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What Researchers Say About CHR

One of the most powerful multiset rewriting languages.
Kazunori Ueda, Waseda University, Japan

Consistently outperforms Rete-based rule-based systems.
Peter Van Weert, K.U. Leuven

Significant speed up when executed on multi-core systems.
Edmund S. L. Lam, National University of Singapore

Lingua franca, a hub which collects and dispenses research e↵orts
from and to the various related fields.
Jon Sneyers, K.U. Leuven
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Page 9 My first CHR programs | Multiset transformation | Minimum

Minimum I

Minimum program
min(N) \ min(M) <=> N=<M | true.

I Computing minimum of multiset of numbers n

i

I Numbers given as query min(n1), min(n2),..., min(n

k

)

I min(n

i

) means n

i

is potential minimum
I Simpagation rule takes two min constraints and removes the one

representing the larger value.
I Program continues until only one min constraint left
I This min constraint represents smallest value
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Minimum II

Minimum program
min(N) \ min(M) <=> N=<M | true.

I Rule corresponds to intuitive algorithm:
“Cross out larger numbers until one, the minimum remains”

I Illustrates use of multi-headed rule to iterate over data
I No explicit loops or recursion needed
I Keeps program code compact
I Makes program easier to analyze
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Greatest common divisor (I)

XOR program
gcd(N) \ gcd(M) <=> 0<N,N=<M | gcd(M-N).

I Computes greatest common divisor of natural number
represented as gcd(N)

I Result is remaining nonzero gcd constraint

Example computation
gcd(12),gcd(8)

gcd(8), gcd(4)

gcd(4), gcd(4)

gcd(4), gcd(0)

GCD
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Prime sieve

Prime sieve (I)
sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

I Rule removes multiples of each of the numbers
I Query: Prime number candidates from 2 to up to N

i.e. prime(2),prime(3),prime(4),...prime(N)
I Each number absorbs multiples of itself, eventually only prime

numbers remain

Example computation
prime(7), prime(6), prime(5), prime(4), prime(3), prime(2)

prime(7), prime(5), prime(4), prime(3), prime(2)

prime(7), prime(5), prime(3), prime(2)



Constraint Handling Rules (CHR)

Concurrent declarative programming language
and versatile computational formalism as well

Semantic foundation in classical and linear logic

E�cient sequential and parallel execution model

Guaranteed properties such as anytime and online
algorithm properties

Powerful analysis methods for deciding e.g. program
equivalence
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The CHR Language
Operational Properties

Program Analysis

Part I

The CHR Language

1 The CHR Language

2 Operational Properties

3 Program Analysis
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The CHR Language
Operational Properties

Program Analysis

Example Partial Order Constraint

XX , true (reflexivity)
XY ^ YX , X=Y (antisymmetry)
XY ^ YZ ) XZ (transitivity)

AB ^ BC ^ CA
# (transitivity)

AB ^ BC ^ CA ^ AC
# (antisymmetry)

AB ^ BC ^ A=C
|| [built-in solver]

AB ^ BA ^ A=C
# (antisymmetry)

A=B ^ A=C
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The CHR Language
Operational Properties

Program Analysis

Example Partial Order Constraint

XY , X=Y | true (reflexivity)
XY ^ YX , X=Y (antisymmetry)
XY ^ YZ ) XZ (transitivity)

AB ^ BC ^ CA
# (transitivity)
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# (antisymmetry)
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Prof. Dr. Thom Frühwirth Constraint Handling Rules



The CHR Language
Operational Properties

Program Analysis

Syntax and Declarative Semantics

Declarative Semantics

Simplification rule: H , C | B 8x̄ (C ! (H $ 9ȳ B))

Propagation rule: H ) C | B 8x̄ (C ! (H ! 9ȳ B))

Constraint Theory for Built-Ins

Head H: non-empty conjunction of CHR constraints

Guard C : conjunction of built-in constraints

Body B: conjunction of CHR and built-in constraints (goal)

Soundness and Completeness based on logical equivalence of states in a
computation.
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The CHR Language
Operational Properties

Program Analysis

Operational Semantics

Apply rules until exhaustion in any order (fixpoint computation).
Initial goal (query) 7!⇤ result (answer).

Simplify

If (H , C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin ! 9x̄(H=H 0 ^ C )
then H 0 ^ G 7! G ^ H=H 0 ^ B

Propagate

If (H ) C | B) rule with renamed fresh variables x̄
and CT |= Gbuiltin ! 9x̄(H=H 0 ^ C )
then H 0 ^ G 7! H 0 ^ G ^ H=H 0 ^ B

Refined operational semantics [Duck+, ICLP 2004]: Similar to procedure
calls, CHR constraints evaluated depth-first from left to right and rules
applied top-down in program text order. Active vs. Partner constraint.
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Properties of CHR programs

Guaranteed properties

Anytime approximation algorithm

Online incremental algorithm

Concurrent/Parallel execution

Analyzable properties

Termination/Time Complexity (semi-automatic)

Determinism/Confluence (decidable)

Program Equivalence (decidable!)
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The CHR Language
Operational Properties

Program Analysis

Anytime Algorithm - Approximation

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

AB ^ BC ^ CA
# (transitivity)

AB ^ BC ^ CA ^ AC
# (antisymmetry)

AB ^ BC ^ A=C
# (antisymmetry)

A=B ^ A=C
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Prof. Dr. Thom Frühwirth Constraint Handling Rules



The CHR Language
Operational Properties

Program Analysis

Anytime Algorithm - Approximation

Computation can be interrupted and restarted at any time.
Intermediate results approximate final result.

AB ^ BC ^ CA
# (transitivity)

AB ^ BC ^ CA ^ AC
# (antisymmetry)

AB ^ BC ^ A=C
# (antisymmetry)

A=B ^ A=C
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The CHR Language
Operational Properties

Program Analysis

Online Algorithm - Incremental

The complete input is initially unknown.
The input data arrives incrementally during computation.
No recomputation from scratch necessary.

Monotonicity and Incrementality
If G 7�! G 0

then G ^ C 7�! G 0 ^ C

AB ^ BC ^ CA
# (transitivity)

AB ^ BC ^ AC ^ CA
# (antisymmetry)

AB ^ BC ^ A=C
#

. . .
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Concurrency - Strong Parallelism

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps.

Rules can be applied in parallel to overlapping parts of a goal, if overlap
is not removed.

If A ^ E 7�! B ^ E
and C ^ E 7�! D ^ E
then A ^ C ^ E 7�! B ^ D ^ E

AB ^ BC ^ CA
# #

AB ^ AC ^ BC ^ CA ^ BA
# #

A=B ^ BC ^ A=C
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Thom Frühwirth Constraint Handling Rules



Concurrency - Strong Parallelism

Interleaving semantics: Parallel computation step can be simulated by a
sequence of sequential computation steps.

Rules can be applied in parallel to overlapping parts of a goal, if overlap
is not removed.

If A ^ E 7�! B ^ E
and C ^ E 7�! D ^ E
then A ^ C ^ E 7�! B ^ D ^ E

AB ^ BC ^ CA
# #

AB ^ AC ^ BC ^ CA ^ BA
# #

A=B ^ BC ^ A=C
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The CHR Language
Operational Properties

Program Analysis

Optimal Time and Space Complexity

c

Jon Sneyers, K.U. Leuven

The CHR Machine
Sublanguage of CHR.
Can be mapped to Turing machines and
vice versa.
CHR is Turing-complete.
Can be mapped to RAM machines and
vice versa.
Every algorithm can be implemented in
CHR with best known time and space
complexity.
[Sneyers,Schrijvers,Demoen, CHR’05]
Practical Evidence: Union-Find, Shortest
Paths, Fibonacci Heap Algorithms.
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E�ciency - Better Time and Space Complexity

c�pixabay

- CHR with mode declarations has optimal time
and space complexity.
- JESS too, but 10-100 times slower.
- Prolog, Maude, Haskell not optimal if pure.
- CHR within one order of magnitude of best
implementations in any other language (C,. . . ).

Sneyers et.al., The computational power and complexity of Constraint Handling
Rules, ACM TOPLAS 31(2) 2009.
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E�ciency - The orders of magnitude

Up to one Million rules per second with CHR in C

c�Van Weert

JESS, CLIPS — hours
x 10-100
JCHR 2.0, CCHR — minutes
x 10-100
CHR in FPGA Hardware — seconds

Van Weert, E�cient lazy evaluation of rule-based programs, IEEE TKDE 2010.
Triossi, Compiling CHR to parallel hardware, ACM PPDP 2012.
Wuille, CCHR: the fastest CHR implementation, CHR’07.
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E�ciency - Superior Implementation Techniques

Faster and faster Algorithms for matching facts to rules

Eager Matching
- 1982 RETE: with join indexing.
- 1987 TREAT: without join indexing.

Lazy Matching
- 1990 LEAPS: with shadowing.
- 2000 CHR: with propagation history.

Van Weert, E�cient lazy evaluation of rule-based programs, IEEE TKDE 2010.
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CHR Basic Compilation Scheme

r: H1,...,Hm\...,Hn <=> G1,...,Gl | B1,...,Bk.

Hi is one of H1,...,Hn and the j-th occurrence in the program

procedure occurrence Hi j(Hi,IDi)

foreach (H1,ID1) in lookup(H1)

: // except Hi

foreach (Hn,IDn) in lookup(Hn)

if alive(ID1) and...and alive(IDn)

if all different(ID1,...,IDn)

if G1 and...and Gl

if not in history(r,ID1,...,IDn)

add to history(r,ID1,...,IDn);

kill(ID1);...;kill(IDm);

create(B1,IDB1);...;create(Bk,IDBk);

activate(B1,IDB1);...;activate(Bk,IDBk);

if not alive(IDi) return true
end
:

end
Thom Frühwirth Constraint Handling Rules



Common Compiler Optimizations
Fact Invariants

Set semantics
Functional Dependencies

Join Computation
Fact indexing
Backjumping
Loop-invariant code motion
Non-robust iterators
Join ordering

Fact Base
Late indexing
In-place modifications

Fact Activation
Scheduling
Passive occurrences
Retraction preference
Reapplication prevention

Program Specialization
Class specialization
Guard simplification

Thom Frühwirth Constraint Handling Rules

c wikicommons



CHR Program Analysis

Prove Program Properties

Termination
Every computation starting from any goal ends.

Semi-Automatic Complexity
Worst-case time complexity follows from structure of rules.

Consistency and Correctness
Logical reading of rules is consistent, follows from a specification.

Decidable Confluence
The answer of a query is always the same, no matter which of the
applicable rules are applied.

Completion Algorithm
Non-confluent programs made confluent by adding rules.

Decidable Operational Equivalence
Two programs have the same results for any given query.
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The CHR Language
Operational Properties

Program Analysis

Minimal States

For each rule, there is a minimal, most general state to which it is
applicable.

Rule: H , C | B or H ) C | B

Minimal State: H ^ C

Every other state to which the rule is applicable contains the minimal
state (cf. Monotonicity/Incrementality).
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The CHR Language
Operational Properties

Program Analysis

Confluence

Given a goal, every computation leads to the same result no matter what
rules are applied.
A decidable, su⌅cient and necessary condition for confluence of
terminating CHR programs through joinability of critical pairs.

XX , true (reflexivity)
XY ^ YX , X=Y (antisymmetry)

Start from overlapping minimal states

AA ^ AA
reflexivity

xxqqqqqqqqqq antisymmetry

&&

MMMMMMMMMM

AA

reflexivity
&&

MMMMMMMMMMM A=A

built-in
xxqqqqqqqqqqq

true
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The CHR Language
Operational Properties

Program Analysis

Completion

Derive rules from a non-joinable critical pair for transition from one of
the critical states into the other one.

XY ^ YX , X=Y (antisymmetry)
XY ^ Y <X , false (inconsistency)

AB ^ BA ^ B<A

antisymmetry
zzttttttttt

inconsistency
$$

IIIIIIIII

A=B ^ B<A

✏✏

BA ^ false

✏✏

A=B ^ A<A false

X<X , false (irreflexivity)
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The CHR Language
Operational Properties

Program Analysis

Operational Equivalence

Given a goal and two programs, computations in both programs leads to
the same result.
A decidable, su⌅cient and necessary condition for operational equivalence
of terminating CHR programs through joinability of minimal states.

P1 min(X ,Y ,Z ), XY Z=X.
min(X ,Y ,Z ), X>Y Z=Y .

P2 min(X ,Y ,Z ), X<Y Z=X.
min(X ,Y ,Z ), X�Y Z=Y .

min(X ,Y ,Z ) ^ XY

P1

✏✏

min(X ,Y ,Z ) ^ XY

P2

✏✏

Z=X ^ XY
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Prof. Dr. Thom Frühwirth Constraint Handling Rules



Example Programs
Constraint Solvers

Part II

Example Programs

4 Example Programs

5 Constraint Solvers
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Mergers and acquisitions

Sum up values:

sum(Value1), sum(Value2) <=>

sum(Value1+Value2).
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Mergers and acquisitions

Sum up values:

sum(Value1), sum(Value2) <=>

sum(Value1+Value2).

CHR constraint company(Name,Value) represents company with
market value Value

Larger company buys smaller company:

company(Name1,Value1), company(Name2,Value2) <=>

Value1>Value2 | company(Name1,Value1+Value2).
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Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Top-down Goal-Driven Evaluation

fib(0,M) , M = 1.
fib(1,M) , M = 1.
fib(N,M) , N�2 | fib(N-1,M1) ^ fib(N-2,M2) ^ M = M1 + M2.
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Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Top-down Goal-Driven Evaluation with Tabling (Memoisation)

fib(N,M1) ^ fib(N,M2) , M1 = M2 ^ fib(N,M1).

fib(0,M) ) M = 1.
fib(1,M) ) M = 1.
fib(N,M) ) N�2 | fib(N-1,M1) ^ fib(N-2,M2) ^ M = M1 + M2.
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Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation

fib , fib(0,1) ^ fib(1,1).
fib(N1,M1) ^ fib(N2,M2) ) N1=N2+1 |

N=N1+1 ^ M=M1+M2 ^ fib(N,M).
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Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation with Termination

fib(Max) ) fib(0,1) ^ fib(1,1).
fib(Max) ^ fib(N1,M1) ^ fib(N2,M2) ) Max>N1 ^ N1=N2+1 |

N=N1+1 ^ M=M1+M2 ^ fib(N,M).
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Example Programs
Constraint Solvers

Computational Logic Programming

fib(N,M) is true if M is the Nth Fibonacci number.

Bottom-up Data-Driven Evaluation, Two Results Only

fib(Max) ) fib(0,1) ^ fib(1,1).
fib(Max) ^ fib(N1,M1) \ fib(N2,M2) ) Max>N1 ^ N1=N2+1 |

N=N1+1 ^ M=M1+M2 ^ fib(N,M).
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Example Programs
Constraint Solvers

Sorting

One-rule sort related to merge sort and tree sort.
Query Arc X->Ai for each unique value Ai, X only on left of arc.
Answer Ordered chain of arcs X->A1, A1->A2,...

sort @ X->A \ X->B <=> A<B | A->B.

Query 0->2, 0->5, 0->1, 0->7.
Answer 0->1, 1->2, 2->5, 5->7.

Complexity: Given n values/arcs.
Each value can move O(n) times to the left.
Quadratic worst-case time complexity.
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Example Programs
Constraint Solvers

Sorting

One-rule sort related to merge sort and tree sort.
Arc 0=>Ai for each unique value Ai, left side is level (log of chain length).

sort @ X->A \ X->B <=> A<B | A->B.

level@ N=>A , N=>B <=> A<B | N+1=>A, A->B.

Query 0=>2, 0=>5, 0=>1, 0=>7.
Answer 2=>1, 1->2, 2->5, 5->7.

Complexity: Optimal log-linear worst-case time complexity.
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Example Programs
Constraint Solvers

Combination of Gauss’ and Fouriers Algorithms

Gaussian Elimination for =

A1*X+P1=0 ^ XP=0 ,
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ^ A1*X+P1=0 ^ P3=0.

Fouriers Algorithm for �

A1*X+P1�0 ^ XP�0 )
find(A2*X,XP,P2) ^ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ^ P3�0.

Bridge Rule for = and �

A1*X+P1=0 ^ XP�0 ,
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ^ A1*X+P1=0 ^ P3�0.
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Example Programs
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Description Logic with Rules in CHR

Straightforward integration of DL, rules and constraints.

and: If x : C
1

u C
2

2 A and {x : C
1

, x : C
2

} 6✓ A
then A!uA [ {x : C

1

, x : C
2

}
or: If x : C

1

t C
2

2 A and {x : C
1

, x : C
2

} \A = ;
then A!tA [ {x : D} for some D 2 {C

1

,C
2

}
some: If x : 9R .D 2 A and there is no y with {(x , y) : R , y : D} ✓ A

then A!9A [ {(x , y) : R , y : D} for a fresh individual y

all: If x : 8R .D 2 A and there is a y with (x , y) : R 2 A and
y : D 62 A

then A!8A [ {y : D}

Figure: The completion rules for ALC
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Description Logic with Rules in CHR

Straightforward integration of DL, rules and constraints.
DL in CHR: shorter than formal specification!
Correct, confluent, concurrent, anytime, online algorithm.

and @ I:S1 and S2 <=> I:S1, I:S2

or @ I:S1 or S2 <=> (I:S1 ; I:S2)

some @ I:some R is S <=> (I,J):R, J:S

all @ I:all R is S, (I,J):R ==> J:S

Figure: CHR Rules for ALC
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Description Logic with Rules in CHR

Straightforward integration of DL, rules and constraints.
DL in CHR: shorter than formal specification!
Correct, confluent, concurrent, anytime, online algorithm.

and @ I:S1 and S2 <=> I:S1, I:S2

or @ I:S1 or S2 <=> (I:S1 ; I:S2)

some @ I:some R is S <=> (I,J):R, J:S

all @ I:all R is S, (I,J):R ==> J:S

Figure: CHR Rules for ALC

Easily combine DL with CHR rules (like SWRL)
E.g. the uncle role (male sibling of person’s father):
Z:male, (Y,Z):hassibling, (X,Y):hasparent ==> (X,Z):hasuncle.
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Classical Applications
Trends in Applications

Application Projects

Part III

Applications

6 Classical Applications

7 Trends in Applications

8 Application Projects
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CHR Research Application Domains

- Programming type systems, algorithm design, verification and testing,
- Constraints constraint solving and reasoning,
- Time scheduling and planning, spatial and temporal reasoning,
- Logic logical reasoning, abduction, probabilistic reasoning,
- Agents agent-based systems, semantic web reasoning,
- Languages computational linguistics, grammars,
- and many more legal reasoning, cognitive system modelling, automatic
music generation, game playing, bio-informatics, data mining, . . .
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Embedding Formalisms and Languages in CHR

Embedding by straightforward source-to-source transformation:

Term Rewriting Systems (TRS). Uses Equational Logic.

Functional Programming (FP),

General Abstract Model for Multiset Manipulation (GAMMA),

Graph Transformation Systems (GTS),

(Colored) Petri Nets (PN),

Logical Algorithms (LA). Only known implementation. Achieves the
tight optimal time complexity.

Production Rules and Business Rules,

Event-Condition-Action (ECA) Rules,

Deductive Database languages like DATALOG,

Description Logic (DL) with SWRL-style rules,

Prolog and Constraint Logic Programming (CLP). Uses Clark’s
Completion.

Concurrent Constraint Programming (CC) languages.

Online tool http://pmx.informatik.uni-ulm.de/chr/translator.
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Logical Parallelism and Declarative Concurrency

Confluent programs can be executed in parallel
without modification.

Often optimal linear speedup by parallelization
(superlinear speedup e.g. for gcd algorithm).

Constant time sorting with CHR ultra-parallelism.

Implementations: Haskell, C++ on Nvidia CUDA,
on FPGA Hardware.

Classical Algorithms: Union-Find, Preflow-Push.

Application: Particle collider data filtering with
trigger rules at CERN.
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Testing and Verification

Conditions, Assigments, Memory Locations modelled as CHR
constraints:

Symbolic execution along control-flow graphs

Feasible paths computation and generalisation

Automatic test data generation with heuristics

Applications

Reasoning with data structures, e.g. arrays and
heaps. Separation Logic for heap reasoning using
SMCHR (Satisfiability Modulo Theories with CHR).

Verification of business processes, agents, web
services.

Commercial Users: BSSE, Agitar, Logicblox.
BSSE found mission-critical bug in satellite
software.
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Probabilistic Legal Reasoning

Legal argumentation: both parties make claims and use legal rules

Judge can accept claims and rules to be
applicable or not

Given probabilities of acceptance, what is the
chance to win the case?

Expressed in Probabilistic Argumentation
Logic (a defeasible logic)

Implemented in CHRISM (CHR with PRISM
for probabilisitic reasoning and learning).

Sneyers et. al. Probabilistic legal reasoning in CHRiSM, TPLP 2013.
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Multimedia Transformation Engine for Web Presentations

Joost Geurts, University of Amsterdam.
Automatic generation of interactive, time-based and media centric
WWW presentations from semi-structured multimedia databases.
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POPULAR - Planning Cordless Communication

T. Frühwirth, P. Brisset
Optimal Placement of Base Stations
in Wireless Indoor Communication
Networks, IEEE Intelligent Systems
Magazine 15(1), 2000.

Voted Among Most Innovative
Telecom Applications of the Year by
IEEE Expert Magazine, Winner of
CP98 Telecom Application Award.
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University Course Timetabling

S. Abdennadher, M. Saft, S. Will
Classroom Assignment using
Constraint Logic Programming,
PACLP 2000.

Operational at University of
Munich. Room-Allocation for
1000 Lectures a Week.
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APOPCALEAPS by Jon Sneyers
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Robot Sailboat by INNOC Vienna
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Foto: INNOC Vienna
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Long-Term Routing using Weather and Current Forcests

Langbein, Stelzer, Frühwirth. Robotic Sailing 2011, Springer LNCS.
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Industrial CHR Users

  

Commercial CHR Users

Stock Broking, New Zealand

Injection Mold Design, Canada

Optical Network Routing, USA

Test Case Generation, Germany

Unit Testing, USA

Knowledge Management, USA

Robotic Vehicle Control, Spain
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Autonomous Vehicle Control
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Financial Services
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Constraint Handling Rules

Ultra-high-level formalism and programming language

Integrated into host languages like Prolog, Java, C...

Dozens of open-source implementations

Naturally supports parallelism

Online and anytime algorithm properties for free

Analysis tools (termination, complexity, confluence)

Faster than commercial rule-based systems

Lingua Franca for Computation
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Getting Started with Constraint Handling Rules

Search the Internet/Web for ”Constraint Handling Rules”

Play with CHR at
http://chrjs.net/
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MAKE YOUR OWN RULES.

CONSTRAINT HANDLING RULES



Finally...

Google “Constraint Handling Rules” for the CHR website
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Finally...

Google “Constraint Handling Rules” for the CHR website

Transcribed as CHR, means
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Finally...

Google “Constraint Handling Rules” for the CHR website

Transcribed as CHR, means
to speed, to propagate, to be famous
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Example Programs
Constraint Solvers

Chemical Abstract Machine Style

One constraint. One Simpagation rule.

min(N) \ min(M) , N=<M | true.

gcd(N) \ gcd(M) , 0<N,N=<M | gcd(M-N).

fib(N) \ fib(M) , 0<N,M=<N | fib(M+N).

prime(I) \ prime(J) , J mod I = 0 | true.
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Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y ) ) p(X ,Y ).
e(X ,Z ) ^ p(Z ,Y ) ) p(X ,Y ).

e(a, b) ^ e(b, c) ^ e(c , d)
##

e(a, b) ^ e(b, c) ^ e(c , d) ^ p(a, b) ^ p(b, c) ^ p(c , d)
##

e(a, b) ^ e(b, c) ^ e(c , d) ^ p(a, b) ^ p(b, c) ^ p(c , d) ^ p(a, c) ^ p(b, d)
##

e(a, b)^e(b, c)^e(c , d)^p(a, b)^p(b, c)^p(c , d)^p(a, c)^p(b, d)^p(a, d)
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Prof. Dr. Thom Frühwirth Constraint Handling Rules



Example Programs
Constraint Solvers

Paths in a Graph

e(X ,Y ) ) p(X ,Y ).
e(X ,Z ) ^ p(Z ,Y ) ) p(X ,Y ).

e(a, b) ^ e(b, c) ^ e(c , d)
##

e(a, b) ^ e(b, c) ^ e(c , d) ^ p(a, b) ^ p(b, c) ^ p(c , d)
##

e(a, b) ^ e(b, c) ^ e(c , d) ^ p(a, b) ^ p(b, c) ^ p(c , d) ^ p(a, c) ^ p(b, d)
##

e(a, b)^e(b, c)^e(c , d)^p(a, b)^p(b, c)^p(c , d)^p(a, c)^p(b, d)^p(a, d)
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Example Programs
Constraint Solvers

Shortest Paths in a Graph

p(X ,Y ,N) \ p(X ,Y ,M) , NM | true.
e(X ,Y ) ) p(X ,Y , 1).

e(X ,Z ) ^ p(Z ,Y ,N) ) p(X ,Y ,N+1).

e(a, b) ^ e(b, c) ^ e(c , d)
##

e(a, b) ^ e(b, c) ^ e(c , d) ^ p(a, b, 1) ^ p(b, c , 1) ^ p(c , d , 1)
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Page 32 My first CHR programs | Multiset transformation | Exchange sort

Exchange sort (I)

Exchange sort program
a(I,V), a(J,W) <=> I>J, V<W | a(I,W), a(J,V).

I Rule sorts array by exchanging values which are in wrong order
I Array is sequence of constraints a(Index,Value

i.e. a(1, A1),...,a(n,An)

Example computation
a(0,1), a(1,7), a(2,5), a(3,9), a(4,2)

a(0,1), a(1,5), a(2,7), a(3,2), a(4,9)

a(0,1), a(1,5), a(2,2), a(3,7), a(4,9)

a(0,1), a(1,2), a(2,5), a(3,7), a(4,9)

)



Example Programs
Constraint Solvers

Linear Polynomial Equations

Equations of the form a1x1 + . . . + anxn + b = 0.
Solved form: leftmost variable occurs only once.
Reach solved normal form by Gaussian-style variable elimination.

A1*X+P1=0 ^ XP=0 ,
find(A2*X,XP,P2)
compute(P2-(P1/A1)*A2,P3) ^
A1*X+P1=0 ^ P3=0.

B=0 , number(B) zero(B).
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Example Programs
Constraint Solvers

Fourier’s Algorithm

A1*X+P1�0 ^ XP�0 )
find(A2*X,XP,P2) ^ opposite_sign(A1,A2)
compute(P2-(P1/A1)*A2,P3) ^
P3�0.

B�0 , number(B) non_negative(B).
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MRA - The Munich Rent Advisor

T. Frühwirth,
S. Abdennadher
The Munich Rent Advisor,
Journal of Theory and
Practice of Logic
Programming, 2000.

Most Popular
Constraint-Based Internet
Application.
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