a similar syntax with

the difference that the function within ${ ...} gets an additional parameter cb – a

callback which is executed once the asynchronous function has been finished. List-

ing 4.6 illustrates the usage of an asynchronous built-in. By calling JavaScript’s native

setTimeout(cb, 1000), the callback is invoked after one second, which will continue

the CHR.js execution.

Listing 4.6: Example usage of an asynchronous built-in

1 chr‘

2 hello <=> ${ (cb) => { setTimeout(cb, 1000) } }

3 ‘

The example of Listing 4.6 already gives an impression how the tracer of Chapter 5 will

be implemented: The given callback is invoked as recently as the user wants to continue

to the next tracing step.

Guards

In the guard of a rule only built-ins are allowed. We therefore do not need to use the

${ ...} syntax introduced before. However it is recommended because in this way the

user can make use of a great variety of existing JavaScript tools as the code within the

braces is recognized as native JavaScript code. By specifying the guard directly in the

string it is not possible to make use of syntax highlighting or static code analysis.

For the usage of asynchronous guards one has to use the placeholder syntax, because

all directly embedded built-ins are considered synchronous.
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Scope

JavaScript has function scope, that means that variables declared within this function via

the var keyword are local to this function. The same applies for variables passed as

arguments to a function.

When compiling CHR.js it is necessary to keep track of the scope of the variables. In

other words, variables within a rule should not be exposed to the global scope. Then

again the rules must have access to the variables of the global scope.

Listing 4.7: Scope of variables in rules

1 var Name = ’John’

2 chr‘

3 global @ a <=> ${ () => console.log(Name) }

4 local @ b(Iden) <=> ${ (Iden) => console.log(Iden) }

5 hidden @ c(Name) <=> ${ (Name) => console.log(Name) }

6 ‘

Listing 4.7 illustrates three cases when accessing a variable Name resp. Iden. The first

rule global has access to the globally defined Name variable. In the local rule, a fresh

identifier Iden is used. In order to have access to local variables defined in the head

in the body of a rule, the variable has to be added as an argument to the anonymous

function. This is a result of the variable hiding presented in rule hidden, where the local

Name variable covers the one of the global scope.

This syntax allows the manipulation of global variables from within rules, too. In the

code example of Listing 4.8 the global counter variable is incremented in each rule

application. Together with the guard this allows to restricts the rule to five applications.

Listing 4.8: Access and modification of global variables

1 var counter = 0

2 chr‘

3 inc <=> ${ () => i < 5 } | ${ console.log(++counter) }

4 ‘
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On the other hand, even the declaration of rules can depend on runtime properties.

Considering the code fragment of Listing 4.9, it depends on the value of flag which of

the rules are interpreted.

Listing 4.9: Dynamic definition of rules

1 if (flag) {

2 chr‘one_rule @ a ==> b‘

3 } else {

4 chr‘another_rule @ a ==> c‘

5 }

4.3.3. Rule Definition without Tagged Template Strings

Although the definition of rules with the help of tagged template string is comfortable,

the CHR.js module can be equally used with ECMAScript 5 syntax. This is both useful

for runtime environments which do not yet support the ES6 features of tagged template

strings and arrow functions, and in some cases for an improved structure and reusability

of existing code. Listing 4.10 illustrates the usage of the chr function, previously used

as template handler, with traditional call semantics.

Listing 4.10: Example rule definitions in ES5

1 chr(’a ==> b’)

2 chr(’hello ==>’, function () { console.log(’Hello’) })

3

4 function gt0 (N) {

5 return N > 0

6 }

7 chr(’dec(N) <=>’, gt0, ’| dec(N-1)’)

Internally this method works very similar to the tagged template approach. The given

strings are concatenated again with numbered placeholders of the form ${ number}.

In this way a single string containing the whole rule is created. In the examples of
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Listing 4.10, the rule in line 2 would therefore be translated to the string ’hello ==>

${1}’, the rule of line 7 to ’dec(N) <=> ${1} | dec(N-1)’.

4.3.4. Parsing Expression Grammar

Because both call semantics result in a very similar string, a unified grammar can be

used to analyse the structure of the CHR rules.

In order to parse a given string of CHR rules, we formalise its structure using a Parsing

Expression Grammar (PEG, [For04]). Its syntax is very similar to context-free grammars,

EBNF or regular expressions: similar to EBNF or Regular Expressions: / separates

alternatives, ? indicates optional terms. We assume basic knowledge about grammars

here and omit a more detailed introduction into PEG.

There already exists a PEG.js grammar to parse plain JavaScript code.4 Because our

contribution extends the JavaScript language5, we use this JavaScript PEG grammar

as a basis. Listing 4.11 presents our CHR-related extensions. The __ entity (two

underscores) is used to allow whitespaces between most of the expressions, for example

after commas.

Listing 4.11: Parsing Expression Grammar for CHR.js (extract)

1 // the overall program

2 Program

3 = __ CHRSourceElements? __

4 CHRSourceElements

5 = CHRSourceElement (__ CHRSourceElement)*

6 CHRSourceElement

7 = Rule ";"?

8 Rule

9 = RuleName?

4Part of [Maj11], https://github.com/pegjs/pegjs/blob/master/examples/javascript.
pegjs

5As mentioned before, it is possible to include JavaScript code directly in the guard. In order to parse
these expressions, a grammar for the JavaScript language is needed.
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10 RuleWithoutName

11 RuleName

12 = RuleIdentifier __ "@" __

13 // the rule name must start with a lower-case letter

14 // and must not contain a "@";

15 // DoubleStringCharacter is part of the JavaScript grammar

16 RuleIdentifier

17 = ($(!"@" [a-z0-9_] DoubleStringCharacter))+

18 RuleWithoutName

19 = PropagationRule

20 / SimplificationRule

21 / SimpagationRule

22 PropagationRule

23 = Constraints __

24 "==>" __

25 Guard?

26 Body

27 SimplificationRule

28 = Constraints __

29 "<=>" __

30 Guard?

31 Body

32 SimpagationRule

33 = Constraints __

34 ("\\" / "/") __ // allows both backslash and slash

35 Constraints __

36 "<=>" __

37 Guard?

38 Body

39 Constraints

40 = Constraint (__ "," __ Constraint)*
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41 Constraint

42 = ConstraintName

43 ("(" __ Parameters __ ")")?

44 ConstraintName

45 = [a-z] [A-z0-9_]*

46 Parameters

47 = Parameter (__ "," __ Parameter)*

48 Parameter

49 = SimplePrimaryExpression // defined in JavaScript grammar

50 CallParameters

51 = CallParameter (__ "," __ CallParameter)*

52 CallParameter

53 = Expression // defined in JavaScript grammar

54 BodyConstraint

55 = ConstraintName

56 ("(" __ BodyParameters __ ")")?

57 BodyParameters

58 = BuiltIns

59 // Guard is in general a list of JavaScript expressions;

60 // the bitwise or operator "|" must be prevented here

61 Guard

62 = BuiltInsNoBitwiseOR __ "|" !"|" __

63 Body

64 = BodyElement (__ "," __ BodyElement)*

65 BodyElement

66 = Replacement

67 / BodyConstraint

68 BuiltIns

69 = Expression // defined in JavaScript grammar;

70 // basically all JavaScript expressions

71 // are allowed here
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72 BuiltInsNoBitwiseOR

73 = ... // similiar to BuiltIns, but all

74 // JavaScript expressions not containing

75 // the bitwise or "|"

76 // DecimalIntegerLiteral, FunctionExpression and Expression

77 // are part of the JavaScript grammar

78 Replacement

79 = ReplOpenSym __ $(DecimalIntegerLiteral) __ ReplCloseSym

80 / ReplOpenSym __ FunctionExpression __ ReplCloseSym

81 / ReplOpenSym __ Expression __ ReplCloseSym

Parser Generation

This Parsing Expression Grammar can be used by PEG.js [Maj11], a parser generator

for JavaScript. It allows to specify transformations using JavaScrip code blocks for each

expression. With the help of PEG.js it is therefore possible to create an abstract syntax

tree (AST) of the given CHR.js source code.

The transformation codes has been omitted in Listing 4.11. As an example, Listing 4.12

shows the complete parsing rule for CHR’s propagation rule. Names have been added

to the sub-expressions and a {...} was added at the end.

Listing 4.12: PEG.js code for a propagation rule

1 PropagationRule

2 = headConstraints:Constraints __

3 "==>" __

4 guard:Guard?

5 bodyConstraints:Body {

6 var desc = {

7 type: ’PropagationRule’,

8 kept: headConstraints,

9 removed: [],
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10 body: bodyConstraints,

11 guard: guard || []

12 };

13 desc = formatRule(desc);

14 return desc;

15 }

In this way an object is created containing the kept, removed and body constraints as

properties. The array of removed constraints is empty here, because it is a propagation

rule.

As part of this step, the rule is also transformed into head normal form as introduced in

Section 2.5.1. The object generated when parsing the gcd/1 CHR.js source code from

Listing 4.3 is presented in Appendix B.2.

4.4. Compilation

As already mentioned in Section 4.2.4 this parser object is passed to the runtime

components which generate executable code.

As a consequence to the considerations of Section 3.3 we use JavaScript promises to

ensure the asynchronous behaviour of CHR.js. In other words, given the CHR.js rules

for the gcd/1 constraint of Listing 4.3 we expect to create a chr.gcd function which

returns a promise. An example usage of this function looks like this:

1 chr.gcd(6).then(function () {

2 // CHR.js execution finished

3 })

A more advanced usage example will be presented in Section 4.5, which illustrates the ad-

vantages of using promises. The chr.gcd function is generated by the

Helper.dynamicCaller function.
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As described in Section 4.2.6, for each occurrence of a constraint in a rule’s head a func-

tion is generated which returns a promise. With the help of Helper.dynamicCaller,

these functions, stored in the dynamically created properties of the Rule prototype, are

called and combined to a single promise using promise chaining.

4.4.1. Compilation Scheme for Occurrence Handlers

For each occurrence of a constraint in a rule head a separate function, which we call

occurrence handler, is generated. In this section we present the basic compilation

scheme for a single occurrence handler. It adopts the idea of [VWWSD08], which

we presented in Section 2.5.3. Instead of nested loops we use JavaScript promises

whenever it is possible.

Listing 4.13: Basic compilation scheme for occurrence ci

1 function occurrence_ci_ji (constraint,replacements) {

2 var self = this // references the CHR instance

3

4 // bind arguments of the current constraint

5 var Arg_1 = constraint.args[0]

6 ...

7 var Arg_ai = constraint.args[ai − 1]

8

9 // get list of possible partner constraints,

10 // including the current constraint

11 var constraintIds = [

12 self.Store.lookup("c1", a1),

13 ...

14 self.Store.lookup("ci−1", ai−1),

15 [ constraint.id ],

16 self.Store.lookup("ci+1", ai+1),

17 ...

18 self.Store.lookup("cn", an)
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19 ]

20

21 return new Promise(function (resolve, reject) {

22 self.Helper.forEach(constraintIds,

23 function (ids, callback) {

24 if (!self.Store.allAlive(ids))

25 return callback()

26

27 if (self.History.has("name", ids))

28 return callback()

29

30 // bind variables of partner constraints

31 var C_0_0 = self.Store.args(ids[0])[0]

32 var C_0_1 = self.Store.args(ids[0])[1]

33 ...

34 var C_n_an = self.Store.args(ids[n][an])

35 // these variables are typically referenced in the

36 // guards Gp or body constraints Bq

37

38 // define guards as array of promises

39 var guards = [

40 new Promise(function (s, j) { (Gi) ? s() : j() }),

41 ...

42 new Promise(function (s, j) { (Gm) ? s() : j() })

43 ]

44

45 Promise.all(guards)

46 .then(function () {

47 self.History.add("name", ids)

48

49 // kill the removed constraints
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50 self.Store.kill(ids[k + 1])

51 ...

52 self.Store.kill(ids[n])

53

54 // call body constraints in promise chain

55 Promise.resolve()

56 .then(function () {

57 return self[B1]()

58 })

59 ...

60 .then(function () {

61 return self[Bl]()

62 })

63 .then(function () {

64 // body has been processed, so finish

65 // this occurrence handler

66 callback()

67 })

68 .catch(function () {

69 // reject promise if an error occurred

70 })

71 })

72 .catch(function () {

73 // invoked if at least one guard promise

74 // has been rejected

75 callback()

76 })

77 }, resolve) // resolve promise when all permutations

78 // of partner constraints have been executed

79 })

80 }
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The generated occurrence handlers are stored in the array

chr.Rules[ruleName][functor]. In case of the gcd/1 CHR.js program, the occur-

rence handlers are therefore stored in chr.Rules.gcd1[’gcd/1] and

chr.Rules.gcd2[’gcd/1]. The first array has only a single item, the latter two,

because there are two gcd/1 occurrences in the rule gcd2. By calling the toString()

function on each it is possible to display the JavaScript code generated by the CHR.js

compiler. The generated source code for the gcd/1 example program is presented in

Appendix B.3.

4.4.2. Correctness

The compilation scheme presented in the previous section follows the refined operational

semantics (c.f. Section 2.3.2). It also resembles closely to the compilation scheme

presented in [VWWSD08].

The occurrence handler returns a single promise which is defined to resolve only once.

This is ensured by using Helper.forEach, which takes the resolve function as its

last parameter in line 76 of Listing 4.13. For every permutation of partner constraints the

guards are proven (line 44). Only if they are all resolved, the rule gets applied. Using the

propagation history self.History, we prevent multiple applications of the same rule

with identical constraints.

The promise chain of lines 54-66 guarantees the body constraints to be added in the

correct order. The callback specified with the help of then is not fired before the

application of the constraint Bq has been finished.

By using promises we also prevent the exceeding of the stack size as described in

Section 3.3. The use of classical recursive functions would result in JavaScript range

errors for large input values.
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4.4.3. Termination

The code generated by the presented compiler is not guaranteed to terminate. This

is a result of the fact that it is easily possible to define non-terminating CHR rules, for

example:

1 chr‘a <=> a‘

Although the a/0 always looks the same, the actual constraint instances are not identical,

which is why the propagation history does not prevent the non-termination here.

4.5. Advanced Usage

To conclude this chapter, we want to give an advanced usage example of the CHR.js

interpreter. The basic setup of the examined constraint solver is presented in Listing 4.14.

Listing 4.14: Advanced usage example of CHR.js

1 var CHR = require(’chr’)

2 var chr = new CHR()

3 var start

4

5 function elapsedTime () {

6 return new Date().getTime() - start

7 }

8

9 var latencyA = 300

10 var latencyB = 500

11

12 chr.Store.on(’add’, function (constraint) {

13 console.log(

14 constraint.toString() + ’ [’ + elapsedTime() + ’ms]’

15 )
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16 })

17

18 chr‘

19 r1 @ a(N) ==> N < 5 | a(N+1)

20 r2 @ b(N) ==>

21 N < 5 | ${ (cb) => setTimeout(cb, latencyB) }, b(N+1)

22 ‘

23

24 chr.Rules.r1.Breakpoints.onTry = function (data, next) {

25 setTimeout(next, latencyA)

26 }

27

28 module.exports = chr

With the code example of Listing 4.14 we want to discuss the general usage of CHR.js

programs as well as different call semantics for promises. It contains most of the features

presented in the previous sections.

In the first two lines, the constraint solver is instantiated and declared as chr. Line 25 is

specific to node.js. It exports the create solver as a module, so it can be easily used in

existing projects.

Since we want to track the execution time of the CHR.js program, we define a variable

start in line 3. The function elapsedTime() returns the elapsed time since the start

in milliseconds. In lines 9-10 constants are defined that will be later used to pause the

rule applications.

To get notified as soon as a new constraint is added to the constraint store, in lines 12-16

a listener for the ’add’ event of the constraint store is defined. The actual definition

of CHR rules happens in lines 18-22. The rule r1 takes a a/1 constraint and if its

argument is less than 5, its successor is propagated. Rule r2 works very similar but

executes JavaScript’s setTimeout function first. As a result the b(N+1) is propagated

not until latencyB milliseconds have been elapsed.
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A similar behaviour is also achieved for the a/1 constraints of rule r1 after defining the

onTry breakpoint in lines 24-26. However this breakpoint pauses the CHR.js execution

as well as if the rule r1 is not applicable in case of an unsatisfied guard, which is not the

case for r2.

4.5.1. Sequential Execution

The classical call syntax is to chain the promises as presented in Listing 4.15.

Listing 4.15: Sequential execution syntax

1 start = new Date().getTime() // start start time

2 chr.a(0) // first add a(0)

3 .then(function () {

4 return chr.b(0) // and then b(0)

5 }).then(function () {

6 console.log(’Execution finished [’ + elapsedTime() + ’ms]’)

7 })

This results in the following output as expected:

Listing 4.16: Output of the sequential execution of Listing 4.15

1 a(0) [24ms]

2 a(1) [325ms]

3 a(2) [626ms]

4 a(3) [928ms]

5 a(4) [1230ms]

6 a(5) [1534ms]

7 b(0) [1535ms]

8 b(1) [2036ms]

9 b(2) [2537ms]

10 b(3) [3039ms]

11 b(4) [3540ms]
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12 b(5) [4040ms]

13 Execution finished [4541ms]

First the a(0) constraint is handled until its execution finishes with the creation of a(5)

after 1.5 seconds, then b(0) is processed in the same way in 2.5 seconds. The shown

times match the specified latencies: 300 milliseconds on each application of r1, 500

milliseconds for r2. Note that program is finished another 500 milliseconds after the last

constraint addition, because the latencyB is used in the onTry breakpoint even if the

related guard fails.

4.5.2. Parallel Execution

The sequential usage is the usual way to use CHR.js. However due to the fact that our

contribution uses non-blocking JavaScript promises, we can process multiple constraints

concurrently. JavaScript natively provides a Promise.all(arrayOfPromises) func-

tion which creates a new promise based on an array of promises. It is resolved as soon

as all of the given promises have been resolved. The appropriate call syntax for this

parallel execution is illustrated in Listing 4.17.

Listing 4.17: Parallel execution syntax

1 start = new Date().getTime()

2 Promise.all([

3 chr.a(0),

4 chr.b(0)

5 ]).then(function () {

6 console.log(’Execution finished [’ + elapsedTime() + ’ms]’)

7 })

Here, the time in which the execution of a rule is paused due to the asynchronous

setTimeout function is used by the event loop to apply other possible rules. So for the

parallel execution the output looks like this:
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Listing 4.18: Output of the parallel execution of Listing 4.17

1 a(0) [13ms]

2 b(0) [13ms]

3 a(1) [314ms]

4 b(1) [514ms]

5 a(2) [615ms]

6 a(3) [916ms]

7 b(2) [1015ms]

8 a(4) [1216ms]

9 b(3) [1516ms]

10 a(5) [1518ms]

11 b(4) [2017ms]

12 b(5) [2518ms]

13 Execution finished [3020ms]

Because of the smaller latency, the a/1 constraints are generated in shorter intervals.

The overall execution time drops to 2.5 seconds, the overall execution time of b(0),

plus another 500 milliseconds for the last onTry breakpoint of rule r2. At the end, this

parallel execution results in a better execution time because the event loop perfectly fills

empty capacities if a single rule is paused.

4.6. Summary

In this chapter we presented the most important part of our contribution: the CHR.js

JavaScript module, a just-in-time compiler and runtime environment for CHR embedded

in JavaScript. Compared to existing CHR systems it adds a large number of tracing and

debugging options as well as the possibilities to manipulate CHR rules on-the-fly.

The execution semantics presented in Section 4.5 illustrate the benefits of using

JavaScript promises to model the rule application in an asynchronous way. The proper-
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ties of CHR programs that are executed in parallel are only marginally investigated so

far. CHR.js can therefore be a tool to examine these properties empirically.

Nevertheless this flexibility comes at a price: The execution time of the just-in-time

compiled code is not comparable to existing CHR systems so far. This originates from

the asynchronous approach, which has minimal latencies as described in Section 3.4.3.

All browser JavaScript implementations add a latency of four milliseconds for each

asynchronous call, which will have effects on the execution time in many test cases that

are used for performance comparisons.6 Also it is clear, that the asynchronous execution

using the message queue can never beat a single-stack approach.

In Chapter 6 we will present a second compilation scheme which goes the other way

around and completely avoids the message queue for improved performance. This

compilation scheme is used by the precompiler, which on the other hand produces code

not as flexible as the CHR.js module.

6This applies only to HTML5 documents, which is why these latencies are not included in the timestamps
presented in the outputs of Section 4.5, which has been executed in node.js.
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5
chrjs.net – Web-Based Tracing for CHR

I hate almost all software. It’s unnecessary and

complicated at almost every layer. (...) The only software

that I like is one that I can easily understand and solves

my problems. The amount of complexity I’m willing to

tolerate is proportional to the size of the problem being

solved.

The only thing that matters in software is the experience

of the user.

— Ryan Dahl, Creator of node.js1

1I hate almost all software (2011), Google Plus blog post originally located at https://plus.google.
com/115094562986465477143/posts/Di6RwCNKCrf, archived version at https://github.
com/ponyfoo/articles/blob/master/reference/ryan-dahl-rant-quote.md
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As an example application of the CHR.js module, our contribution includes an interactive

web-based tracer for CHR. This project, which has the name CHR.js-website provides a

graphical editor for Constraint Handling Rules. It displays the constraint store and several

tracing outputs in a user-friendly way. A public, hosted instance is online available at

http://chrjs.net.

In opposite to existing web applications that can be used to execute CHR in the browser –

namely WebCHR [Kae07] and Pengines [LW14] –, our contribution is a standalone HTML

website which does not require any server-side framework. The complete processing,

from compilation to execution of CHR, is done in the client’s web browser. This example

application therefore demonstrates the strengths of CHR.js very well.

In this chapter we first present the CHR.js-website application. Section 5.1 introduces

the user interface and features of the CHR Playground, which is the central page of the

project. In Section 5.2 we present its architecture, with a special focus on modifications

and concrete applications of the used CHR.js module. Because this thesis focusses on

the translation of CHR into JavaScript, we omit an in-depth look in anything related to the

user interface, that means the general website structure and the used HTML and CSS.

The readers interested in these technologies, can find more information in the project’s

sources (c.f. Appendix A).

5.1. The CHR Playground

The CHR.js-website provides an online playground to explore CHR. It is inspired by

collaborative code sharing platforms like JSFiddle2, JS Bin3 and RequireBin4. They

all have in common that their user interface is dominated by a large text field to work

on source code. Similar to this, our contribution consists of a webpage to edit CHR

programs and display relevant information like the current content of the constraint store

and tracing output.

2http://jsfiddle.net/
3http://jsbin.com/
4http://requirebin.com/
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5.1.1. Screenshots

Figure 5.1 presents a screenshot of the created website. On the left-hand side the code

editor is used to edit Constraint Handling Rules. This section can also be used to define

helper functions in native JavaScript in a special code block. This syntax is presented in

Section 5.2.1.

Figure 5.1.: Screenshot of chrjs.net with tracing enabled

The right-hand side contains all information related to the execution of the defined CHR

program: In the first block queries can be specified. The optional tracing output is

followed by a table which presents the current content of the constraint store.
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Figure 5.2 shows the mobile view of the CHR Playground. The user interface remains

usable even on small screens, so that CHR can be used from mobile phones as well.

5.1.2. Implementation Goals

Because the CHR Playground is heavily inspired by existing collaborative code editing

tools, we want to support similar use-cases. Our implementation goals are:

Real-time Compilation Using CHR.js there is no need to reload the webpage on each

change in the CHR source code. Instead our aim is to provide a coding experience

similar to local development. By compiling the CHR code instantly, the user should

be able to process new constraints without any further action.

Real-time Execution This leads to the next requirement: Just like the compilation does

not require a page reload, the new constraints should be added and processed

instantly.

Consistent Constraint Store By compiling changed CHR code instantly, it is possible

to loose the tight coupling of the code and the constraint store. Our aim is to be

able to change the code and constraint store independently.

Easy Sharing To allow an easy mechanism for collaboration, we want to integrate a

sharing service. If a CHR program is valid, a unique http://chrjs.net URL to

directly link to this program should be created.
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Figure 5.2.: Screenshot of chrjs.net in mobile view
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5.2. Architecture

The CHR.js-website uses Jekyll5 as a static site generator. With Jekyll it is possible to

use templates, for example for the top menu bar. At the end it still produces static HTML

sites, so no server-side language is needed.

5.2.1. Adapted Grammar

The most important component of the CHR Playground is the CHR.js module presented

in Chapter 4. However the specification of CHR rules is inverted: Instead of explicitly

call the chr template handler respectively function, we want to make the definition of

rules in the Playground as intuitive as possible. The CHR rules are the essential part, so

simply putting a rule like a ==> b in the code editor should be accepted.

On the other hand, if a ==> b becomes a valid expression in the Playground, we have

to provide a special syntax to define native JavaScript functions and expressions that

can be used along rules. This is achieved by the preamble, a JavaScript code block at

the very beginning of the rules. The syntax is inspired by PEG.js: JavaScript expressions

are encapsulated in {...}, a block of curly braces.

We therefore extend the general CHR.js grammar (c.f. Section 4.3.4) to work with

a given preamble. Instead of the Program rule, we define a new PEG element

ProgramWithPreamble. Its definition is presented in Listing 5.1.

Listing 5.1: Parsing Expression Grammar for the CHR Playground

1 ProgramWithPreamble

2 = __ Preamble? __

3 Program // defined in CHR.js grammar

4

5 Preamble

6 = ReplacementOpeningSymbol __

7 PreambleSource __

5Project website: http://jekyllrb.com/
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8 ReplacementClosingSymbol

9

10 PreambleSource

11 = SourceElements // defined in JavaScript grammar

12 / __ // allowed to be empty

5.2.2. Parallelization Using Web Workers

Both parsing and compilation of CHR rules as well as execution of a CHR program can

take some time. For source code which is not valid according to the grammar presented

in Section 5.2.1 the PEG.js parser is not even guaranteed to terminate. The same applies

for the execution of a CHR program. As illustrated in Section 4.4.3 a non-terminating

program can be easily defined.

Therefore we have to prevent blocking the browser’s event loop by non-terminating or

even prolonged processes. Because JavaScript is single-threaded, the user is not able

to interact with the website’s user interface until the execution has been finished. In

many cases this will crash the complete web browser.

Modern browsers thus provide a mean to run scripts in background threads: web workers.

They can be used for tasks which do not need to interact with the user interface. In our

contribution, we outsource two common and time-consuming tasks into web workers:

the parsing of user’s source code and the actual execution of the CHR program.

To separate these tasks, CHR.js provides the following browser-specific builds (in the

project’s /dist directory) to fit in as many architectures as possible:

chr.js (200 kB) The complete CHR.js module as a standalone file.

chr.min.js (135 kB) The minified version of chr.js.

chrparser.js (135 kB) A standalone module that exposes a single function to parse

strings according to the (adapted) CHR.js Parsing Expression Grammar.

chrparser.min.js (95 kB) The minified version of chrparser.js.

97



5. chrjs.net – Web-Based Tracing for CHR

chr-wop.js (40 kB) The CHR.js module without anything related to the parsing. Any

CHR.js function which expects a source string also works by directly providing the

AST object created by the parser.

Using the chr-wop.js and chrparser.min.js scripts, the parsing and execution

tasks have been outsourced to web workers. A JavaScript controller coordinates these

child processes and respawns a new instance as soon as it exceeds a specified time.

5.2.3. Limitations

The usage of web workers comes with some limitations. As mentioned before it is not

possible to interact with the website’s user interface. While this is not a typical use-case

for the CHR Playground, the restricted access to other global objects has more practical

relevance: As of yet, one can not use built-ins in CHR rules which need references to

the window, global or console object. In our experience, this currently prevents the

usage of JavaScript’s alert() and console.log() functions. Because these are in

particular functions often used in a testing environment, our implementation contains

workarounds. Unfortunately they are not supported by all major browsers so far.

5.3. Interactive Tracing

Some of the design decisions made in the development of the CHR.js module are based

on the needs of the CHR Playground: The onTry Breakpoints of Rules, introduced in

Section 4.2.4, were originally modelled as event emitters similar to the add and remove

events of the CHR.Store prototype. Because of the need for a tracer, which should

continue only if the user clicks a button, a non-blocking event handler is not sufficient.

Therefore all breakpoint functions receive a callback as their last parameter, which should

be called as soon as the execution is resumed.

The graphical tracer implemented in the CHR Playground currently highlights the used

rule and tried occurrence. Additionally the added and removed constraints are logged.
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The tracer supports two modes: It can be executed either manually, which means that the

user can pause and resume the execution of a CHR program with appropriate buttons or

in an auto-play mode where each execution step pauses a predefined amount of time. It

is possible to switch between these modes at any time.

With the help of the tracer it is even possible to execute originally non-terminating CHR

programs. They can easily be aborted from the user interface.

5.4. Future Work

Using web workers to run the CHR.js execution in separate thread leads to a consid-

eration we already formulated in Section 4.5.2: How can multiple CHR programs be

executed in parallel? To improve the performance of a web-based CHR systems, the

usage of web workers is an easy way to elude JavaScript’s single-thread execution cycle.

However this consideration is not necessary for the CHR Playground http://chrjs.

net: Its main focus is the easy exploration of CHR programs and their properties,

it is unlikely that the CHR.js-website project will be used for actual, CPU-intensive

calculations. More often it will be used to interactively execute small CHR programs.

To improve the user experience, the code editor should have built-in syntax highlighting

for CHR. The author of this work already started the development of a language extension

for the used graphical code editor CodeMirror. The used syntax to specify the syntax

highlighting of a new programming language is in fact another grammar definition.

Unfortunately CodeMirror does not support Parsing Expression Grammars so far. By

adding support for PEG we could easily integrate syntax highlighting for CHR.js into the

used online code editor.

5.5. Summary

This chapter presented the web-based CHR tracer http://chrjs.net. It allows the

specification and execution of Constraint Handling Rules directly in the web browser. It
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therefore has the potential to increase the popularity of CHR in general. It is also very

comfortable for users of existing CHR systems as they can easily adapt their existing

CHR programs CHR.js, because the CHR Playground is only a low threshold compared

to the installation requirements of other CHR systems.

We concentrated on the ideas and general architecture behind the example application.

A main goal for future improvements is the definition of syntax highlighting for CHR. From

this development other CHR system would benefit as well.
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We should forget about small efficiencies, say about 97% of the time: premature

optimization is the root of all evil. Yet we should not pass up our opportunities in that

critical 3%. A good programmer will not be lulled into complacency by such reasoning,

he will be wise to look carefully at the critical code; but only after that code has been

identified

— Donald Knuth, in The Art of Computer Programming (1968)

At the end of Chapter 4 we already looked into the execution time of our implementa-

tion. While in Section 4.5 the different call semantics using promises – sequential and

parallel – have been discussed, we want to challenge the performance of the CHR.js

runtime at all. Therefore in Section 6.2 we take up again the different implementations

techniques presented in Section 3.4. This is the basis for the decision, which execution
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model (synchronous/asynchronous or promises) fits best for a more efficient CHR.js

precompiler.

In Section 6.3.3 we present the basic compilation idea for a CHR.js precompiler. The

programs generated by this precompiler are compared to existing CHR systems. In

Section 6.4 the result of the benchmark is discussed.

6.1. Benchmark Setup

Before we present the results of several benchmarks, we want to describe the test set-up.

Our benchmark suite called CHR-Benchmarks is based on [WSD07] and the CCHR

implementation1. It can be used to compare the execution times of CHR systems with

regard to the problem size.

Installation and usage instructions can be found in Appendix C.3. We used the

CHR-Benchmarks suite to compare the different CHR systems as well as different

JavaScript implementation ideas.

The system versions were:

• JCHR: 1.5.1

• SWI-Prolog: 6.6.4

• CHR.js: 2.0, with node.js of version 4.0

• CCHR: (No version provided)

• C: GCC of version 4.84

All benchmarks are run on an Intel Core i7 9xx Dual Core CPU with 8 GB of RAM, using

Ubuntu Server 14.04.3 64bit (Linux Kernel 3.13.0). No other background jobs have been

executed.

Basically the benchmark suite executes a given command as often as possible within

a 10 seconds time slot. It measures the number of iterations as well as the average

execution time. The latter will be used to compare the different implementations.
1Copy available at https://svn.ulyssis.org/repos/sipa/cchr/

102

https://svn.ulyssis.org/repos/sipa/cchr/


6.2. Comparison of gcd(a,b) Implementations in JavaScript

6.2. Comparison of gcd(a,b) Implementations in JavaScript

In Section 3.4 we already examined different implementation ideas for the calculation of

the greatest common divisor. To recall, the presented techniques are:

• Iterative implementation (Listing 3.7)

• Recursive implementation (Listing 3.8)

• Asynchronous implementation (Listing 3.10)

• Asynchronous implementation with moderate use of setTimeout() (Listing 3.11)

• Implementation using promises (Listing 3.21, in Section 3.5.6)

Because the asynchronous implementation of Listing 3.10 is very similar to the recursive

implementation (the calculated result gets passed in a callback instead of directly

returned), it has very similar properties: comparable execution time and the problem of

exceeding the stack size very fast. Therefore we omit the asynchronous implementation

in our comparison.

The four implementations have been executed in order to calculate gcd(5,1000*N),

with N the problem size. The recursive implementation exceeds the stack size limit for N

= 60, which is why the 10 seconds limit never gets reached.

The results of the benchmarks are presented in Figure 6.1. As expected, the iterative

implementation is by far the fastest. The asynchronous implementation with mod-

erate use of setTimeout() is similar to the iterative implementation, because the

setTimeout() function is called only every 10000’th iteration. This number depends

on the system’s hardware capabilities.

The promise-based and recursive implementations are the slowest, with more than

four orders of magnitude difference to the iterative implementation. As a result, the

asynchronous implementation model used in CHR.js seems to be comfortable but not

efficient at all. With the use of the compilation scheme presented in Section 4.4.1, it is

not possible to be competitive with existing CHR systems.
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Figure 6.1.: Benchmarks of the different gcd(a,b) implementations in JavaScript

6.3. Precompile CHR.js Source Code

To improve the execution time, we created an ahead-of-time compiler for CHR.js code. It

takes JavaScript source code with embedded CHR.js rules and precompiles the rules

to native JavaScript. In this way, the translation process is invoked only once, whereas

CHR.js’ just-in-time compilation is executed for each call of the script.

In addition to this, the compilation scheme can be optimized, because unlike with

just-in-time compilation, all CHR rules are known at compilation time.

6.3.1. Babel – A JavaScript Transpiler

When ECMAScript 6 was released in June of 2015, some new language features

were already implemented in web browsers and even used in JavaScript projects in

production. This was only possible because of transpilers – programs, that replace

new language features by standardized, widely supported older ES5 syntax. The most
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popular JavaScript transpiler, Babel2, is widely adopted and as of today used by a large

number of companies, including Facebook, Yahoo and Apple.

We created a plugin for Babel called babel-plugin-chr. Its installation and usage instruc-

tions can be found in Appendix C.4. This plugin replaces the require(’chr’) and

new CHR() expressions as well as all applications of the chr() function respectively

template handler. As a result, the transpiled code does not contain any references to

CHR.js but instead directly contains all compiled CHR rules and the runtime components.

We do not get into detail about the plugin source codes here. It basically searches for

the expressions mentioned above in a given abstract syntax tree and replaces them by

optimized CHR.js source code.

6.3.2. Trampolines

As presented in Section 6.2, the usage of promises results in a large performance

decrease. We therefore avoid the usage of promises in our compilation scheme for the

precompiler.

Instead, an idea presented in [VWWSD08] is used: the usage of trampolines. In general,

a trampoline is a loop that iteratively invokes functions. That means, a global loop asks

for the next to be performed function and executes it. The program is finished as soon

as there is no function to be invoked.

Basically this results in a user-defined stack. The global loop mentioned before asks for

elements on the stack, while functions can add new ones. We adapt this mechanism to

create a global stack of constraints that should be processed. In this way the functions

generated by the compiler simply add elements to the stack but do not need to be called

recursive.

The basic idea of this trampoline is presented in Listing 6.1.

2Project Homepage: http://babeljs.io/
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Listing 6.1: CHR trampoline, used by babel-plugin-chr

1 var chr = {

2 Store: new Store(),

3 Tells: []

4 }

5

6 function tell () {

7 var current

8 while (chr.Tells.length > 0) {

9 current = chr.Tells.pop()

10 if (current.type === ’constraint’) {

11 chr.Store.add(current.constraint)

12 }

13 dispatchTell(current)(current)

14 }

15 }

In chr.Tells an array of constraints that have to be handled is stored. It behaves as a

classical stack: new constraints are added to the top of the stack, while the top-most is

used as the next element. By using this mechanism, we also ensure the correctness

according to the refined operational semantics ωr: As soon as a constraint is added as

part of the body of a rule, it is processed immediately.

However, this requires to save the current program state as the next stack element equally.

We therefore define a new JavaScript prototype State as presented in Listing 6.2. It

contains the currently examined constraint as well as information about the program

properties, that means which occurrence handlers have been executed (step), which

are the current partner constraints (lookup) and what is the variable scope. With these

informations it is possible to return to continue a previous step in the execution.
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Listing 6.2: Definition of the State prototype

1 function State (constraint, type, step, lookup, scope) {

2 this.type = type

3 this.constraint = constraint

4 this.step = step

5 this.lookup = lookup

6 this.scope = scope

7 }

6.3.3. Basic Compilation Scheme using Trampolines

The compilation scheme is similar to the one using promises in Section 4.4.1. Instead of

promise handling we manage the trampoline stack CHR.Tells.

Listing 6.3: Trampoline compilation scheme for occurrence ci

1 function ci_ji (current) {

2 var lookup, scope, constraints

3

4 // check if this is an ’intermediate’ state, which

5 // means we have to restore the State entities

6 if (current.type === ’intermediate’) {

7 lookup = current.lookup

8 } else {

9 // otherwise the Lookup for partner constraints

10 // have to be created

11 lookup = new Lookup(

12 chr,

13 [

14 { name: ’c1, arity: a1 },

15 ...

16 { name: ’ci−1’, arity: ai−1 },
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17 { constraint: current.constraint },

18 { name: ’ci+1’, arity: ai+1 },

19 ...

20 { name: ’cn’, arity: an }

21 ]

22 )

23 }

24

25 // bind arguments of the current constraint

26 scope = {

27 Arg_1: current.constraint.args[0],

28 ...

29 Arg_ai: current.constraint.args[ai-1]

30 }

31

32 if (/* guards that depend only on Arg_1 ... Arg_ai */) {

33 // get next permutation of partner constraints

34 while (constraints = lookup.next()) {

35 // bind variables of partner constraints

36 scope.C_0_0 = constraints[0].args[0]

37 scope.C_0_1 = constraints[0].args[1]

38 ...

39 scope.C_n_an = constraints[n− 1].args[an]

40

41 if (!(/* remaining guards */)) {

42 continue

43 }

44

45 // kill the removed constraints

46 constraints[k + 1].kill()

47 ...
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48 constraints[n].kill()

49

50 // save current state

51 chr.Tells.push(

52 saveState(current.constraint, an, lookup, scope)

53 )

54

55 // add body constraints

56 chr.Tells.push(

57 constraintState(B1),

58 ...

59 constraintState(Bl)

60 )

61

62 // continue with these constraints

63 return true

64 }

65 }

66 }

The used saveState and constraintState functions generate the appropriate

State instances. The referenced Lookup prototype is similar to the Helper.forEach

function. For better optimizations in the JavaScript runtime environment we use a new

prototype here.

For each constraint, a new function is created that executes all occurrence handlers that

are generated according to the previous scheme.

The generated precompiled source code for the gcd/1 example of Listing 4.3 is pre-

sented in Appendix B.4. Although it does not use promises, we generated a then-able

function which imitates a promise. As a result, the generated code can be used similar to

normal CHR.js code. With one exception: All built-ins have to be synchronous, because

the occurrence handler now have to be blocking.
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6.4. Benchmark Result

The generated code using trampolines is significant faster than the promise-based

implementation. We compared our solution to existing CHR systems, executing the

gcd/1 problem on each. The problem to calculate the greatest common divisor fits

very well as a test, because it is a linear program involving at most two constraints. Our

implementation goal was to generate fast occurrence handlers – runtime components

for better constraint lookup or propagation history indexing can easily be changed.
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Figure 6.2.: Benchmark for gcd/1

Figure 6.2 illustrates the benchmark results. The precompiled CHR.js implementation in

node.js is at the beginning similar to JCHR. With bigger problem sizes, it is faster than

SWI-Prolog. All in all it seems to be competitive with existing CHR systems. This is in

particular remarkable, as it translates CHR into JavaScript, which is just-in-time compiled

by V8 as well. In opposite to JCHR and CCHR, there is no ahead-of-time compilation of

this JavaScript code at all.
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6.5. Summary

In this chapter we introduced an alternative compilation scheme based on trampolines.

Because promises are a relative slow mean to handle asynchronous functions, we

switched to a global stack CHR.Tells to store new constraints and intermediate exe-

cution states. This prevents exceeding the stack size because of recursive functions,

but it also loses the ability to use asynchronous built-ins in the rule’s guard or body. As

second disadvantage, the improved execution time comes with the price of losing the

flexibility to dynamically change the rule set.

Our implementation is comparable to the existing SWI-Prolog CHR system. The compiled

versions using JCHR and CCHR are still three orders of magnitude faster than our

precompiled version.
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Conclusion

In this chapter the results of the thesis are summarized and future improvements of the

CHR.js software package are discussed.

7.1. Summary

In this work we presented the two programming languages Constraint Handling Rules

and JavaScript. Our aim was to create a new system for the usage of CHR in JavaScript.

Therefore we introduced the syntax and semantics of CHR in Chapter 2, along with the

basic compilation schemes for existing CHR(Prolog), CHR(Java) and CHR(C) systems.

In Chapter 3 we gave an introduction in the target programming language JavaScript.

We defined the targeted JavaScript runtime environments and presented its execution

cycle, the event loop. Unlike other existing CHR systems, this leads to the differentiation
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whether a function is synchronous or asynchronous. These two choices will also

dominate our implementation approaches, because the original CHR.js library will

completely will support both type of functions, whereas its precompiler can be only used

with synchronous functions for better performance.

This Chapter also includes different example definitions for the gcd(a,b) program.

They are used to evaluate the different techniques to structure possibly asynchronous

functions. At the end of Chapter 3 multiple JavaScript constructs are introduced, which

are the basis for the compiler construction.

Chapter 4 contains the main part of our contribution: The definition of the CHR.js module,

a customizable CHR(JavaScript) interpreter. All program properties are defined using

generalized JavaScript prototypes, which allows the modification of CHR rules even at

runtime. The promise-based compilation scheme has been presented in Section 4.4.1.

An example application that uses most of the features provided by CHR.js is the web-

based tracing utility chrjs.net, which was presented in Chapter 5. It allows the

compilation and execution of CHR in a CHR Playground, a standalone HTML-only

website.

In the last Chapter 6 we introduced a second compilation scheme based on trampolines

instead of promises. Although it is reasonable faster than the CHR.js JIT-compiled

version, it loses most of its features. With modifications its execution time is comparable

to the one SWI-Prolog.

7.2. Conclusion

The precompiled version of CHR.js has been highly optimized against the V8 JavaScript

engine that is used in node.js and Google Chrome. We used several tools to generate

code, that can be optimized by V8’s just-in-time JavaScript compilation.

Figure 7.1 shows the CPU file recorded by the Google Developer Tools to track the

execution of the generated gcd/1 code. All functions have been rewritten to be able to

be optimized using V8’s hot-function detection resulting in very efficient code. Even with
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Figure 7.1.: Screenshot of the Google Developer Tools

these optimizations our implementation is just competitive with SWI-Prolog. The CHR

systems JCHR and CCHR are faster so far.

However the implementation goals listed performance only as the last point. We wanted

to create a feature-rich CHR(JavaScript) system which can be used in browser-based

environments – and CHR.js fits very well. With the abilities to even modify CHR rules

at runtime, it can be basis for further investigations of CHR properties. Especially

examining properties of running CHR in parallel as presented in Section 4.5 seems

to be worth performance decreases resulting from the promises-based execution ap-

proach. Our contribution focuses on user-friendliness and expressiveness instead of

high performance.

7.3. Future Work

As a result of this considerations, not the improvement of the compilation process is of

the highest priority when it comes to future improvements. To make better use of the

CHR.js system, we suggest the implementation of syntax highlighting for CodeMirror,

the online code editor for the CHR Playground. From this highlighting several other (even

offline) editors could profit when developing CHR.

It is also worth considering the unification of the two presented compilation schemes.

Two approaches seem reasonable: The precompiler could analyse the rules to decide
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whether they contain only synchronous or asynchronous functions. This could result in a

unified compilation scheme. However detecting whether a function is synchronous or

asynchronous is something no static analyse can achieve so far, so this would result in a

more explicit syntax for CHR.js.

The second method is the lifting of precompiled CHR.js code: It is worth considering, that

CHR.js provides a mean to import already precompiled CHR rules in its JIT-compilated

runtime environment. In this way, one could use precompiled CHR.js source code for

better performance and import it to CHR.js if the modification of rules is needed.

116



A
Available Sources

The sources of this thesis and the created implementations are provided as a CD along

with this thesis. Additionally the sources of the implementations are available online

at GitHub. They are released under the terms of the license specified in the project’s

repository or if not specified, under the MIT license.

Thesis The thesis is located in the /thesis directory. It contains the LATEX source files.

The base document is thesis.tex. Make sure to install all packages needed for

compilation:

• tikz

• mathdots

• chngcntr
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Implementation All sources of the CHR.js module and the created benchmark and

compilation tools are located at the /implementation directory of the CD. They

are additionally released as open source. For an easy usage, all but the benchmark

tools have been published on npm, the de-facto package manager for node.js.

CHR.js The CHR.js module is located at /implementation/CHR.js. It is also

available at GitHub at https://github.com/fnogatz/CHR.js. On npm,

which only support lowercase letters in names, it has been named chr

(https://www.npmjs.com/package/chr).

In addition to the usage guide given in Chapter 4, a manual with further usage

and developments instructions is provided in Appendix C.1.

CHR.js Babel Plugin The JavaScript module that pre-compiles CHR.js source

code, as presented in Chapter 6, is called babel-plugin-chr. This

follows the common naming convention for Babel plugins. It is located

at /implementation/babel-plugin-chr and published on npm. Its

GitHub repository is located at

https://github.com/fnogatz/babel-plugin-chr.

chrjs.net Sources The source code for the web-based CHR.js tracer (Chapter 5)

currently located at http://chrjs.net is put into the

/implementation/CHR.js-website directory. Its GitHub repository is lo-

cated at https://github.com/fnogatz/CHR.js-website. It depends

on the static site generator jekyll. The CD contains a compiled version in the

/implementation/chrjs.net-static directory.

CHR Benchmarks The benchmark tool used for the evaluation presented in Chap-

ter 6 are located at /implementation/CHR-Benchmarks. Because it con-

tains sources of CHR systems of other authors, it is not yet released on

GitHub. However, the publishing is intended in future.
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B
Code Examples

In this appendix we present some important functions and their output in detail.

B.1. Example Usage of Helper.forEach

The following Listing B.1 illustrates the behaviour of the runtime helper function

Helper.forEach as introduced in section 4.2.6.

Listing B.1: Example Usage of Helper.forEach

1 var forEach = requ i re ( ’ chr / runt ime ’ ) . Helper . forEach

2

3 f u n c t i o n i t e r a t o r C a l l b a c k ( permutat ion , next ) {

4 console . log ( permutat ion )

5 next ( )
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6 }

7

8 f u n c t i o n endCallback ( ) {

9 console . log ( ’ F in ished execut ion ’ )

10 }

11

12 forEach ( [ [ 1 , 2 ] , [ 3 ] , [ 4 , 5 , 6 ] ] , i t e r a t o r C a l l b a c k , endCallback )

13

14 / / Resul t :

15 /∗ [ ’ 1 ’ , ’ 3 ’ , ’ 4 ’ ]

16 [ ’ 1 ’ , ’ 3 ’ , ’ 5 ’ ]

17 [ ’ 1 ’ , ’ 3 ’ , ’ 6 ’ ]

18 [ ’ 2 ’ , ’ 3 ’ , ’ 4 ’ ]

19 [ ’ 2 ’ , ’ 3 ’ , ’ 5 ’ ]

20 [ ’ 2 ’ , ’ 3 ’ , ’ 6 ’ ]

21 Fin ished execut ion ∗ /

B.2. PEG.js Parsed Program gcd/1

The following Listing 4.12 shows the object created by the PEG.js parser for the gcd/1

program of Listing 4.3. It uses the grammar introduced in section 4.3.4.

Listing B.2: Object generated by the PEG.js Parser

1 {

2 " type " : " Program " ,

3 " body " : [

4 {

5 " type " : " S i m p l i f i c a t i o n R u l e " ,

6 " kept " : [ ] ,

7 " removed " : [

8 {

9 " type " : " Cons t ra in t " ,

10 "name" : " gcd " ,

11 " parameters " : [
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12 { " type " : " L i t e r a l " , " value " : 0 , " o r i g i n a l " : " 0 " }

13 ] ,

14 " o r i g i n a l " : " gcd ( 0 ) " ,

15 " l o c a t i o n " : {

16 " s t a r t " : { " o f f s e t " : 7 , " l i n e " : 1 , " column " : 8 } ,

17 " end " : { " o f f s e t " : 13 , " l i n e " : 1 , " column " : 14 }

18 } ,

19 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

20 }

21 ] ,

22 " body " : [

23 {

24 " type " : " Cons t ra in t " , "name" : " t r ue " ,

25 " parameters " : [ ] , " o r i g i n a l " : " t r ue " ,

26 " a r i t y " : 0 , " f u n c t o r " : " t r ue /0 "

27 }

28 ] ,

29 " guard " : [ ] ,

30 " c o n s t r a i n t s " : [ " gcd /1 " , " t r ue /0 " ] ,

31 " r " : 0 ,

32 " head " : [

33 {

34 " type " : " Cons t ra in t " ,

35 "name" : " gcd " ,

36 " parameters " : [

37 { " type " : " L i t e r a l " , " value " : 0 , " o r i g i n a l " : " 0 " }

38 ] ,

39 " o r i g i n a l " : " gcd ( 0 ) " ,

40 " l o c a t i o n " : {

41 " s t a r t " : { " o f f s e t " : 7 , " l i n e " : 1 , " column " : 8 } ,

42 " end " : { " o f f s e t " : 13 , " l i n e " : 1 , " column " : 14 }

43 } ,

44 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

45 }

46 ] ,
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47 " replacements " : [ ] ,

48 "name" : " gcd1 " ,

49 " o r i g i n a l " : " gcd1 @ gcd ( 0 ) <=> t rue " ,

50 " l o c a t i o n " : {

51 " s t a r t " : { " o f f s e t " : 0 , " l i n e " : 1 , " column " : 1 } ,

52 " end " : { " o f f s e t " : 22 , " l i n e " : 1 , " column " : 23 }

53 }

54 } ,

55 {

56 " type " : " SimpagationRule " ,

57 " kept " : [

58 {

59 " type " : " Cons t ra in t " ,

60 "name" : " gcd " ,

61 " parameters " : [

62 { " type " : " I d e n t i f i e r " , "name" : "N" , " o r i g i n a l " : "N" }

63 ] ,

64 " o r i g i n a l " : " gcd (N) " ,

65 " l o c a t i o n " : {

66 " s t a r t " : { " o f f s e t " : 30 , " l i n e " : 2 , " column " : 8 } ,

67 " end " : { " o f f s e t " : 36 , " l i n e " : 2 , " column " : 14 }

68 } ,

69 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

70 }

71 ] ,

72 " removed " : [

73 {

74 " type " : " Cons t ra in t " ,

75 "name" : " gcd " ,

76 " parameters " : [

77 { " type " : " I d e n t i f i e r " , "name" : "M" , " o r i g i n a l " : "M" }

78 ] ,

79 " o r i g i n a l " : " gcd (M) " ,

80 " l o c a t i o n " : {

81 " s t a r t " : { " o f f s e t " : 39 , " l i n e " : 2 , " column " : 17 } ,
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82 " end " : { " o f f s e t " : 45 , " l i n e " : 2 , " column " : 23 }

83 } ,

84 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

85 }

86 ] ,

87 " body " : [

88 {

89 " type " : " Cons t ra in t " ,

90 "name" : " gcd " ,

91 " parameters " : [

92 {

93 " type " : " BinaryExpression " ,

94 " opera tor " : "−" ,

95 " l e f t " : {

96 " type " : " I d e n t i f i e r " ,

97 "name" : "M"

98 } ,

99 " r i g h t " : {

100 " type " : " I d e n t i f i e r " ,

101 "name" : "N"

102 } ,

103 " o r i g i n a l " : "M−N"

104 }

105 ] ,

106 " o r i g i n a l " : " gcd (M−N) " ,

107 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

108 }

109 ] ,

110 " guard " : [

111 {

112 " type " : " BinaryExpression " ,

113 " opera tor " : "< " ,

114 " l e f t " : { " type " : " L i t e r a l " , " value " : 0 } ,

115 " r i g h t " : { " type " : " I d e n t i f i e r " , "name" : "N" }

116 } ,
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117 {

118 " type " : " BinaryExpression " ,

119 " opera tor " : " <=" ,

120 " l e f t " : { " type " : " I d e n t i f i e r " , "name" : "N" } ,

121 " r i g h t " : { " type " : " I d e n t i f i e r " , "name" : "M" }

122 }

123 ] ,

124 " c o n s t r a i n t s " : [ " gcd /1 " ] ,

125 " r " : 1 ,

126 " head " : [

127 {

128 " type " : " Cons t ra in t " ,

129 "name" : " gcd " ,

130 " parameters " : [

131 { " type " : " I d e n t i f i e r " , "name" : "N" , " o r i g i n a l " : "N" }

132 ] ,

133 " o r i g i n a l " : " gcd (N) " ,

134 " l o c a t i o n " : {

135 " s t a r t " : { " o f f s e t " : 30 , " l i n e " : 2 , " column " : 8 } ,

136 " end " : { " o f f s e t " : 36 , " l i n e " : 2 , " column " : 14 }

137 } ,

138 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "

139 } ,

140 {

141 " type " : " Cons t ra in t " ,

142 "name" : " gcd " ,

143 " parameters " : [

144 { " type " : " I d e n t i f i e r " , "name" : "M" , " o r i g i n a l " : "M" }

145 ] ,

146 " o r i g i n a l " : " gcd (M) " ,

147 " l o c a t i o n " : {

148 " s t a r t " : { " o f f s e t " : 39 , " l i n e " : 2 , " column " : 17 } ,

149 " end " : { " o f f s e t " : 45 , " l i n e " : 2 , " column " : 23 }

150 } ,

151 " a r i t y " : 1 , " f u n c t o r " : " gcd /1 "
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152 }

153 ] ,

154 " replacements " : [ ] ,

155 "name" : " gcd2 " ,

156 " o r i g i n a l " :

157 " gcd2 @ gcd (N) \ gcd (M) <=> 0 < N, N <= M | gcd (M−N) " ,

158 " l o c a t i o n " : {

159 " s t a r t " : { " o f f s e t " : 23 , " l i n e " : 2 , " column " : 1 } ,

160 " end " : { " o f f s e t " : 74 , " l i n e " : 2 , " column " : 52 }

161 }

162 }

163 ]

164 }

B.3. Generated Code for the Occurrence Handlers of gcd/1

The following Listings present the code generated by the CHR.js compiler. The result is

based on the general compilation scheme presented in section 4.4.1. The numbering of

the occurrences follows the head normal form (c.f. 2.5.1).

Listing B.3: Generated code for gcd[1]

1 f u n c t i o n ( cons t r a i n t , replacements ) {

2 var s e l f = th is

3

4 i f ( c o n s t r a i n t . args [ 0 ] !== 0) {

5 return

6 }

7

8 var c o n s t r a i n t I d s = [

9 [ c o n s t r a i n t . i d ]

10 ]

11

12 return new Promise ( f u n c t i o n ( resolve , r e j e c t ) {

13 s e l f . Helper . forEach ( c o n s t r a i n t I d s ,
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14 f u n c t i o n i t e r a t e C o n s t r a i n t ( ids , ca l l back ) {

15 i f ( ! s e l f . Store . a l l A l i v e ( i ds ) )

16 return ca l l back ( )

17

18 i f ( s e l f . H i s to r y . has ( " gcd1 " , i ds ) )

19 return ca l l back ( )

20

21 s e l f . H i s to r y . add ( " gcd1 " , i ds )

22 s e l f . Store . k i l l ( i ds [ 0 ] )

23

24 Promise . reso lve ( )

25 . then ( f u n c t i o n ( ) {

26 ca l l back ( )

27 } )

28 . catch ( f u n c t i o n ( ) {

29 r e j e c t ( )

30 } )

31 } , reso lve )

32 } )

33 }

Listing B.4: Generated code for gcd[2]

1 f u n c t i o n ( cons t r a i n t , replacements ) {

2 var s e l f = th is

3

4 var M = c o n s t r a i n t . args [ 0 ]

5

6 var c o n s t r a i n t I d s = [

7 s e l f . Store . lookup ( " gcd " , 1)

8 , [ c o n s t r a i n t . i d ]

9 ]

10

11 return new Promise ( f u n c t i o n ( resolve , r e j e c t ) {

12 s e l f . Helper . forEach ( c o n s t r a i n t I d s ,

13 f u n c t i o n i t e r a t e C o n s t r a i n t ( ids , ca l l back ) {
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14 i f ( ! s e l f . Store . a l l A l i v e ( i ds ) )

15 return ca l l back ( )

16

17 i f ( s e l f . H i s to r y . has ( " gcd2 " , i ds ) )

18 return ca l l back ( )

19

20 var N = s e l f . Store . args ( ids [ 0 ] ) [ 0 ]

21

22 var guards = [

23 new Promise ( f u n c t i o n ( s , j ) { (0 < N) ? s ( ) : j ( ) } )

24 , new Promise ( f u n c t i o n ( s , j ) { (N <= M) ? s ( ) : j ( ) } )

25 ]

26

27 Promise . a l l ( guards )

28 . then ( f u n c t i o n ( ) {

29 s e l f . H i s to r y . add ( " gcd2 " , i ds )

30 s e l f . Store . k i l l ( i ds [ 1 ] )

31

32 Promise . reso lve ( )

33 . then ( f u n c t i o n ( ) {

34 return s e l f . gcd (M − N)

35 } )

36 . then ( f u n c t i o n ( ) {

37 ca l l back ( )

38 } )

39 . catch ( f u n c t i o n ( ) {

40 r e j e c t ( )

41 } )

42 } )

43 . catch ( f u n c t i o n ( ) {

44 ca l l back ( )

45 } )

46 } , reso lve )

47 } )

48 }
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Listing B.5: Generated code for gcd[3]

1 f u n c t i o n ( cons t r a i n t , replacements ) {

2 var s e l f = th is

3

4 var N = c o n s t r a i n t . args [ 0 ]

5

6 var c o n s t r a i n t I d s = [

7 [ c o n s t r a i n t . i d ]

8 , s e l f . Store . lookup ( " gcd " , 1)

9 ]

10

11 return new Promise ( f u n c t i o n ( resolve , r e j e c t ) {

12 s e l f . Helper . forEach ( c o n s t r a i n t I d s ,

13 f u n c t i o n i t e r a t e C o n s t r a i n t ( ids , ca l l back ) {

14 i f ( ! s e l f . Store . a l l A l i v e ( i ds ) )

15 return ca l l back ( )

16

17 i f ( s e l f . H i s to r y . has ( " gcd2 " , i ds ) )

18 return ca l l back ( )

19

20 var M = s e l f . Store . args ( ids [ 1 ] ) [ 0 ]

21

22 var guards = [

23 new Promise ( f u n c t i o n ( s , j ) { (0 < N) ? s ( ) : j ( ) } )

24 , new Promise ( f u n c t i o n ( s , j ) { (N <= M) ? s ( ) : j ( ) } )

25 ]

26

27 Promise . a l l ( guards )

28 . then ( f u n c t i o n ( ) {

29 s e l f . H i s to r y . add ( " gcd2 " , i ds )

30 s e l f . Store . k i l l ( i ds [ 1 ] )

31

32 Promise . reso lve ( )

33 . then ( f u n c t i o n ( ) {

34 return s e l f . gcd (M − N)
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35 } )

36 . then ( f u n c t i o n ( ) {

37 ca l l back ( )

38 } )

39 . catch ( f u n c t i o n ( ) {

40 r e j e c t ( )

41 } )

42 } )

43 . catch ( f u n c t i o n ( ) {

44 ca l l back ( )

45 } )

46 } , reso lve )

47 } )

48 }

B.4. Precompiled Code for gcd/1

The following Listing shows the code generated by the babel-plugin-chr precompiler

for CHR.js. The result is based on the compilation scheme presented in Section 6.3.3.

Listing B.6: Precompiled code for gcd/1

1 f u n c t i o n _chr ( ) {

2 " use s t r i c t " ;

3

4 /∗ ∗
5 . . . s t a t i c implementat ion f o r CHR runt ime components . . .

6 ∗ /

7

8 f u n c t i o n State ( cons t r a i n t , type , step , lookup , scope ) {

9 th is . type = type

10 th is . c o n s t r a i n t = c o n s t r a i n t

11 th is . s tep = step

12 th is . lookup = lookup

13 th is . scope = scope
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14 }

15

16 f u n c t i o n saveState ( cons t ra i n t , step , lookup , scope ) {

17 return new State ( cons t r a i n t , ’ i n te rmed ia te ’ , step , lookup , scope )

18 }

19

20 f u n c t i o n c o n s t r a i n t S t a t e ( c o n s t r a i n t ) {

21 return new State ( cons t r a i n t , ’ c o n s t r a i n t ’ , null , null , nul l )

22 }

23

24 f u n c t i o n t e l l ( ) {

25 var cu r ren t

26 while ( chr . T e l l s . leng th > 0) {

27 cu r ren t = chr . T e l l s . pop ( )

28 i f ( cu r ren t . type === ’ c o n s t r a i n t ’ ) {

29 chr . Store . add ( cu r ren t . c o n s t r a i n t )

30 }

31 d i s p a t c h T e l l ( cu r ren t ) ( cu r ren t )

32 }

33 }

34

35 f u n c t i o n d i s p a t c h T e l l ( cu r ren t ) {

36 switch ( cu r ren t . c o n s t r a i n t . f u n c t o r ) {

37 case ’ gcd /1 ’ :

38 return gcd_1

39 break

40 }

41 }

42

43 / / c reates a promise− l i k e " then−able " f u n c t i o n

44 f u n c t i o n thenable ( ) {

45 return {

46 then : f u n c t i o n ( cb ) {

47 cb ( )

48 return thenable ( )
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49 }

50 }

51 }

52

53 var chr = {

54 Store : new Store ( ) ,

55 Functors : {

56 ’ gcd /1 ’ : true

57 } ,

58 T e l l s : [ ] ,

59 gcd : gcd

60 }

61

62 f u n c t i o n gcd ( ) {

63 var l = arguments . leng th

64 var args = new Array ( l )

65 for ( var i = 0 ; i < l ; i ++) args [ i ] = arguments [ i ] ;

66

67 var a r i t y = args . leng th ;

68 var c o n s t r a i n t = new Cons t ra in t ( ’ gcd ’ , a r i t y , args )

69

70 chr . T e l l s . push ( c o n s t r a i n t S t a t e ( c o n s t r a i n t ) )

71 t e l l ( )

72

73 return thenable ( )

74 }

75

76 f u n c t i o n gcd_1_0 ( cu r ren t ) {

77 i f ( cu r ren t . type === ’ i n te rmed ia te ’ ) {

78 cu r ren t . type = ’ c o n s t r a i n t ’

79 }

80

81 i f ( cu r ren t . c o n s t r a i n t . args [ 0 ] === 0) {

82 cu r ren t . c o n s t r a i n t . k i l l ( )

83 return true
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84 }

85 }

86

87 f u n c t i o n gcd_1_1 ( cu r ren t ) {

88 var lookup , c o n s t r a i n t s

89 i f ( cu r ren t . type === ’ i n te rmed ia te ’ ) {

90 cu r ren t . type = ’ c o n s t r a i n t ’

91 lookup = cu r ren t . lookup

92 } else {

93 lookup = new Lookup (

94 chr ,

95 [

96 { name : ’ gcd ’ , a r i t y : 1 } ,

97 { c o n s t r a i n t : cu r ren t . c o n s t r a i n t }

98 ]

99 )

100 }

101

102 while ( c o n s t r a i n t s = lookup . next ( ) ) {

103 i f ( gcd_1_1_h0 ( cur ren t , c o n s t r a i n t s ) ) {

104 return true

105 }

106 }

107 }

108

109 f u n c t i o n gcd_1_1_h0 ( cur ren t , c o n s t r a i n t s ) {

110 var scope = {

111 N: c o n s t r a i n t s [ 0 ] . args [ 0 ] ,

112 M: cu r ren t . c o n s t r a i n t . args [ 0 ]

113 }

114

115 i f ( ! ( 0 < scope .N && scope .N <= scope .M) ) {

116 return

117 }

118 cu r ren t . c o n s t r a i n t . k i l l ( )
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119

120 chr . T e l l s . push ( c o n s t r a i n t S t a t e (

121 new Cons t ra in t ( ’ gcd ’ , 1 , [ scope .M−scope .N ] )

122 ) )

123 return true

124 }

125

126 f u n c t i o n gcd_1_2 ( cu r ren t ) {

127 var lookup , scope , c o n s t r a i n t s

128 i f ( cu r ren t . type === ’ i n te rmed ia te ’ ) {

129 lookup = cu r ren t . lookup

130 } else {

131 lookup = new Lookup (

132 chr ,

133 [

134 { c o n s t r a i n t : cu r ren t . c o n s t r a i n t } ,

135 { name : ’ gcd ’ , a r i t y : 1 }

136 ]

137 )

138 }

139

140 scope = {

141 N: cu r ren t . c o n s t r a i n t . args [ 0 ]

142 }

143

144 i f (0 < scope .N) {

145 while ( c o n s t r a i n t s = lookup . next ( ) ) {

146 scope .M = c o n s t r a i n t s [ 1 ] . args [ 0 ]

147

148 i f ( ! ( scope .N <= scope .M) ) {

149 continue

150 }

151 c o n s t r a i n t s [ 1 ] . k i l l ( )

152

153 / / save cu r ren t s t a t e
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154 chr . T e l l s . push (

155 saveState ( cu r ren t . cons t r a i n t , 2 , lookup , scope ) ,

156 c o n s t r a i n t S t a t e (

157 new Cons t ra in t ( ’ gcd ’ , 1 , [ scope .M−scope .N ] )

158 )

159 )

160

161 / / cont inue wi th these c o n s t r a i n t s

162 return true

163 }

164 }

165 }

166

167 f u n c t i o n gcd_1 ( cu r ren t ) {

168 i f ( cu r ren t . type !== ’ i n te rmed ia te ’

169 | | cu r ren t . step === 0) {

170 i f ( gcd_1_0 ( cu r ren t ) ) {

171 return

172 }

173 }

174

175 i f ( cu r ren t . type !== ’ i n te rmed ia te ’

176 | | cu r ren t . step === 1) {

177 i f ( gcd_1_1 ( cu r ren t ) ) {

178 return

179 }

180 }

181

182 i f ( cu r ren t . type !== ’ i n te rmed ia te ’

183 | | cu r ren t . step === 2) {

184 i f ( gcd_1_2 ( cu r ren t ) ) {

185 return

186 }

187 }

188 }
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189

190 return chr

191 }

192

193 var chr = _chr ( )
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User Manuals

In this appendix there are the user manuals for the created libraries and tools. In every

project’s directory there is an additional file README.md with a short installation and

usage instructions. In case the usage was already explained in the main part of this

work, we quit it here.

C.1. CHR.js

The CHR.js module and its usage was presented in Chapter 4.

C.1.1. Installation

CHR.js can be used in node.js as well as in browser environments.
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node.js

The module has been published on npm under the name chr. It requires node.js as of

version 4.0 and higher. It can be installed using npm with the following command:

1 npm install chr

Then the CHR constructor can be loaded via:

1 var CHR = require(’chr’)

Browser Environments

CHR.js provides pre-bundled and minified browser builds (in the project’s /dist direc-

tory):

chr.js (200 kB) The complete CHR.js module as a standalone file.

chr.min.js (135 kB) The minified version of chr.js.

chrparser.js (135 kB) A standalone module that exposes a single function to parse

strings according to the (adapted) CHR.js Parsing Expression Grammar.

chrparser.min.js (95 kB) The minified version of chrparser.js.

chr-wop.js (40 kB) The CHR.js module without anything related to the parsing. Any

CHR.js function which expects a source string also works by directly providing the

AST object created by the parser.

To use the module(s), the file(s) must be placed in the <head> part of the HTML

document, for example:

1 <script src="chr.min.js"></script>

The bundled files chr.js, chr.min.js and chr-wop.js expose the CHR constructor

to the global namespace. To avoid naming clash with an existing variable of this name,

CHR.js comes with a compatibility mode:
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1 var newName = CHR.noConflict()

An very basic example website using CHR.js is provided in /dist/index.html.

C.1.2. Usage Example with node.js

The following CHR rule generates all Fibonacci numbers upto a given index Max as

constraints of the form fib(Number,Value):

1 upto(Max), fib(A,AV), fib(B,BV) ==>

2 B === A+1, B < Max | fib(B+1,AV+BV)

The CHR rule can be used in JavaScript after declaring it via the ‘chr()‘ function. This is

illustrated by the following example which illustrates the usage of CHR.js in the node.js

REPL.

1 var CHR = require(’chr’) // load the module

2 var chr = CHR() // create new solver

3

4 // add the rule

5 chr(’upto(Max), fib(A,AV), fib(B,BV) ==> \

6 B === A+1, B < Max | fib(B+1,AV+BV)’)

7

8 console.log(chr.Store.toString()) // print the content of the

9 // constraint store

10 /* results in:

11 (empty)

12 */

13

14 Promise.all([

15 chr.fib(1,1), // the first Fibonacci is 1

16 chr.fib(2,1) // the second is 1
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17 ])

18

19 console.log(chr.Store.toString()) // both have been stored

20 /* results in:

21 ID Constraint

22 -- ----------

23 1 fib(1,1)

24 2 fib(2,1)

25 */

26

27 // now generate the Fibonaccis upto the 5th element

28 chr.upto(5).then(function () {

29 console.log(chr.Store.toString())

30 })

31 /* results in:

32 ID Constraint

33 -- ----------

34 1 fib(1,1)

35 2 fib(2,1)

36 3 upto(5)

37 4 fib(3,2)

38 5 fib(4,3)

39 6 fib(5,5)

40 */

C.1.3. Tests

CHR.js was created following the test-driven development approach. The correctness of

CHR.js is ensured by currently more than 400 defined tests.
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The tests can only be executed with node.js. The test suite is given in the /test

directory. The tests can be started with:

1 npm run tape

The output follows the Test Anything Protocol (TAP).

C.2. CHR.js-website

The web-based CHR tracer introduced in Chapter 5 uses the static site generator Jekyll1.

Using this generator, the CHR Playground can be easily deployed on GitHub using the

gh-pages branch. If so, the CNAME file in the root directory has to be adjusted to point

to the correct domain name.

The static website can be generated by calling the following in the project’s root directory:

1 bundle exec jekyll serve --watch

This will place the generated static HTML webpages in the /_site directory.

C.3. CHR-Benchmarks

The benchmark suite presented in Section 6.1 can be used to compare different CHR

systems. It has also been used to compare the different gcd(a,b) implementations in

JavaScript as presented in Section 6.2.

C.3.1. Installation

The CHR-Benchmarks suite can be used to compare the execution runtimes of the

following CHR systems:

• SWI-Prolog, using KU Leuven CHR
1Project website: http://jekyllrb.com/
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• CCHR

• JCHR

• CHR.js

• Native C implementations

The project comes with a Makefile to install the systems and prepare the tests. It is

recommended to call the make commands as root, because systems like SWI-Prolog

have to be installed.

With

1 make install

2 make prepare

all systems mentioned before can be installed and the tests prepared. The preparation

step includes the compilation of the tests.

C.3.2. Test Cases

The following tests have been specified:

fib The bottom-up calculation of the Fibonacci numbers.

gcd The calculation of the greatest common divisor of two integers, based on the

subtraction-based Euclidean algorithm.

leq A constraint solver for less-equal constraints between variables.

primes An implementation of the Sieve of Eratosthenes to generate prime numbers.

ram A simulator of a Random Access Machine.

tak Implementation of the Takeuchi function.

Due to different features of the examined CHR systems not all tests have been imple-

mented for every system.
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C.3.3. Makefile

The Makefile contains a large number of targets. For every system (swi, jchr, cchr,

c and node) there are several sub-targets, in particular:

system.preinstall Installation of dependencies and benchmark setup, for example

the creation of temporary directories.

system.install Installs the actual system.

system.prepare Preparation tasks for the benchmarks. Usually this includes the

compilation of the test source files, for example compile *.jchr files for JCHR.

system.clean Task to delete temporary directories and files. This should be called

before the benchmark is executed.

system.test Runs each test once to check if it is executable. This will generally

create no output. The tests have been passed if no error occurs.

system.bench Executes the benchmarks for this system.

Apart from these tasks there are further, system dependent sub-tasks, for example to

benchmark only a single system and single test case.

C.4. Babel Plugin for CHR.js

The babel-plugin-chr is a plugin for Babel, a JavaScript transpiler. It replaces

CHR.js rule definitions in JavaScript source code and replaces it with the appropriate

precompiled code. Internally, it calls CHR.js to compile the given rules.

C.4.1. Installation

The babel-plugin-chr is published on npm and can therefore be installed with the

following command:

1 npm install babel-plugin-chr
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C.4.2. Usage

The plugin can be used with Babel’s command line interface:

1 babel --plugins chr script.js

However we recommend to add the plugin to the .babelrc configuration file:

1 {

2 "plugins": [ "chr" ]

3 }

This will automatically call the CHR.js precompiler to all of the project’s JavaScript files.
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