
German University in Cairo

Faculty of Media Engineering and

Technology

Computer Science Department

Ulm University

Institute of Software Engineering and
Compiler Construction

Animation of Mathematical and
Graph-based Algorithms expressed

in CHR

Bachelor Thesis

Author: Mostafa Ali Said

Supervisor: Prof. Dr. Thom Frühwirth

Co-supervisor: Amira Zaki

Submission Date: 1 July 2012

This is to certify that:

(i) The thesis comprises only my original work toward the Bachelor De-
gree.

(ii) Due acknowledgement has been made in the text to all other material
used.

Mostafa Ali Said
1 July, 2012

Acknowledgements

This thesis would not have been possible if not for the encouragement,
the assistance and continuous support of the people around me. As I can
not name everyone, only some of those worthy of acknowledgements were
particularly mentioned.

First and foremost, I would like to thank my family, my parents, my
sister, my brother and my newly born nephew whom i still did not get the
chance to see, for always being there, for supporting and believing in me.

I would also like to show my deepest gratitude towards both my super-
visors, Prof. Dr. Thom Frühwirth for allowing me to do this project and
for his guidance and Amira Zaki, as she has made available her support in a
number of ways. She was always dedicated to offer help whether technical
or not. She never stopped the moral support as well throughout the work.

I am indebted to a number of colleagues who helped me in this work and
what lead to it distinctly my colleagues who accompanied me here in Ulm
and my colleagues in the Media Engineering and Technology department
in the German University in Cairo.

Finally, I would like to thank all my friends and those who helped me
become the person I am today.

III

Abstract

Algorithm Animation is a subtopic of Software visualization, this branch
focuses on the development process of software and the visualization of
its related artifacts, while satisfying the goal of the possibility of its usage
for educational purposes Constraint Handling Rules (CHR) is a concurrent
committed choice rule based declarative programming language. This work
creates visualization for CHR programs using XPCE/Prolog whilst men-
tioning the process of the creation from the start to create a framework as
a basis for developing any algorithm visualization

IV

Contents

Acknowledgements III
List of Figures . VII

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Project . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Software Visualization . 3

2.1.1 History . 4
2.1.2 Previous Algorithm Visualization Systems 5
2.1.3 Importance of Algorithm Visualization 6
2.1.4 The Pedagogical application of Algorithm Visualization 6
2.1.5 State of the Field . 8

2.2 Constraint Handling Rules 9
2.2.1 Introduction . 9
2.2.2 Syntax . 9
2.2.3 Simplification Rules 10
2.2.4 Propagation Rules 10
2.2.5 Simpagation Rules 10
2.2.6 Confluence . 10

2.3 JPL: Java Prolog . 10
2.4 XPCE . 11

2.4.1 Syntax . 11

3 Approach 13
3.1 Host Language . 13
3.2 Visualization Language . 14
3.3 Categorization of Algorithms’ Visualizations 15
3.4 Preparation . 16
3.5 CHR Events . 16

V

4 Implementation 18
4.1 Algorithms Implemented Using JPL 18

4.1.1 Primes . 18
4.2 Algorithms Implemented Using XPCE 20

4.2.1 The Euclidean Algorithm 20
4.2.2 Ordered Merging Sorting 23
4.2.3 Exchange Sort . 30
4.2.4 Depth First Search 34
4.2.5 Ballistic Trajectory Simulation 38

4.3 Related Work . 45

5 Conclusions 46
5.1 Conclusion . 46
5.2 Future Work . 47

Appendix 48

A Implementation JPL code 48

References 51

VI

List of Figures

2.1 A part of the sorting, Courtesy [1] 4
2.2 After the List is sorted, Courtesy [1] 5
2.3 Timeline of Famous Algorithm Animation Systems, Cour-

tesy [2] . 5
2.4 AV counts by topics, Courtesy [3] 8

4.1 Primes . 20
4.2 Primes big range . 20
4.3 Greatest Common Divisor 23
4.4 Ordered Merge Sorting . 29
4.5 Exchange Sort . 33
4.6 Depth First Search . 38
4.7 Winning trajectory . 44
4.8 Losing trajectory . 44

VII

Chapter 1

Introduction

1.1 Motivation

The renaissance of Rule-based programming is the outcome of its recurring
usage in various areas such as Business Rules, Semantic Web, Computa-
tional Biology, Verification and Security.

The ability to offer a simple option to build scalable and distributed
systems leads to the constant development, improvement and demand of
languages such as Constraint Handling Rules.

Constraint Handling Rules (CHR) is a concurrent committed-choice
constraint logic programming language that was motivated by the inference
rules which are commonly used in Computer Science.

The amount of constraints added during the execution of a CHR pro-
gram could make it cumbersome to trace or go through an algorithm step
by step while imagining how it changes the initial data set, this is why a
visualization and animation of algorithms could be of utter importance for
CHR. Hence, this project ‘ Animation of Mathematical and Graph-based
Algorithms expressed in CHR’ became an interesting and beneficial topic
in the scope of CHR.

Software Visualization is a broad branch of computer science, it is the
general term that contains topics like Algorithm Visualization or anima-
tion, program visualization, visual debugging and data structure display
amongst others. This field has witnessed massive interest and growth in
recent years due to its importance to everyone in the computer industry
and academics teaching or learning.

1

CHAPTER 1. INTRODUCTION 2

1.2 Aim of the Project

The aim behind this project is to have a visualization of algorithms, where
CHR constraints are represented as graphical objects on the screen. The
states of these objects change with each significant event, thus allowing
the user to see what happens during the algorithm execution step by step.
This would not only facilitate envisioning large scale and complicated al-
gorithms; but it would also be beneficial to use as an educational tool for
students learning CHR. The project aims at creating a basis for a generic
visualization tool, this is achieved by defining a framework for the visual-
ization of any algorithm and using this framework in developing animation
for six different CHR programs as a proof of concept.

That is why the visualization of CHR programs contributes to the ex-
pressiveness of CHR due to the fact that it adds another dimension to the
imagination of constraints and how they are formulated and exhaustively
applied.

1.3 Thesis Outline

This thesis includes four other chapters. After an introduction of the topic
is given, the background chapter will give a brief insight into Constraint
Handling Rules and the idea of algorithm visualization, its history and
similar terms and concepts will be discussed. The theoretical background
of the thesis will be represented, as well. Chapter 3 contains the general
approach, the decisions taken for the implementation, the steps to be con-
sidered in the implementation and the algorithm categorization. After that
the implementation, the examples is discussed in chapter 4. Finally, the
results will be analysed for reference and the possibilities for future work
are suggested.

Chapter 2

Background

2.1 Software Visualization

Software by default is not visible, it is just a precise description, expressed in
a computer programming language. Thus with the software evolution and
the software demands and requirements growing exponentially, complex
programs were created to satisfy the needs of the people. These complex
programs could reach millions of lines of code, which requires something
special to help explain them, as a mere textual display will not be enough.
This paved the way for the field of software visualization

Software Visualization(SV) is the process of using computer graphics
and animation to portray, represent and depict computer programs, pro-
cesses, data structures and algorithms.

Software Visualization is a broad branch of computer science, it is the
general term that contains topics like Algorithm Visualization or anima-
tion, program visualization, visual debugging and data structure display
amongst others.

As one of the branches under SV, algorithm animation (AA) is a form of
visualization where the focus is on visualizing the execution or behaviour
of the algorithm without paying much attention to the other aspects of
the algorithm. Another term widely used is Algorithm Visualization (AV),
which usually stands for a slightly larger scope, but throughout this work
both terms will be addressed interchangeably to refer to the definition of
Algorithm Animation.

3

CHAPTER 2. BACKGROUND 4

2.1.1 History

As is the case with anything in history, the exact time where software vi-
sualization research was started is not quite known. However, in 1966 Ken
Knowlton created something that would later be considered an algorithm
animation, he made a short 30 minute black and white film about an exam-
ple list processing with L6 programming [4]. Later in 1974, Hopgod created
a set of animations in form of short films on hash tables. Then in 1975,
Baecker presented two systems that made it possible for an instructor to
produce short quick-and-dirty single-concept film clips with only hours of
effort [5].

Sorting out Sorting

Many people are lead to believe that this short film was the start of algo-
rithm animation research due to the revolution it created in the field and
the fact that sorting algorithm are still visualized in the same manner as
no other representation for the structure nor behaviour has given the same
results . ‘Sorting out Sorting’ is an animation created in 1981. It is a 30
minute short sound colour film and one of the cornerstones of Algorithm
Visualization research. The film portrayed the animation of 9 different
sorting algorithms, the elements were represented in form of coloured bars
stationed horizontally where each bar represents the element of the array
while its height depends on the value of the element itself. Thus the struc-
ture was first visualized followed by the animation the behaviour of the
internal sorting. The film also includes a comparison between the time it
takes to visualize different sorting algorithms. Figures 2.1 and 2.2 show
parts of the film.

Figure 2.1: A part of the sorting, Courtesy [1]

CHAPTER 2. BACKGROUND 5

Figure 2.2: After the List is sorted, Courtesy [1]

2.1.2 Previous Algorithm Visualization Systems

Figure 2.3: Timeline of Famous Algorithm Animation Systems, Courtesy
[2]

The above picture shows a timeline of algorithm visualizations starting from
the ‘Sorting out Sorting’ video, the figure shows an exponential increase
after the year 1995 which is the year Java appeared.

The most notable AV systems that were considered as milestone in the
field since the ‘Sorting out Sorting’ video are: Brown Algorithm Simulator
and Animator (BALSA) which introduced the interesting events paradigm,
TANGO(Transition-based ANimation GeneratiOn) which introduced the
path transition paradigm [6], XTANGO the following edition of TANGO.
Zeus was the first system to use colour and sounds.

POLKA (Parallel program-focused Object-Oriented Low Key Anima-
tion), Swan, ANIMAL (A New Interactive Modeler for Animations in
Lectures) [7], JAWAA (Java And Web-based Algorithm Animation) [8],
JHAVE (Java-Hosted Algorithm Visualization Environment)[9], and AlViE
3.0 are some of the other significant systems.

CHAPTER 2. BACKGROUND 6

2.1.3 Importance of Algorithm Visualization

Algorithms visualization is very important to the field of computer science,
as it is used by most people of the field. For researchers in the field of
AV, using new concepts and applying learning and perception concepts to
create new visualization techniques and build better visualization systems
could become a challenge to themselves.

For practitioners, AV can help in the process of designing and debug-
ging algorithms. Also, a stable animation could help establish an abstract
comparison between the running times of two algorithms.

Finally for computer science students, AV has immense pedagogical
potential as it could be used as a primary learning source for concepts or a
primary learning source for algorithm or data structure operational details
thus helping students understand algorithms faster and in greater depth. A
great example of how effective software visualization is, even in its simplest
forms, would be the use of box to describe variables in computer science
text books; or using a column of boxes to represent arrays or an arrow to
represent a pointer. All these are things we take for granted although they
represent a primitive type of software visualization.

2.1.4 The Pedagogical application of Algorithm Vi-
sualization

Despite the noticeable increase of algorithm visualization systems, their
use in computer science education did not cause the same revolution and
does not share the same growth. This is due to the fact that the peda-
gogical requirements that are needed for effective educational use are not
addressed in most of the animations and visualization systems. Instead,
programmers tend to focus their attention on the graphics rather than the
pedagogy, which will not enhance the learning experience no matter how
good the graphics are. if the animation is only used as a passive video
on the algorithm operation the student will not feel involved nor will he
understand better the behaviour of the algorithms.

However, some features could render an animation, even with the sim-
plest graphics, a great educational tool since these features would encourage
students to interact with the AV system.

For these reasons and the lack of Algorithm visualization systems that
can be used as effective educational tool, Rößling and Naps[10] examined
AV systems and students’ reaction to them and decided upon the most

CHAPTER 2. BACKGROUND 7

important pedagogical requirements an algorithm visualization needs to
satisfy to be considered a useful educational tool.

These requirements are:

Reliably reaching a large target audience: It should be platform inde-
pendent, that way it is not meant for a certain target audience. In case
it is not possible to make it platform independent then the platform that
would form and satisfy the largest target audience being chosen.

Moreover, allowing users to provide input to the algorithm: the student
should be more than merely a spectator, it should be possible to provide
different input to see how the program and the animation would differ for
different inputs.

The third requirement is smooth motion: the changes that happen
should have a sufficient amount of time between them for the user to be
able to process the previous action or change.

Rewind capability: A rewind capability is considered very useful in an
AV system, since the student can miss an action or get confused in the
middle of the animation, thus the rewind capability could help the student
understand by going back to the exact second of the animation that started
the confusion without having to repeat the whole animation.

General-purpose systems: The system should not be topic specific, if
realising that was not possible, then it should ensure covering the most
fundamental topics.

Hypertext explanations of the visual display: A few algorithms could
have certain functionalities that could be hard to understand and the stu-
dent might find trouble absorbing what is happening in the animation even
after repetition. Thus a hypertext explanation of the actions or the event
with the events themselves is beneficial as well.

Structural view of algorithm: The algorithm main parts should be
stressed upon.

Interactive prediction: The system could have a few stop and think
questions, which pop up before important events asking the student to
predict the next step. This is one of the requirements that were proved to
have a somehow neutral effect on he students’ learning experience since the
student could treat it as merely a guessing game. Hence its importance as
a pedagogical requirement is minimal.

Integration with database for course management reasons: An addition
that might help with the interactive prediction, basically a database is
added where the student’s answers are kept.

CHAPTER 2. BACKGROUND 8

2.1.5 State of the Field

In 2010, Shaffer et al. [3] made their second report on the state of the
field of Algorithm Visualization, after the first one done in 2007 [11], where
different aspects of the state of the field of Algorithm Visualization are
discussed.

During the work of the first report, they created the AlgoViz Wiki
in which they collected links to most of the algorithm animations and
visualization systems. The Wiki also contains a bibliography of Algorithm
Visualization related research. After collecting these visualizations systems
and animation, the wiki had become a repository that can be used in many
ways one of which is to make a case study on the topic.

Figure 2.4: AV counts by topics, Courtesy [3]

The available visualization

The topics covered in visualization collected in the AlgoViz Wiki were clus-
tered according to the type of the algorithm and its behaviour. Afterwards,
a count by topics was made which showed the results expressed in figure
2.4. The sorting algorithms came on top with the most visualization, they
were followed by tree traversal algorithms as these topics are the hardest
to understand from merely the implementation.

CHAPTER 2. BACKGROUND 9

2.2 Constraint Handling Rules

2.2.1 Introduction

Constraint Handling Rules (CHR)[12] is a concurrent committed-choice
constraint logic programming language that was motivated by the infer-
ence rules which are commonly used in Computer Science. It was invented
in 1991 by Thom Frühwirth. CHR does not necessarily impose itself as a
new programming language, but as a language extension to a host language.
Those that can be used at the moment are: Prolog, Haskell, Lisp, Java or
C. It comprises guarded rules that transform multi-sets of atomic formu-
lae (constraints) until exhaustion in a similar way to automated theorem
proving.

The language was originally designed for writing user defined constraint
solvers, now it is recognized as an elegant general purpose language, it
combines elements of Constraint Logic Programming and term rewriting
analysis.

The clean logic-based semantics of CHR ensures that several desirable
properties hold for CHR programs and also facilitates non-trivial program

2.2.2 Syntax

A CHR program consists of a finite set of rules. There are three main types
of rules:

• Simplification Rule: replaces constraints with simpler, logically equiv-
alent constraints.

• Propagation Rule: adds constraints which may be logically redundant
but enable further simplification.

• Simpagation Rule: keeps a part of the head in the constraint store
and removes another

Each rule consists of:

• A head is a non-empty sequence of CHR constraints.

• A guard is a sequence of built-in constraints, it is a precondition on
the applicability of the rule.

• A body is a sequence of CHR and built-in constraints.

CHAPTER 2. BACKGROUND 10

2.2.3 Simplification Rules

H1, ..., Hn ⇔ G1, ..., Gn|B1, ..., Bn.

In this rule, the constraints in the guard are checked, if they matched,
then the body is executed and all the constraints in the head are removed
and replaced in the constraint store by the constraints in the body

2.2.4 Propagation Rules

H1, ..., Hn ⇒ G1, ..., Gn|B1, ..., Bn.

In this rule, the constraints in the guard are checked, if they matched,
then the body is executed and all the constraints in the body are added to
those in the head in the constraint store.

2.2.5 Simpagation Rules

Hkept
1 , ..., Hkept

n \Hremoved
1 , ..., Hremoved

n ⇔ G1, ..., Gn|B1, ..., Bn

It is a combination of Simplification and Propagation rules. In this rule,
the constraints in the guard are checked, if they matched, then the body is
executed and all the constraints that are in the kept part of the head are
kept in the constraint store, the others which exist in the removed part of
the head are removed

2.2.6 Confluence

A CHR program is confluent, if for any given goal, in any order of rules
application, the same result with the exact same final state is yielded.

2.3 JPL: Java Prolog

JPL [13] is an interface that links between Java and Prolog that consists
of a collection of Java classes and C functions. The Java Native Inter-
face(JNI) is responsible for the connection to a Prolog engine using the
Prolog Foreign Language Interface(FLI). This interface is currently being
standardized in different implementations of Prolog. JPL takes advantage
of native implementations of Prolog on supported platforms, making JPL
more than just a pure java implementation of Prolog.

CHAPTER 2. BACKGROUND 11

Currently, JPL only supports the embedding of a Prolog engine within
the Java VM. Future versions may support the embedding of a Java VM
within Prolog, that would allow us to make use of the rich class structure
of the Java environment from within Prolog.

JPL exists in two layers, both a low and a high level interfaces, for C
programmers who may wish to port their C implementations, the low level
is provided since it is for the Prolog FLI that would be used during the
porting, it is also highly SWI-Prolog specific, that is why the current version
of JPL only works on SWI-Prolog .The high level is provided for those who
do not care about the details of the Prolog FLI such as the Java developer.

There are two options that can be used to work with JPL: Working
with Java from Prolog or Prolog from Java.

2.4 XPCE

XPCE is an object-oriented toolkit for developing Graphical User Inter-
faces (GUIs). XPCE can easily be connected to a new language due to the
fact that the interface between it and the host language is very small, how-
ever the library’s greatest accordance is with languages that are symbolic
strongly typed and dynamically typed languages considering that XPCE
itself is dynamically typed.

For a dynamically typed host language such as Prolog or Lisp, the type
of the host-language construct passed is determined by the interface and
translated into the corresponding XPCE object the interface determines
and translates it into the corresponding XPCE object.

The implementation of all of XPCE on top of its primitive graphical
guarantees there are no platform-specific limitations in the manipulation
and semantics of certain controllers. Tested Unix platforms which saw
XPCE running successfully include SunOs, Solaris, AIX, HPUX, IRIX,
OSF/1 and Linux.

The language on which XPCE is used mainly are C++, Lisp and Prolog.
However, Prolog is considered the main target language.

2.4.1 Syntax

Controlling XPCE from Prolog [14] is accomplished using four primary
predicates. These predicates allow the creation, manipulating, querying

CHAPTER 2. BACKGROUND 12

and destroying of the objects which form the basic entities of XPCE. The
four predicates are new/3, get/3, send/2, free/1 . A brief descrip-
tion on the syntax of XPCE/Prolog is given, starting with each of the four
predicates.

• new/2: this predicate handles the creation of XPCE objects, it cre-
ates an XPCE object and gives it a reference which represents an
identification for this object. new(Reference,NewTerm) this would
create a new object of the type NewTerm and give it the reference
Reference e.g. new(P,point(10,20)): creates a new point and assigns
a reference to the variable P .

• send/2: this predicate handles the modification of XPCE objects,
it has two arguments, the first is a reference to the object to be
modified, the second is a term which is the name of the method to
be invoked on the object. The predicate send however can consist
of more than two arguments, it could go up to 12 arguments, the
10 extra arguments are considered optional parameters, they could
be appended or added to the predicate but in case they are omitted
then the execution continues after setting them to the default value.
e.g. send(@demo,open) . This query invokes the method open on the
object with the reference @demo

• get/3: this predicate handles the querying of XPCE objects. It ex-
tracts information about the object. The predicate consists of three
arguments, the first two are exactly the same as send/2, the third
argument is the variable that is set to the return value. This value
is a reference unless it is an XPCE name object then the value could
be returned as a Prolog atom, XPCE integer and XPCE real ob-
jects. e.g This query get(@demo,display,D). would unify D to
@display/display. On the other hand, this query get(@772024,y,Y).

would unify Y to 20

• free/1: responsible for the destroying of the XPCE objects. It has
only one argument which is the reference of the object to be removed.
e.g. free(@demo). This would remove the dialog object window from
the XPCE object base, it also removes the associated window form
the screen.

Chapter 3

Approach

To create the visualization of the CHR problems, there are several things
that should be taken into consideration:

1. The issue of choosing which of the available host languages to use for
the CHR implementation.

2. The selection of the approach to be taken in terms of which program-
ming language to use for the graphical representation.

3. Imagining and visualizing how classical CHR algorithms would be
represented as graphical objects how would they change with each
event.

4. Based on the visualization of the classic problems, a classification of
the algorithm in term of visual representation should be reached CHR
problems should be distinguished in clusters and the consideration of
the possibility of adding other categories.

5. The task of contemplating the depiction of the tool itself, its buttons
and its options that would be available to the user for the user to
change during the visualization.

3.1 Host Language

The work started by examining the tools to be used for the Implementation:
First,choosing which host language to use for the CHR implementation, the
options were: Prolog, Java, Haskell and C.

13

CHAPTER 3. APPROACH 14

Due to the fact that JCHR(Java CHR) is not stable and no longer sup-
ported enough for the basis of creating a project that would be worked on
in the future, the option Java and using JCHR was disregarded.

CCHR is the CHR system embedded in C, the system is described in
[15] as the best and fastest implementation of CHR. However, the system is
relatively new and the primary problem faced with C would be the platform
specificness. As a system in C would not be platform independent, which
violates the first pedagogical requirement mentioned in chapter 2, for these
reasons C was disfavoured.

Finally Prolog was chosen over Haskell, since it is the most popular host
language for CHR, it is the host language mostly used in research about
CHR, in the development of several projects with CHR and most notably
because it is the host language used in the education of CHR.
Afterwards, a quick comparison between Prolog implementations lead to
favourite SWI Prolog over the other implementations most notably Sicstus
Prolog due to the fact that SWI has better Web related features and has
a free open source license thus allowing for maximum target audience who
could be demotivated by the necessity of buying a license for Sicstus.

3.2 Visualization Language

Settling down on the first decision and choosing Prolog as a host language
would lead to the second approach decision, it is the choice of the language
that would be used for the visualization. Since SWI-Prolog has no graphical
capabilities there were different approaches:

One popular approach would be to use an external language that has
good graphical user interface development, such as Java and Visual Basic,
and then link the CHR program to this external language. Popular options
of this approach are: Tk/Tcl, JPL/Java, Visual Basic and Delphi.

Another popular option would be to use XPCE as the graphical lan-
guage, since XPCE is a powerful toolkit that has been created for GUI
development in Prolog from the start.

CHAPTER 3. APPROACH 15

The last possible approach would be the direct access to graphical Ap-
plication Programming Interface(API): Xwip is an important example of
this class of GUI approach for Prolog. Problem is that most of these API’s
are fairly low-level and a lot of work is required to get the data types of
the API properly and naturally represented in Prolog.

The path taken was to try two approaches since they both have their
advantages and strength points

• Java as the external language for the user interface while using JPL
to link between the front end and the back end. Since Java has differ-
ent GUI libraries and has great capabilities of representing different
primitives that could be manipulated easily.

• XPCE has been developed for GUI development in Prolog from the
start, since it was used in the Prolog graphical tracer, and no major
complications can occur as the XPCE code would be embedded into
the algorithm’s source code.

3.3 Categorization of Algorithms’ Visualiza-

tions

After examining most of the classic computer science algorithms in CHR
implementation, it became evident that these algorithms and programs
should be split into these categories which would cover:

• Grid based, e.g., Prime, Sudoku, Zebra problem, Board games.

• Graph based (including tree representations) e.g DFS, shortest path,
transitive closure and Dijkstra.

• Chart based whether it is bar chart, pie chart and mathematical
graph e.g., sorting algorithms, calculation based problems such as
accumulated sum, factorial and Fibonacci.

• Bitmap based problems e.g. programs that must be represented with
certain images.

This clustering aided the decision of which algorithms to implement,
as the clustering covered all the visualization possibilities. Their charac-
teristics would also best suit most of the algorithms data and define the
structure behaviour and evolution of execution. Hence, the algorithms
chosen were: Prime sieve, Euclidean Algorithm, Ordered Merge Sorting,
Exchange Sort, Depth First Search and Ballistic trajectory simulation.

CHAPTER 3. APPROACH 16

3.4 Preparation

During the work of this thesis, before visualizing any algorithm there is a
preparation phase. This preparation phase included a few steps, procedures
and considerations that needed to be addressed before starting with the
implementation of the animation routines. These steps could guide any
developer who is interested in developing a new algorithm visualization for
any topic and could be used in the generalization of the visualization and
the creation of the tool.

First, the algorithm itself should be implemented in CHR. Afterwards,
categorising the algorithm and examining which visual cluster it should
belong to must be considered. Subsequently the general graphical repre-
sentation of the algorithm is imagined: thinking of every way the algorithm
could be visualized in, after imagining the execution and behaviour of the
algorithm.

The third step would be weighing in the options the advantages and
disadvantages of each representation and visual categorisation and settling
on the one that guarantees the best demonstration of the CHR code while
presenting it properly. Then we investigate the types of primitives that
would be used to represent the entities of the algorithm.

The fifth step is rather important which is defining the crucial events
and operation and distinct them from the events that do not have an effect
on the behaviour of the algorithm. The last two steps are: Settling on the
animation routines and actions initiated by the significant events chosen
in the previous step and thinking of how to handle extreme cases and how
the visualization would handle them as well.

3.5 CHR Events

On the grounds that one of the steps of the preparation to visualizing any
algorithm is to define its crucial events, CHR syntax and behaviour should
be examined to be able to define all the events and states that can occur
in a CHR program. These events should be listed to have a repository of
events possible to occur.
When the list of possible events is in hand, we could understand the algo-
rithm to be visualized, state its crucial events and accompany them with
a defined animation routine that best highlights the behaviour. The CHR

CHAPTER 3. APPROACH 17

syntax explained in chapter 2 helps extracting the events that could occur
during the execution of an algorithm.
The possible events that can occur in a CHR program most notably include:
A constraint is activated, deactivated, killed, or added to the constraint
store, a variable is bound, two variables are unified, a guard is matched, a
rule is fired or a body is executed.

As a general approach, while implementing each visualization, the effort
was made to try to satisfy most of the pedagogical requirements discussed
in section 2.1 as much as possible to maintain the possibility of using each
visualization as an educational tool.

Chapter 4

Implementation

The choices of the algorithms to implement or visualize were made after a
thorough consideration, a research on the state of the AV field in general
and the state of the CHR visualization as well. The choice were made in
attempt to cover most of the clustering, to show an implementation and
animation to each category.
It was taken into account as well the implementations that are somehow
complicated to understand or imagine since their visualization would help
tremendously with their use and understanding.

4.1 Algorithms Implemented Using JPL

4.1.1 Primes

Prime sieve is considered one of the classical problems of CHR, it represents
a grid based visualization.

The example was implemented while using Java from Prolog

The CHR implementation of the algorithm consists of two rules

upto(N) <=> N>1 | M is N-1, upto(M), prime(N).

prime(X) \ prime(Y) <=> Y mod X =:= 0 | true.

The first rule generates all the numbers from the selected number and
stops before the number 1. The second rule handles the elimination of the
non prime numbers by comparing any number with all the smaller numbers
and then removing that larger number if the result of the modulus operation
is zero.

18

CHAPTER 4. IMPLEMENTATION 19

The visualization code was added to these two rules to create the visu-
alization. The input is entered as an upto(N). This simplifies to the Prolog
predicate, that creates the frame and initializes the grid with its size, and
another constraint upto/4 after adding the frame, content pane and the
grid created in the initialization. The upto/4 starts the generation and
therefore the animation by firing the below rule.

upto(N,Grid,CS,F)<=> N>1| M is N-1, sleep(1),

addNumber(N,Grid,F),

upto(M,Grid,CS,F), prime(N,Grid,CS,F).

This rule adds the current number to the grid, adds its correspond-
ing prime/4 constraint to the constraint store after adding the constraint
upto/4 of the next number. The number is added in its designated index
in the grid by calculating its corresponding row and column. This rule
would fill the grid with the generated number with a delay between each
addition, when all the numbers are added, the below rule will keep firing
and executing its body until it eliminates all the non prime numbers.

prime(X,Table,Text,F) \ prime(Y,Table,Text,F)

<=> Y mod X =:= 0 |

atom_number(XStr,X),

sleep(1), remove(Y,Table,F).

If the number is a non prime number then it is removed from the grid.
By the end of the eliminations the grid consists of empty cells and cells
that contain the prime numbers.

Figure 4.1 shows the visualization of the program.Figure 4.2 shows that
the visualization worked on large values with the same competence.

The addition of a few animation routines and functionalities were con-
sidered even simple text colouring and indices highlighting, however due to
the limitations of working with Java from Prolog , they were not achieved.
This lead to continuing the work with XPCE as the conclusion was it would
be more beneficial to use XPCE for an algorithm animation of a CHR pro-
gram because to perform animation routines at a step by step basis we
need to work from Prolog and the abilities at hand while working Java
from Prolog are rather limited eliminating many graphical advantages of
Java and also JPL only works with SWI-Prolog.

The code used for the implementation is included in the appendix A,
since the implementation is not explained in detail.

CHAPTER 4. IMPLEMENTATION 20

Figure 4.1: Primes

Figure 4.2: Primes big range

4.2 Algorithms Implemented Using XPCE

4.2.1 The Euclidean Algorithm

An algorithm that is used to find the greatest common divisor(GCD), which
is one of the classical computer programming problems. The euclidean
algorithm takes as an input two integers and outputs their GCD. This is
achieved by always dividing the larger number by the smaller and then
assigning the remainder to the variable holding the larger number. This
is done repeatedly till the remainder is 0, which would mean reaching the
GCD.

The CHR implementation has an advantage over other implementations
of the euclidean algorithm since the number of inputs is not just restricted
to two as it is the case in the implementation of other languages. The CHR

CHAPTER 4. IMPLEMENTATION 21

implementation has no limits over the number of inputs to its euclidean
algorithm’s implementation.

The two rules below for the implementation of the algorithm in CHR.
The first rule is responsible for the clean up, the second handles the calcu-
lation of the Greatest common divisor.

gcd(0) <=> true.

gcd(N) \ gcd(M) <=> 0 < N, N =< M | L is M mod N, gcd(L).

However, in order to visualize this algorithm, a few predicates and con-
straints have been added to the implementation with some adjustments to
the above rules as well.

The structure used for this algorithm was a bar chart as well, since this
too had numbers or values that are being compared against each other and
an action occurs according to the result of the comparison.

First to start the animation, the constraint max(maxValue)has to be
queried by the user. This constraint has only one argument which is the
variable that holds the largest value amongst the number entered as input
to the euclidean algorithm. This should be followed by the list of numbers
that consist of at least 2 that would be entered in the form of the constraint
gcd(Number).

The constraint max/1 is just used for the initialization, however it has
no real significance in the algorithm nor the visualization. It is merely con-
sidered a dummy constraint that simplifies to the predicate that initializes
the scene.

max(X) <=> initialize_screen(X).

Subsequently, the initialization which includes nothing except the cre-
ation of the picture, which is a type of window, is executed.

Then each two gcd/1 constraints entered cause the firing of the main
rule of the algorithm.

The main rule that is responsible for the calculation itself and the ani-
mation is fired whenever two gcd/1 constraints are in the constraint store.

CHAPTER 4. IMPLEMENTATION 22

gcd(N) \ gcd(M) <=>

sleep(1),

0 < N, N =< M,

Top is M + 5 |

free(@chart),

new(@chart,

bar_chart(vertical, 0, Top, 500, 10)),

send(@chart,append,new(BM,bar(M,M,blue))),

send(@chart,append,new(BN,bar(N,N,blue))),

send(@window,display,@chart),

send(@window,flush),

sleep(1) ,

L is M mod N,

send(@chart,clear),

send(@chart,append,new(BN1,bar(N,N,green))),

send(@chart,append,new(BL,bar(L,L,green))),

send(@window,flush),

gcd(L).

In the animation, the chart is created from the start with every applica-
tion of the above rule because with large numbers that lead to small GCD
would have the bars with a very small height eventually for the chart would
have been initialized with a big maximum and range as well.

In the rule, it starts a delay of one second, created by the Prolog pred-
icate sleep/1 which stops the execution for the specified amount of time,
for the user to have sufficient time to absorb the change and for the algo-
rithm to have smooth motion in the animation, then the guard checks if
both of the numbers are greater than 0.

If the guard matched then the chart is first freed to remove the last chart
from the picture, then the new chart is created and added to the picture
after the two bars representing the numbers are subsequently added and
appended to it. A repaint send(@window,flush), is called to show the
changes.
After the repaint, a delay of one second is added, the modulus is calculated,
the chart is cleared and the result, which is the two constraints, the one that
remained from the simpagation and the other created after the modulus
operation, are added to the bar chart. Finally another repaint is called to
show the result of the calculation.

This sequence continues until there is only one non zero gcd/1 con-
straint left which would correspond to the output which is the GCD of the
input.

CHAPTER 4. IMPLEMENTATION 23

The figure below shows part of the animation for the input:
max(94017),gcd(94017),gcd(1155),gcd(2035).

Figure 4.3: Greatest Common Divisor

4.2.2 Ordered Merging Sorting

As shown in figure 2.4, sorting algorithms are the most covered topics in
algorithm visualization, they are always the ones that get the attention on
the grounds that they are diverse, have a huge popularity amongst those
in the field of computer science and the fact that due to their diversity,
some sorting algorithm are complex to the point that their internal sorting
needs visualization for them to become understandable for the user. For
these reasons, there had to be some visualization for sorting algorithms in
CHR.

This sorting algorithm is somehow unfamiliar or unconventional, which
is why it was chosen amongst other sorting algorithm because visualizing
it would highlight its difference compared to other sorting algorithm and
would also help grasp its behaviour and approach.

The idea behind the algorithm is to have the elements to be sorted as
a type which the algorithm transforms into ordered chain. The algorithm
only works for positive numbers. The representation of the unsorted entries
had to be different as well to match the unconventionality of the algorithm

First step is to implement the algorithm in CHR, we find that only two
rules are responsible for the whole operation of the sorting.

sort(X) <=> 0 <<< X.

A <<< B \ A <<< C <=> A<B, B=<C | B <<< C.

CHAPTER 4. IMPLEMENTATION 24

From the above two rules, we can try to understand the algorithm. The
sort(Number) constraint takes one argument which is the number itself,
thus each sort constraint represents one element and therefore when the
user enters the input, a sequence of sort/1 would be provided. Each of
these constraints would fire the first rule in the above two rules, this rule
would create a constraint <<</2 which represents a chain. This chain cre-
ated by the first rule is between the argument, which is one of the elements
to be sorted, and 0. Granted that the numbers provided are positive num-
bers the chain start from 0 to the other. This shows that every element
is connected to the 0 at first. This is something to be considered while
thinking of the structure depicting the implementation. The second rule
is responsible for the merging of the constraints, whenever there are two
chains in the constraint store with common smallest element, they are
merged into a chain from the smaller to the larger, while keeping the con-
straint that holds the smaller element of the result as the larger. Example,
having:

1 <<< 2 , 1 <<< 3

This would result into the addition of this constraint 2 <<< 3 to the
constraint store alongside 1 <<< 2 and the now redundant 1 <<< 3 is
removed.

As evident from the explanation of the code, this algorithm is complex
and as already stated unconventional, so it could become cumbersome to
trace it, debug it or, for a student new to CHR, even understand it.

After the implementation, the next step is to think how this algorithm
could be visualized or depicted depending on its behaviour. This was the
toughest step in this implementation, thinking of the structure and layout
to be created for the visualization.

Considering the chains and arcs connecting elements is somehow similar
to a graph, the structure chosen was a graph but the nodes had to be
stationed in a specific manner.

The implementation showed that the execution results in every element
connection to the 0 at some point and the possibility of connecting to any
other element. The ability to have the option of creating a straight line
from any node to another restricted the possibilities of layout to a few
ideas.

The one chosen was to have the node laid in a circular layout that is to
arrange the entries in a circular manner while adding the 0 element in the

CHAPTER 4. IMPLEMENTATION 25

middle. Thus, this makes it possible to connect an arrow between any two
numbers and it is possible to connect all the numbers with the 0 as well.

This circular layout needs the number of elements as an input due to
its importance in creating a symmetrical layout, as the number of elements
would decide the angle difference to the origin between two consecutive
elements. For this reason the constraints num/1,info/5 were added. The
first must be appended to the input as it is used to initialize the screen.

The constraint num(Num) has one argument which is the number of
elements, this used to calculate the angle between the entries. It is also
used so the screen would be initialized just once.

The constraint info(OldAngle,NewAngle,CX,CY,Distance) just holds
some information about the animation, it holds constants of the animation,
OldAngle is the angle in which is located the current element, NewAngle is
the angle of the next element, CentreX and CentreY are the coordinates
of the centre where the 0 is drawn and finally Distance is the radius of the
circle having the 0 as its centre.

The input should have the constraint num/1followed by a sequence of
constraints sort/1 which represent the unsorted elements. Then the input
would first fire this rule

num(N) <=> Angle is ((360/N) * (3.14 / 180)),

Distance is N + 75,

initialize_screen(black),

info(0,Angle,300,300,Distance),

variable(0,@zero,300,300).

When the body of the rule is applied, first the Angle is calculated by
dividing 360 over the number of elements, then the radius is set, afterwards
the screen is initialized by calling the predicate

initialize_screen(Color) :-

new(@window, window(’Sorting’,size(600,600))),

send(@window, open),

new(@zero,text(0)),

send(@zero, font, font(times, bold, 14)),

send(@zero,colour,colour(Color)),

send(@window,display,@zero,point(300,300)).

CHAPTER 4. IMPLEMENTATION 26

The predicate creates the window, creates the 0, colours it and then adds
it to the screen.

After the screen is initialized the constraints info/5,variable/4 are
added to the constraint store.

The constraint variable(Value,Id,X,Y) holds information about each
element, it holds the value and associates it to a certain identification and
the location.

Continuing on the rules of the input, on account of always having the
constraint info/5 ,each sort constraint would fire this rule

sort(N), info(Angle1,Angle2,X,Y,D) <=>

NewAngle is (Angle2-Angle1)+ Angle2,

Xco is X + (D*sin(Angle1)),

Yco is Y + (D*cos(Angle1)),

info(Angle2,NewAngle,X,Y,D),

variable(N,Id,Xco,Yco),

draw_number(N,Id,Xco,Yco),

connect_numbers(300,300,Xco,Yco),

0 <<< N.

This rule means the addition of a new element N to the chain, uses
the current angle and the angle difference to value the next angle, then
it uses the angle, the radius and the position of the centre to calculate
the element’s x and y coordinates. Afterwards a new info/5 is added to
the constraint store, along with a variable/4 for the new element. After
the variable/4 has been added, the predicate responsible for drawing the
element at its given location is called.

draw_number(N,Id,X,Y):-

new(Id,text(N)),

send(Id, font, font(times, bold, 14)),

send(@window, display, Id, point(X,Y)),

send(@window,flush).

The predicate just creates the node, and its identification is assigned to
the unbound variable Id in the constraint variable/4 of the new element,
adds it to the window in the specified location, and finally a repaint is
called to make the newly drawn number appear.

Following the calling of the predict that draws the number, the con-
straint that connects two numbers is added to the constraint store to con-
nect in the animation the newly drawn number with the 0. This is achieved
after the below rule is fired

CHAPTER 4. IMPLEMENTATION 27

connect_numbers(X1,Y1,X2,Y2) <=> sleep(1),

line2(X1,Y1,X2,Y2,Id).

The constraint is simplified to a prolog predicate that adds a delay of
one second and another CHR constraint line2/5 which has 5 arguments:
the coordinates of the start and end points of the line and the identification
set and associated with that line.

This consequently fires the below rule, which is a propagation rule that
serves the purpose of calling the predicate set_margin/5.

line2(X1,Y1,X2,Y2,Id) ==> set_margin(X1,Y1,X2,Y2,Id).

The predicate set_margin/5 just defines an offset to the start and end
of the line to shape a distance between the actual number and the line
while considering the arrow as well.

set_margin(X1,Y1,X2,Y2,Id):-

(

(X2 =< X1, Y2 >= Y1, OfX1 is X1-5,

OfY1 is Y1+5, OfX2 is X2+5, OfY2 is Y2-5);

(X2 < X1, Y2 < Y1, OfX1 is X1-5,

OfY1 is Y1-5, OfX2 is X2+5, OfY2 is Y2+5);

(X2 > X1, Y2 < Y1, OfX1 is X1+5,

OfY1 is Y1-5, OfX2 is X2-5, OfY2 is Y2+5);

(X2 > X1, Y2 > Y1, OfX1 is X1+5,

OfY1 is Y1+5, OfX2 is X2-5, OfY2 is Y2-5)

),

new(Id,line(OfX1,OfY1,OfX2,OfY2,second)),

send(@window,display,Id),send(@window,flush).

Finally, after the 0 is connected with the newly created number the
constraint >>>/2 which represent the chain is created between the new
element and the 0.

AS explained above in the original CHR implementation, the rule below
is responsible for the merging of the constraints. This merging sorts the
array after the below rule is no longer applicable to any two constraints.
For the purpose of the visualization the implementation was changed after
embedding the code that would create the animation.

CHAPTER 4. IMPLEMENTATION 28

variable(A,Id,X,Y),

variable(B,Id1,X1,Y1),

variable(C,Id2,X2,Y2),

line2(X,Y,X1,Y1,Id3),

line2(X,Y,X2,Y2,Id4),

A <<< B \ A <<< C <=>

color(Id,red), color(Id1,red),

color(Id2,red), color(Id3,red), color(Id4,red),

A < B, B =< C | send(@window,flush), sleep(1),

color(Id,black), color(Id1,black),

color(Id2,black), color(Id3,black),

color(Id4,black), remove_line(Id4),

connect_numbers(X1,Y1,X2,Y2),

B <<< C.

The head included five additional constraints, a variable constraint for
each element which would be useful so we can have their identifications at
hand, thus making it three variable constraints, also two lines constraint
for each line representing the chain between each pair. The execution of
the body of the rule yields to colouring each node and each chain to red so
that the elements that are checked in the guard whether to participate in
the merging are highlighted before hand. Afterwards if the guard matched
then a delay of one second is added and the window is repainted. This
is followed by the lines and variables coloured back to black and the line
corresponding to the removed chain being removed as well by adding the
constraint remove_line/1.
After the removal, connect_numbers/4 is added to the constraint store
to connect the two merged elements, then the chain itself between the
merged elements is added. Removing the line is accomplished after the
constraint added to the constraint store fires the below rule, which matches
the constraint that ask for line removal, with the constraint that represent
the corresponding line and simplify the head to free/1 which frees the
identification of the line and therefore remove it from the window.

remove_line(Id), line2(_,_,_,_,Id) <=> free(Id).

This algorithm would be considered to belong to the second category as a
graph based represented was used to visualize it.

The figures below show snapshots of animation to the query:

CHAPTER 4. IMPLEMENTATION 29

num(10),sort(16), sort(12), sort(11), sort(14),

sort(13),sort(6), sort(2), sort(1), sort(4), sort(3).

Figure 4.4: Ordered Merge Sorting

CHAPTER 4. IMPLEMENTATION 30

4.2.3 Exchange Sort

After representing an unfamiliar sorting algorithm, this algorithm was cho-
sen for the complete opposite, as exchange sort resembles traditional sorting
algorithm. This is obvious from its name, since exchange sort was the sec-
ond of three cluster created by Baecker in his work on Sorting algorithm
visualization [1] Exchange sort is a sorting algorithm that exchanges neigh-
bouring elements if they are in the wrong order whose CHR implementation
only consists of one rule:

ar(I,V), ar(J,W) <=> I>J, V<W | ar(I,W), ar(J,V).

In this algorithm, an array is a sequence of constraints ar(Index,Value).
For the purposes of the visualization, the implementation was changed to
add a few predicates and rules that help the process of visualizing and
showing the animation.

Since this algorithm as mentioned resembles conventional sorting algo-
rithms similar to the ones visualized in the Sorting out Sorting video, thus
the idea for the representation was to have the algorithm represented as the
Sorting out Sorting video. On a bar chart with each element represented
by a bar with the bars interchanged according to the algorithm itself

First, to start the animation the user has to enter an input that starts
with the constraint max(MaxValue) which specifies the largest element in
the list of numbers, afterwards the array is provided in the form of a se-
quence of constraints ar(Index,Value).

This input would fire many rules. First, this one

max(X) <=> init_screen(X).

Thus the screen is initialized after the body of the rule is applied. The
predicate uses the maximum value in the initialization of the bar chart,
this is done after the picture has been created and the bar chart as well.
The initialized bar chart is then added to the screen with the y axis ranging
from 0 to a value slightly larger than the largest element of the sequence.

init_screen(X):-

new(@window, picture(’Exchange Sort’,size(600,600))),

send(@window, open),

Top is Max + 5,

new(@chart,bar_chart(vertical, 0, Top, 500, 20)),

send(@window,display,@chart).

CHAPTER 4. IMPLEMENTATION 31

The rest of the input is the sequence of ar(Index,Value) constraints.
Each one of these constraints represents an element of an array, where the
first variable represent the index within the array and the second variable
represents the value itself of that index. Thus making the sequence of these
constraint represent the array.
There are two constraints ar(Index,Value)and array(Index,Value,ID),
since one is used merely as an intermediate form that is used just once for
each element to draw its bar and give it the identification of the bar. Then
it is transformed to the other form, which is the other constraint that is
responsible for the rest of the execution. This is achieved by the rule below
that is fired by each ar/2 constraint in the input

ar(I,V) <=> draw_element(I,V,Id),

send(@window,flush),

array(I,V,Id).

As evident the constraint is simplified to the predicate

draw_element(I,V,Id):-

sleep(1),

send(@chart,append,new(Id,bar(I,V,blue))).

which is in charge of drawing the element in a form of a bar and then adding
it to the bar chart after a delay of one second, the picture is repainted to
make sure the newly drawn element appears and finally the other form of
the element is created after the identification of the bar was added as an
argument. The identification was appended as an argument to be able to
manipulate any bar corresponding to certain constraint.

In a sorted array, for each pair ar(I,V),ar(J,W) with I > J it should
hold that V ≥ W.

The main rule that is responsible for the sorting operation itself and
animation is fired whenever two array constraints are in the constraint
store while one is having a smaller index with a larger value than the other
which would mean they are in the wrong order. Thus this checked for if it
is satisfied then they are in the wrong order and the values are exchanged.

array(I,V,Id), array(J,W,Id1) <=>

I > J, V < W | sleep(1),

send(Id,value,W),

send(Id1,value,V),

CHAPTER 4. IMPLEMENTATION 32

send(Id,colour,colour(yellow)),

send(Id1,colour,colour(yellow)),

send(@window,flush),

sleep(1),

send(Id,colour,colour(blue)),

send(Id1,colour,colour(blue)),

send(@window,flush),

array(J,V,Id1), array(I,W,Id).

As explained, the above rule is fired when two array constraints are
in the constraint store, first the guard checks if one has a higher index
while having a lower value to test the applicability of the rule. If the guard
matched, it means that the elements are in the wrong order and have to be
exchanged therefore the body is applied, this is shown in the visualization
first as send(Id,value,W), send(Id1,value,V) exchanges the two cor-
responding bars’ values while the bars are coloured in yellow to highlight
the exchange. This appears on the screen after send(@window,flush) re-
paints the picture. Then there is a delay of 1 second, created by the Prolog
predicate sleep/1 which stops the execution for the specified amount of
time, for the user to have sufficient time to absorb the change and for the
algorithm to have smooth motion in the animation. After the delay, both
of the bars are coloured back to their original blue after the bars have been
exchanged, as usual this appears after the repaint. Finally the values of
the elements inside the constraints are exchanged.

As shown, every time the above rule is applied, it corrects at least one
ordering. This is performed for the rest of the elements till the rule is no
longer applicable which would mean that the elements had become sorted,
on account that it is not applicable, it means that every element’s all larger
valued elements have higher indices, thus a sorted list. Program is confluent
for queries with known numbers, but not in general

This implementation belonged to the third category, the algorithm that
could be represented by bar graphs.

The below figures show the snapshots of the visualization for the query:

max(9),ar(0,1), ar(1,7), ar(2,5), ar(3,9), ar(4,2).

CHAPTER 4. IMPLEMENTATION 33

Figure 4.5: Exchange Sort

CHAPTER 4. IMPLEMENTATION 34

4.2.4 Depth First Search

Depth First Search(DFS) is of the most important, well known and im-
mensely used tree traversal searching algorithm.

Moreover, in 2002 , Abdennadher et al. created a constraint library for
Java, one of its constituents was a a visualization tool for the propagation
and simplification of constraint [16]. This could be considered as one of the
first visualizations for CHR, one of the future work targets of that work
was to create a visualization for search trees.

Thus the implementation of depth first search (DFS) in CHR had to be
visualized and shown.

The general idea of Depth first search in a tree is to start at the root,
then from there the algorithm travels as deep as possible from neighbour
to neighbour before backtracking.

As we mentioned in Chapter 2, most of the algorithm visualization
systems are in Java, making the available DFS animations mostly the ones
programmed imperatively, which differs significantly from the declarative
implementation.

The animation shows how different the CHR version of the DFS really
is, since as evident in the animation what happens is that the search is
happening while building the tree more or less

As always the first step was to implement the algorithm in CHR, we
would find that the implementation consists of three rules.

dfs(leaf(Val),X) <=> X == Val.

dfs(node(Val,_,_),Val) <=> true.

dfs(node(Val,L,R),X) <=>

X \== Val | (dfsearch(L,X) ; dfsearch(R,X)).

In the above implementation, Val represents the value of the node, L
and R are trees representing the left subtree and the right subtree respec-
tively. A tree could be one of two either a node with right and left subtrees
node(Val,L,R), or a leaf(Val). To perform a depth first search for a
target X in a tree The input should be of that sort: dfs(T,X).

Each rule in the implementation covers one of the cases that could
occur. The first case if the current node is a leaf, then the output would
be false if the value is not the target and true if it is. The second case is

CHAPTER 4. IMPLEMENTATION 35

that the current tree is a node with the value of the target hen the output
is true. The third case is to have the current tree as a node whose value
is different from the target, at that point the right tree and the left are
searched.

The phase of the selection of the suitable representation for the algo-
rithm was virtually non-existent, since this is a tree traversal algorithm, it
could not be visualized as anything but a tree.

The work it took to visualize this was relatively easy, as the combination
of XPCE’s rich powerful built-in library classes with some of the advantages
of logic programming, made it easy to add just a few lines of code for the
visualization.

First there had to be something that creates the scene just once, so the
dfs/2 constraint entered as an input is used as an auxiliary constraint that
just sets the scene and then is transformed to anther form. This is shown
in the three rules below

dfs(leaf(Val),X) <=> ((Val = Id, draw_tree(Val,X,Id,green));

draw_tree(Val,X,Id,red)).

dfs(node(Val,_,_),Val) <=>draw_tree(Val,Val,Id,green).

dfs(node(Val,L,R),X)<=> X \== Val |

draw_tree(Val,X,Id,red),

(dfsearch(L,X,Id);dfsearch(R,X,Id)).

The three cases are covered as well, the first case, the value of the leaf is
checked if it is equal then the screen is initialized and the tree is drawn with
a green coloured root as a sign of success resulting in stopping the algorithm
and animation, if it is not equal then it means that the target does not exist
and therefore the tree is drawn with a red root. The second case is similar
to the success story of the first, since the value of the node is equal to
the target then the tree is drawn with a green coloured root as a sign of
success. The third case, which should be the common case, the screen is
initialized, the root of the tree is drawn and the execution continues after
the transformation to the other form that hold an additional argument
which is the identification of the tree. This is appended to be able to draw
the child of the tree.

As evident, the predicate draw_tree/4 is called in the three auxiliary
rules to initialize the screen, it takes four arguments used for the initializa-
tion.

draw_tree(Root,Target,Id,Color) :-

CHAPTER 4. IMPLEMENTATION 36

new(@d, window(’Depth First Search’,size(500,500))),

send(@d, open),

send(@d, display,

new(TargetText, text(’Target’, center, large)),

point(400,375)),

send(TargetText,colour,colour(blue)),

send(@d, display,new(TargetBox, box(50, 50)),

point(400,400)),

send(@d, display,

new(TargetNumber, text(Target, center, large)),

point(425,425)),

send(TargetNumber,colour,colour(blue)),

sleep(1),

new(@t,text(Root)),

send(@t, font, font(times, bold, 14)),

send(@t,colour,colour(Color)),

new(T, tree(new(@r, node(@t)))),

Id = @r,

send(@d,display,T),

send(@d,flush).

First the window is created, then the word ‘target’ is drawn in the
bottom right corner of the screen using the colour blue , right under it a
square is drawn, afterwards the search target is created coloured in blue
and put inside the square. A 1 second delay is added before creating the
root in the specified colour and adding it to the tree and the screen. The
argument Id was unbound when calling the predicate and it was set to the
root since this would become the parent to its subtrees.

The transformation to the other form dfs/3 results in the continuation
of the execution and building the rest of the tree.

dfsearch(leaf(Val),X,Id) <=>

((X == Val,sleep(2),

draw_node(Val,Id,_,green));

(sleep(2),draw_node(Val,Id,_,red),false)).

dfsearch(node(Val,_,_),Val,Id) <=>

sleep(2),

draw_node(Val,Id,Id2,green).

dfsearch(node(Val,L,R),X,Id) <=>

X \== Val|

CHAPTER 4. IMPLEMENTATION 37

sleep(2),

draw_node(Val,Id,Id2,red),

(dfsearch(L,X,Id2);

dfsearch(R,X,Id2)).

The same three cases exist with a few animation actions appended to
the implementation. The first case occurs if the algorithms reaches a leaf,
the value is checked with the target in case of equality, then the node is
drawn in green, subsequently the animation is stopped and the algorithms
yields true. In case of inequality then the node is drawn and returns false.

The second case, again is the same as the success story of the first, since
the value of the node is the same as the target, the node is drawn in green,
subsequently the animation is stopped and the algorithms yields true.

The third case occurs when the subtrees have to be searched as well,
thus draw_node/4 is called to draw the current node and a recursive call
is made on the right and left trees.

The predicate draw_node/4 is in charge of drawing the new nodes

draw_node(X,Id,Id2,Color):-

new(Q,text(X)),

send(Q, font, font(times, bold, 14)),

send(Q,colour,colour(Color)),

new(Id2, node(Q)),

send(Id, son,Id2),

send(@d,flush).

The predicate takes four arguments: the value, the identification of the
parent for which the child will be drawn, an unbound variable Id2 which
will be bound to the identification of the newly drawn child node and finally
the colour used for drawing the node. Similarly to the creation of the root,
the text is drawn in the specified colour, the node is created with the text,
the difference here is that send(Id, son,Id2) is used to connect the node
to its parent.

This algorithm belonged to the second category, since it is a graph based
algorithm.
Below figure 4.6 shows a running of the algorithm for this query:

dfs(node(0, node(1,node(2,node(5,leaf(8),leaf(9)),leaf(7)),

node(10,leaf(14),leaf(3))),

node(6,node(16,node(21,leaf(50),leaf(72)),leaf(31)),

node(44,node(12,leaf(35),leaf(33)),leaf(4)))), 4).

CHAPTER 4. IMPLEMENTATION 38

Figure 4.6: Depth First Search

4.2.5 Ballistic Trajectory Simulation

Ballistics is a branch in mechanics that studies projectiles, their dynamics,
types and flight statistics. Ballistic trajectory is the trajectory or the path
created by an object in space with no regards to any other resistive force

CHAPTER 4. IMPLEMENTATION 39

while being under the influence of only gravity. The trajectory depends on
a couple of variables, it is decided by the initial height of the surface the
object is stationed at, initial velocity or the force applied on the object,
the direction and the angle of the force applied and finally the gravitational
force of the environment. These inputs would determine the exact path, the
exact coordinates of the object at a certain point in time, the maximum
distance travelled, maximum height reached and the total time taken to
reach the ground. The formulae needed to calculate them are:

The maximum distance travelled by the object is calculated using this
formula :

D = v0td cos θ (4.1)

The maximum height reached :

H =
v20 sin2 θ

2g
(4.2)

The total time taken to reach the ground :

T =
2v0 sin θ

g
(4.3)

To get the x-coordinate at a certain point in time :

x = v0t cos θ (4.4)

To get the y-coordinate at a certain point in time :

y = v0t sin−1

2
gt2 (4.5)

Angry Birds is one of the most popular and widely played video games
around the world, the game was developed mostly relying on the concept
of ballistic trajectory. After accompanying that with some features, great
graphics and animation, the game was one of the best seller applications
on all mobile platforms.

These facts were factors that helped inspire this implementation and an-
imation afterwards. Since CHR is a declarative rule based programming
language, thus defining the rules mentioned above that would enact the
ballistic trajectory would be smooth and easy.
This example was implemented from scratch, the CHR code was imple-
mented and then the XPCE code was added in the fundamental rules to
produce the animation. The start of the CHR code was: first the rule that
would start the simulation was created, the constraint launch/3 was used
for the start the constraint has an arity three. The three arguments are the
velocity, the firing angle and the gravitational force of the environment, as
these are the inputs needed for the calculation as pointed out earlier.

CHAPTER 4. IMPLEMENTATION 40

launch(V,Angle,G) <=> get_initX(InitX),

get_initY(InitY),

A is Angle * (3.14 / 180),

calculate_time_to_gorund(V,A,TT,G),

calculate_max_height(V,A,MaxH,G),

calculate_max_distance(V,A,TT,MaxD),

init_screen(InitX,InitY,MaxD,MaxH),

xcord(X,V,A,TT,InitX,T1,G),

ycord(Y,V,A,TT,InitY,T2,G),

time(TT).

The rule above is responsible for the start of the simulation, it starts by
setting the Initial coordinates of the objects, with the help of the two
predicates

get_initX(InitX), get_initY(InitY)

Afterwards, the angle is converted to radian and passed to the three
auxiliary predicates below to get the trajectory’s characteristics.

calculate_time_to_gorund(V,A,TT,G),

calculate_max_height(V,A,MaxH,G),

calculate_max_distance(V,A,TT,MaxD)

The first predicate uses the variables representing Velocity, Angle and
Gravity to calculate the total time it takes the object to reach the ground
and set it to the unbound variable TT using equation 4.3. This predicate
also helps with the termination of the animation, as the time(T) constraint
which is used in drawing the object and the update of its location, is started
with the total time and decrease with each draw until it reaches 0.

The unbound variable MaxH is matched to the calculated maximum
vertical height reached by the object in the second predicate which imple-
ments equation 4.2 .

The third predicate uses the total time TT as well as the other inputs
in equation 4.1 to match the unbound variable MaxD to the maximum
horizontal distance travelled by the object.

CHAPTER 4. IMPLEMENTATION 41

The acquisition of the total time, maximum horizontal distance and the
maximum vertical height reached paves the way to the initialization of the
screen.

init_screen(InitX,InitY,MaxD,MaxH)

The above predicate initializes the screen, it provides the start point’s
coordinates, the maximum distance and height. First the picture and the
dialog are created, then the object is created in a form of a circle and
stationed at the start point. Subsequently, the constraint obstacle(X,Y),
that holds the coordinates of the obstacle, was added to the constraint
store, which fired the rule below that creates the obstacle. This rule is
simplified to the XPCE code that draws the obstacle and add it to the
picture in the specified location.

obstacle(X,Y)==>new(@obstacle,bitmap(’Obstacle.xpm’)),

send(@window,display,@obstacle,point(X,Y)).

Afterwards, an x-axis and a y-axis are drawn, the y values range from
0 till the maximum height and the x axis ranges from the 0 till the maxi-
mum horizontal distance the object would end at in case it did not hit the
obstacle.

send(@window, display,

plot_axis(x, 0, MaxD, @default,

600, point(InitX, InitY + 15))),

send(@window, display,

plot_axis(y, 0, MaxH, @default,

500, point(InitX, InitY + 15))),

These axes could serve as an educational tool as well due to the fact that
the user would have an idea about the different exact distances in numbers
and trajectories of an object after the effect of different forces at various
angles.

The basis of the update of the x and y coordinates throughout the
animation is three constraints

ycord(YCordValue,InitVelocity,FiringAngle,

TotalTime,InitY,Time,Gravity),

xcord(XCordValue,InitVelocity,FiringAngle,

TotalTime,InitX,Time,Gravity),

time(T)

CHAPTER 4. IMPLEMENTATION 42

These are the last constraints in the body of the rule above. The ycord

and the xcord are constraints that hold the current y and x coordinates
respectively with the info of the trajectory as well. The time constraint
has one argument which is the time remaining for the object to reach
the ground, this constraint is simplified before each draw and then a new
time constraint with the new remaining time is put in the constraint store
after the draw, this happens till it reaches 0. With the three constraints
activated, the simulation starts, consequently they would fire the rules
responsible for the beginning of the movement of the object.

xcord(X,V,A,TT,InitX,T1,G),

ycord(Y,V,A,TT,InitY,T2,G)\ time(T) <=>

var(X),var(Y)|

CT is TT - T, T1 = T, T2 = T,

X is InitX + (V * CT * cos(A)),

Y is InitY -((V * CT * sin(A)) -

(G * CT^2)/2).

The body of this rule is applied if the guard is satisfied. The guards checks
whether, at a certain time remaining T, the variables X and Y , which
represents the values of the x and y coordinates respectively, are bound
or not. In case they are not bound then the body of the rule applies,
it calculates the time passed or the current time(CT) by subtracting the
time remaining(T) from the total time. Afterwards the values that should
be assigned to the xcord and ycord at the given time is calculated, using
equations 4.4 and 4.5 respectively, and matched to the unbound variables
X and Y .

Once these two variable become bound, one of the two rules below is
fired, depending on the location of the object

obstacle(X,Y)\

xcord(X1,V,A,TT,InitX,T,G),

ycord(Y1,V,A,TT,InitY,T,G)

<=> number(X1), number(Y1),

(X1 < X - 12; X1 > X + 12;

Y1 < Y - 20; Y1 > Y + 20)| draw(X1,Y1,T),

xcord(X2,V,A,TT,InitX,T1,G),

ycord(Y2,V,A,TT,InitY,T2,G).

The above simpagation rule is responsible for displaying the movement
of the object along its trajectory. As long as the object is not within

CHAPTER 4. IMPLEMENTATION 43

touching distance of the obstacle, the object is drawn with the constraint
draw(XCordValue,YCordValue,Time) which would be discussed later and
new xcord/7 and ycord/7 with non bound value are put in the constraint
store waiting for the time constraint to fire the rule that bounds the values.
This rule was one of the things that made use of the syntax of CHR since a
simple simpagation rule would do the trick of identifying the collision and
then removing the old coordinates while leaving the obstacle intact as well

xcord(X1,V,A,TT,InitX,T,G),

ycord(Y1,V,A,TT,InitY,T,G),

obstacle(X,Y) <=> number(X1), number(Y1),

X1 > X - 12, X1 < X + 12,

Y1 > Y - 20, Y1 < Y + 20 |

draw(X,Y,T), killed.

This simplification rule handles the collision detection, the guard checks
if the difference between the object’s and the obstacle’s x-coordinates lower
than 12 which is the width of the obstacle and if the difference of y-
coordinates less than 20, if these requirements are satisfied then the object
has became within touching distance of the obstacle. Once the object is
within touching distance of the obstacle this rule is fired, the constraint
drawdraws the object at the final location and then the constraint killed is
fired which executes the consequences of the collision.

The constraint draw deals with the drawing of the object and is also
responsible for the generation of new time constraint. Each time the rule
below is fired, the object is drawn on the picture in the point specified in the
argument of the constraint. Subsequently the picture is repainted to display
the new location of the object and then the time remaining is decreased
and the execution waits for 0.05 seconds and a new time constraint with
the new remaining time is put in the constraint store

draw(X,Y,T) <=> new(@ball,bitmap(’Object.xpm’)),

send(@window, display,@ball, point(X,Y)),

send(@window,flush),

T1 is T -0.2 ,sleep(0.05), time(T1).

For the purpose of this visualization, there were numerous decisions to
take during the implementation, there was the choice of what to set as the
travelling object, the selection of the obstacle and finally the actions that
would occur in the animation after the collision

CHAPTER 4. IMPLEMENTATION 44

Two options were implemented, the first had the object as a ball and
the obstacle as a circle which disappears after colliding with the ball as if
the obstacle was a coin and the ball collected it. The second is the one
represented in this work, It has the object as a football and the obstacle a
goal, having the target to score a goal. The collision detection results in
stopping the simulation and appearing the label goal in the footer.

This implementation belong to the final category where the elements
had to be depicted using special bitmap images. The program is confluent
for queries with known numbers, as the order of the rules applied will not
affect the final output. This example did not just show how efficient CHR
is when it comes to rule based algorithms but it also went on to visualize
it and show that the language could be used in programming games and
light applications as well

A winning scenario, where the goal is hit , is shown in figure 4.7

Figure 4.7: Winning trajectory

A losing scenario where the ball does not go into the goal and com-
pletes its path till it reaches the ground is shown in figure 4.8 Query:
launch(70,60,9.8).

Figure 4.8: Losing trajectory

CHAPTER 4. IMPLEMENTATION 45

4.3 Related Work

The Algoviz wiki which we discussed earlier showed that there are still no
genuine accountable algorithm visualization tool created using CHR or for
CHR programs. The research performed in this area showed that only few
efforts were made in this topic, two efforts [17] [16] stood out and were the
only convincing trials, however they were basis, the representation did not
really enact the behaviour of the algorithm and the tool was created using
JCHR which as we discussed in section 3.1 has decreased in popularity and
support over the last few years.

Thus there are no significant tool to be compared with this one except
for the tool that was developed at the same time as this work [18]. Due
to the simultaneity of the development of that work and this one, a clear
grasp of the visualizations and the functionalities of the tool itself was not
a possibility.

However an idea about the tool and its functionalities was given, the
tool takes a Prolog source code and then performs a source to source trans-
formation to be able to visualize the algorithm using Java. This work
differs significantly from the aforementioned tool since it does not need
source to source transformation as the visualization is done using XPCE
and the XPCE code is embedded within the Prolog source code to create
the animation.

The necessity to have source to source transformation to be able to
create the visualization could prove ineffective. As the stability of the
source to source transformation is responsible for a correct visualization
and if the source to source transformation can not be applied on certain
complicated algorithms , these algorithms will not be visualized.

Also, the effectiveness of using a transformed program as an educa-
tional tool would be less than using the program itself after appending the
code responsible for the visualization and therefore instead of the ability
to teach students through the visualization and the code, to highlight the
execution and events, the source to source transformation tool would only
help understanding the algorithm through the visualization.

Chapter 5

Conclusions

5.1 Conclusion

As a summary of this work’s content, we came to the discovery that soft-
ware visualization is an important broad field in computer science that has
many applications, however it is not addressed as much as it should be.
The research on Software visualization contrary to beliefs goes back before
the 1981 algorithm animation ‘Sorting out Sorting’ video. Algorithm ani-
mation(AA) is a fundamental subtopic of Software visualization, its main
application should be pedagogy, however AA systems are not used as much
as they should be since programmers tend to focus more on graphical fac-
tors rather than addressing the pedagogical requirements and the needs of
the students.

CHR is a high level uprising declarative programming language, how-
ever with the level of sophistication of the language, it becomes hard to un-
derstand the algorithms, their behaviour and how they operate and some-
times the textual tracing is not enough. Also it could be cumbersome to
try to teach the unconventional algorithm to people new to the language
while relying on textual explanation as well.

During this work, a research was conducted to uncover criteria and
requirements already defined in this field. It was discovered that these
criteria differentiate effective algorithm animations. This helps to create
algorithm visualizations that could be utilized for educational purposes.

We clustered the algorithms implemented in CHR in terms of visualiza-
tions into four categories. Certain visual objects such as (Graphs and trees,
grids, charts and Bitmaps) were assigned to each category which best suits
the algorithm’s data. Each of these categories had unique characteristics
that define the algorithm’s behaviour, structure and evolution of execution.

46

CHAPTER 5. CONCLUSIONS 47

This involved settling on the possible events that could occur during the
execution of the CHR program.

A set of steps was created as a guideline for the visualization of any algo-
rithm implemented in CHR. These steps were applied on several algorithms
from various clusters. XPCE was used as the graphical component for the
visualizations. The XPCE code was embedded within the CHR rules, to
show the various events.This was realised in five example algorithms that
covered most of the clusters.

The aim of the work was thus realised by defining the framework for
visualising any algorithm, and as proof of concept the application to five
CHR programs was accomplished.

5.2 Future Work

This work has paved the way for future enhancements. The addition of
functionalities in the already implemented algorithms could be addressed.
The current occurring event and snippets of the source code responsible
for the action could be displayed whilst the execution to highlight the
CHR events. Moreover, the constraint store’s content could be displayed
in highlighted text alongside the animation and the source code. It should
be contemplated how these possible additions would all fit in the animation.

Also, formalizing and generalizing the visualizations could be consid-
ered, while making use of the framework defined for the animation of an
algorithm, this could be realised by allowing the user to add tags and an-
notations to customize the visualization.

Finally, a study could be made on learning and perception to investi-
gate how people react to different structures and colours. The output of
this study should be incorporated with this work to enhance the learning
experience of the algorithms and their CHR execution.

Appendix A

Implementation JPL code

:- module(primes1, [prime/4]).

:- use_module(library(chr)).

:- chr_constraint prime/4, upto/1,upto/5.

%creates the frame only once

upto(N) <=> N>1| R is sqrt(N),

initScreen(R,Grid,CS,F),

upto(N,Grid,CS,F).

upto(N,Grid,CS,F)<=> N>1| M is N-1, sleep(1),

addNumber(N,Grid,F),

upto(M,Grid,CS,F),

prime(N,Grid,CS,F).

prime(X,Table,Text,F) \ prime(Y,Table,Text,F)

<=> Y mod X =:= 0 |

atom_number(XStr,X),

sleep(1), remove(Y,Table,F).

numToString(N,S):-

atom_number(A,N),

atom_chars(N,L),

atom_chars(S,L).

initScreen(R,Grid,CS,F):-

R1 is floor(R),

Width is R1*30,

48

APPENDIX A. IMPLEMENTATION JPL CODE 49

Height is R1*20 + 50,

jpl_new(’javax.swing.JFrame’, [’Primes test’], F),

jpl_call(F, getContentPane, [], CP),

jpl_new(’javax.swing.JTable’, [R1,R1], Grid),

jpl_new(’javax.swing.JScrollPane’, [Grid], SP),

jpl_call(CP, add, [SP,’Center’], _),

jpl_call(F, setLocation, [20,20], _),

jpl_call(Grid, setSize, [Width,Height], _),

jpl_call(F, setSize, [Width,Height], _),

jpl_call(F, setVisible, [@(true)], _).

addNumber(X,Grid,F):-

getRowAndCol(X,Grid,Row,Col),

atom_number(XStr,X),

jpl_call(Grid,setValueAt,[XStr,Row,Col],_),

jpl_call(F, setVisible, [@(true)], _).

remove(Y,Grid,F):-

getRowAndCol(Y,Grid,Row,Col),

jpl_call(Grid,setValueAt,[’ ’,Row,Col],_),

jpl_call(F, setVisible, [@(true)], _).

getRowAndCol(N,Grid,Row,Col):-

jpl_call(Grid,getRowCount,[],NumOfRows),

jpl_call(Grid,getColumnCount,[],NumOfColumns),

Row is NumOfColumns - ceil(N/NumOfRows),

Col is (NumOfColumns - (N mod NumOfColumns))mod NumOfColumns.

Bibliography

[1] R. Baecker, “Sorting out sorting : A case study of software visualiza-
tion for teaching computer science,” Sort, vol. 24, p. 369381, 1998.

[2] V. Karavirta, “Facilitating algorithm animation creation and adop-
tion in education,” masterslicentiate’s thesis, Helsinki University of
Technology, December 2007.

[3] C. Shaffer, M. Cooper, A. Alon, M. Akbar, M. Stewart, S. Ponce, and
S. Edwards, “Algorithm visualization: The state of the field,” Trans.
Comput. Educ., vol. 10, pp. 9:1–9:22, Aug. 2010.

[4] K. Knowlton, “A programmer’s description of l6,” Commun. ACM,
vol. 9, no. 8, pp. 616–625, 1966.

[5] R. Baecker, “Two systems which produce animated representations
of the execution of computer programs,” SIGCSE Bulletin, vol. 7,
pp. 158–167, 1975.

[6] J. Stasko, “Animating algorithms with xtango,” SIGACT News,
vol. 23, pp. 67–71, May 1992.

[7] G. Rößling, M. Schüer, and B. Freisleben, “The animal algorithm
animation tool,” SIGCSE Bull., vol. 32, pp. 37–40, July 2000.

[8] W. Pierson and S. Rodger, “Web-based animation of data structures
using jawaa,” SIGCSE Bull., vol. 30, pp. 267–271, Mar. 1998.

[9] T. Naps, J. Eagan, and L. Norton, “JhavÉ an environment to actively
engage students in web-based algorithm visualizations,” in Proceedings
of the thirty-first SIGCSE technical symposium on Computer science
education, SIGCSE ’00, (New York, NY, USA), pp. 109–113, ACM,
2000.

[10] G. Rößling and T. Naps, “A testbed for pedagogical requirements in
algorithm visualizations,” SIGCSE Bull., vol. 34, pp. 96–100, June
2002.

50

BIBLIOGRAPHY 51

[11] C. Shaffer, M. Cooper, and S. Edwards, “Algorithm visualization: a
report on the state of the field,” SIGCSE Bull., vol. 39, pp. 150–154,
Mar. 2007.

[12] T. Frühwirth, Constraint handling rules. Cambridge University Press,
2009.

[13] J. Wielemaker, P. Singleton, and F. Dushin, “Jpl.” http://www.

swi-prolog.org/packages/jpl/, June 2012.

[14] J. Wielemaker and A. Anjewierden, “Xpce.” http://www.

swi-prolog.org/packages/xpce/UserGuide/Contents.html,
June 2012.

[15] P. Wuille, T. Schrijvers, and B. Demoen, “Cchr: the fastest chr im-
plementation, in c,” Proceedings of the 4th Workshop on Constraint
Handling Rules, pp. 123–137, 2007.

[16] S. Abdennadher, E. Krmer, M. Saft, and M. Schmauss, “Jack: A java
constraint kit,” in University of Kiel, p. 2000, 2002.

[17] S. Abdennadher and M. Saft, “A visualization tool for constraint han-
dling rules,” in In Proceedings of 11th Workshop on Logic Program-
ming Environments, 1th, 2001.

[18] S. Abdennadher and N. Sharaf, “Program transformation for visual-
izing algorithms written in constraint handling rules,” in 22nd Inter-
national Symposium on Logic-based Program Synthesis and Transfor-
mation, LOPSTR 2012, in press.

http://www.swi-prolog.org/packages/jpl/
http://www.swi-prolog.org/packages/jpl/
http://www.swi-prolog.org/packages/xpce/UserGuide/Contents.html
http://www.swi-prolog.org/packages/xpce/UserGuide/Contents.html

	Acknowledgements
	List of Figures

	Introduction
	Motivation
	Aim of the Project
	Thesis Outline

	Background
	Software Visualization
	History
	Previous Algorithm Visualization Systems
	Importance of Algorithm Visualization
	The Pedagogical application of Algorithm Visualization
	State of the Field

	Constraint Handling Rules
	Introduction
	Syntax
	Simplification Rules
	Propagation Rules
	Simpagation Rules
	Confluence

	JPL: Java Prolog
	XPCE
	Syntax

	Approach
	Host Language
	Visualization Language
	Categorization of Algorithms' Visualizations
	Preparation
	CHR Events

	Implementation
	Algorithms Implemented Using JPL
	Primes

	Algorithms Implemented Using XPCE
	The Euclidean Algorithm
	Ordered Merging Sorting
	Exchange Sort
	Depth First Search
	Ballistic Trajectory Simulation

	Related Work

	Conclusions
	Conclusion
	Future Work

	Appendix
	Implementation JPL code
	References

