
German University in Cairo

Faculty of Media Engineering and Technology

Computer Science Department

Ulm University

Institute of Software Engineering and Compiler
Construction

CHR-based Text Mining and
Classification of Google Search

Results

Bachelor Thesis

Author: Aly Saleh

Supervisor: Prof. Thom Frühwirth

Co-supervisor: Amira Zaki

Submission Date: 13 July 2012

This is to certify that:

(i) The thesis comprises only my original work toward the Bachelor Degree.

(ii) Due acknowledgment has been made in the text to all other material used.

Aly Saleh
13 July, 2012

Acknowledgments

I would like to thank all those who have helped carry out this thesis for their support,
guidance and encouragement. Without them, this thesis would not have been com-
pleted. I would like to show appreciation and gratitude to those people below.

• My mom, dad and my brother, for their continuous motivation and encourage-
ment, and for always being there for me.

• Amira Zaki, my co-supervisor, for her follow-up and continuous support, guid-
ance. For her tremendous effort all over this semester and for always being there,
in matters of education and life, and constantly and patiently encouraging us.

• Prof. Dr. Thom Frühwirth, my supervisor, for accepting me to do my bachelor
thesis with him, and for his great advices, support and guidance throughout this
semester.

• My friends in Ulm, for their great support and company.

And above all, I would like to thank God, for helping me finish my bachelor and for
getting this far.

III

Abstract

The paper describes a tool which summarizes and classifies Google search results using
Constraint Handling Rules (CHR). The tool extracts data from the Google API and
combines data extraction, linguistic analysis and web development techniques. Linguis-
tic analysis was implemented using CHR and includes counts of important words, non
sequential and sequential patterns, known as sequences. Moreover, PHP and JavaScript
were used for applying web development techniques. The tool features clustering, rank-
ing results and viewing the sequences and important words’ counts as charts. The tool
simplifies finding specific query, especially if the query has several synonyms.

IV

Contents

Acknowledgments III

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Problem Statement . 1
1.3 Outline . 2

2 Background 3
2.1 CHR . 3

2.1.1 Syntax . 3
2.2 Text Mining . 4

2.2.1 General Text Mining Framework 4
2.2.2 Text Mining Products . 4
2.2.3 Challenges . 5

2.3 Text Summarization and Document Clustering 5
2.4 Web Development . 5

2.4.1 PHP . 5
2.4.2 JavaScript . 6
2.4.3 API . 6
2.4.4 JSON . 6
2.4.5 Atom . 6
2.4.6 Highcharts . 6

2.5 SWI-Prolog . 7

3 Approach 8
3.1 Data Extraction . 8

3.1.1 Programming Languages VS Web Page 8
3.2 Linguistic Analysis and Sequences . 10

3.2.1 Frequent Words . 10
3.2.2 Sequences . 10
3.2.3 Words Gravity . 11

3.3 Web Development . 11
3.3.1 Case Folding . 12
3.3.2 Stop Words Removal . 12
3.3.3 Charts and Highlighting . 12
3.3.4 Scored Results . 12
3.3.5 Results Clustering . 12

V

4 Implementation 14
4.1 Implementation Outline . 14
4.2 Data Extraction Implementation . 15
4.3 Stop Words Removal and Case Folding (Web Development I) 17

4.3.1 Preparations . 17
4.3.2 Stop Words . 18
4.3.3 Case Folding . 18

4.4 Linguistic Analysis . 18
4.4.1 PHP Preparations . 18
4.4.2 Prolog and CHR Implementation 19
4.4.3 PHP Handling Ouptut . 23

4.5 Algorithms and Visualizations(Web Development II) 23
4.5.1 Charts and Highlighting Implementation (JavaScript) 23
4.5.2 Scored Results Implementation 25
4.5.3 Results Clustering Implementation 27

4.6 User Guide . 29
4.7 Tool Evaluation . 29

4.7.1 Basic Comparison . 30
4.7.2 General Limitations . 30
4.7.3 SWI-Prolog Limitation . 30

5 Conclusion and Future Work 31
5.1 Conclusion . 31
5.2 Future Work . 31

Appendix 33

A Implementation Code 33
A.1 Preparations for Stop Words and Case Folding Implementation 33
A.2 Preparations for CHR . 34
A.3 Clustering Implementation . 34

References 37

VI

List of Figures

2.1 Highcharts combinational chart example, example from [1]. 7

3.1 Drawing to show the object returned from Google, drawn by [2]. 9
3.2 Example on sequences, drawn by [2]. 10
3.3 Merging two sequences into one, drawn by [2]. 10
3.4 Example on gravity and how it is calculated, drawn by [2]. 11

4.1 Code flow chart, drawn by [2]. 15
4.2 A figure showing the drawn Google search page. 15
4.3 Changing the text to ordered constraints, drawn by [2]. 19
4.4 Important words’ counts chart. 24
4.5 Two-word sequences chart. 25
4.6 Search results having the selected words highlighted. 25
4.7 Snapshot showing top scored search results. 27
4.8 Snapshot showing the least scored search results. 27
4.9 The first cluster for the query “Galaxy”. 28
4.10 The second cluster for the query “Galaxy”. 29

VII

Chapter 1

Introduction

Nowadays, Google is one of the most popular search engines globally. It has been online
for more than fourteen years. It is the number one most visited website according to
Alexa [3] and it is visited monthly by 175 million unique viewers in the US [4]. Ex-
ploiting Google power, one can use Google search results to build an informative and
comprehensive summary. Moreover, one can use Constraint Handling Rules (CHR)
which is a declarative programming language following the constraint based program-
ming paradigm for parsing and analysing Google’s search results and for distinguishing
similar patterns.

1.1 Motivation

Harnessing Google power, one can build informative summaries that try to comprehend
and cluster Google search results. Summaries are essential to declare the important de-
tails and remove unnecessary information. It is also important to grasp the main points
within a story. Furthermore, by clustering the search results, one can classify patterns
into groups (clusters), in which every group of related results are viewed together and
separately from the other groups.

1.2 Aim and Problem Statement

Our aim is to develop a web tool that mines and classifies data extracted from Google
search results, using CHR as a base for its implementation. Combining content of
different search results and try to cluster them. Search results can have its reference
links presented in the text summary. Moreover, words which appear the most among
all the search results can be viewed differently, also data can be analysed to generate
statistics about words and sentences. There are three issues that have to be addressed
to implement this tool:

1. Searching for the best way to extract data from Google.

2. Performing linguistic analysis such as counting word frequencies and detecting
repetitive sentences using CHR.

3. Trying different web development techniques to improve the tool.

1

CHAPTER 1. INTRODUCTION 2

1.3 Outline

This thesis is classified into five chapters. This chapter contains a brief introduction,
motivation, aim and problem statement. In chapter 2, the background knowledge that
influenced the approach decisions is discussed. Chapter 3 deals with the approach taken
to solve the main issues defined in the problem statement. The fourth chapter explains
the detailed implementation of the approach taken, also it contains a users guide section
and a tool evaluation and limitation section. Finally, chapter 5 has a conclusive summary
about this work and the tool, it also gives suggested ideas about future work that can
be done on this tool for more enhancement.

Chapter 2

Background

2.1 CHR

Constraint Handling Rules (CHR) is a declarative programming language designed by
Frühwirth in 1991. It is a high-level, concurrent committed-choice and constraint based
programming language that was used previously as a specific purpose language for solv-
ing constrained based problems, but now it has developed to solve broad types of prob-
lems, to serve general concerns. CHR is embedded in host programming languages as
Java and Haskell, but the most commonly used implementation is Prolog implementa-
tion. A CHR program typically consists of a set of rules that transform constraints until
they are solved.[5].

2.1.1 Syntax

Constraints

CHR contains two types of constraints: built-in constraints and CHR constraints(user-
defined constraints). Built-in constraints are predefined in the host language, or im-
ported CHR constraints from other modules. CHR constraints on the other hand, are
in the current CHR program and defined by CHR rules.

Rules

CHR has three types of rules: simplification rules, propagation rules and simpagation
rules.

• Simplification rule: Replaces the already existing constraints with simpler ones,
thus causing reduction to the problem.

• Propagation rule: Adds new constraints to the already existing ones to clarify
and give more information about the problem, which may cause further simplifi-
cation.

• Simpagation rule: Combines both simplification and propagation. It separates
the head of the rule into two parts containing constraints, where the constraints on
the left of the backslash \ are propagated and the ones on the right are simplified.

3

CHAPTER 2. BACKGROUND 4

SimplificationRule: Name @ Head <=> [Guard |] Body

PropagationRule: Name @ Head ==> [Guard |] Body

SimpagationRule: Name @ Head \ Head <=> [Guard |] Body

Where Name is an optional unique identifier, the Head is one or more CHR constraints,
the Guard is built-in constraints and the Body is the Goal, where a Goal is a query
that contains a mixture of built-in constraints and user-defined constraints separated by
commas [5].

Head --> CHRConstraints

Guard --> BuiltInConstraints

Body --> Goal

2.2 Text Mining

Text mining is the process of analyzing, extracting information and discovering im-
portant patterns in a text document. It has very high commercial value which makes
high-tech companies interested in text mining. A recent study shows that 80% of com-
panies information is stored in text. Text mining can be considered as an extension
for data mining, since text mining deals with unstructured data and involves multiple
fields such as information retrieval, clustering, categorization, visualization, database
technology, machine learning and data mining. Data mining on the other hand deals
with structured data [6].

2.2.1 General Text Mining Framework

A general text mining framework has been presented which consists of two components

• Text refining which is the process that transforms text into an intermediate form
(IF). The IF can be document based where each entity represents a document
such as clustering, or concept based where each entity represents a concept of
interest. Mining concept based IF obtains patterns and relationships. However,
document based IF can be transformed to concept based by extracting important
information according to concerns of a certain domain.

• Knowledge distillation which concludes patterns and knowledge from the interme-
diate form.

2.2.2 Text Mining Products

Text mining products are also classified into two types of products.

• Document visualization, its general idea is to gather similar documents in clusters
and show them in a certain graphical interface. Many products fall into this
category.

• Text analysis and understanding, which is based on natural language processing
and includes text analysis, categorization, information extraction and summariza-
tion.

CHAPTER 2. BACKGROUND 5

2.2.3 Challenges

To reach the IF, semantic analysis need to be performed, which is computationally ex-
pensive and executes few words per second. It remains a challenge to come up with
more efficient algorithms to perform semantic analysis. Moreover, there is a significant
language component contributing in text mining, which makes reaching a language in-
dependent IF a hard task. Also, if the knowledge domain was known previously, parsing
efficiency could be improved in the early stages to reach a more compressed IF.

2.3 Text Summarization and Document Clustering

The tool introduced in [7], performs two main tasks that utilize beneficial concepts:
document clustering and text summarization. Some of these concepts influenced this
work. The first concept, namely clustering, is the task of assigning a set of objects into
groups so that objects of the same cluster are more similar. It is a common technique for
statistical data analysis and is used in many fields including machine learning, pattern
recognition and information retrieval.
Moreover, when mining text documents, some difficulties arise, handling synonyms (dif-
ferent words with same meaning) and hynonyms (words with same spelling but different
meaning) is one of these difficulties. Also, there is a large number of words that ex-
ist in a text document, which makes it more difficult for any text mining algorithm.
Therefore, pre-processing methods should be applied to reduce the number of words.
The tool presents some solutions for this issue, such as case folding, removal of unin-
formative words, stemming and n-grams. Case folding is the process which alter all
characters of a text document into the same case, either upper case or lower case. Un-
informative words removal is withdrawing all the words which appear many times in a
text document and do not contribute much in the document content where they appear.
Stemming which is the process of converting each word to its stem, removing suffixes
and verbal/plural inflections. Finally, N -grams are a part of a longer string, for example,
DA is a tri-gram for DATA where “” represent a leading or a trailing space, n-grams do
not require linguistic preparations and is not sensitive to grammatical errors, however,
it is less effective than stemming and stop words removal in decreasing the number of
words.
The tool also uses a summarization algorithm which is based on the most relevant sen-
tences in a document. A sentence is relevant if it has a high average relevance of all
words in the pre-processed sentence.

2.4 Web Development

2.4.1 PHP

PHP is a general purpose server-side scripting language used for web development. It is
a recursive acronym for “Hypertext Preprocessor”. PHP files contain PHP code which
is embedded inside HTML “Hyper Text Markup Language”. Moreover, the PHP code is
surrounded by special start and end characters to jump into the PHP mode. The start
characters are <?php and the end characters are ?>. PHP also supports major operating
systems and most web servers. Moreover, PHP supports lots of databases, which makes
building a database-enabled website very easy. PHP is capable of outputting a lot of
formats such as images, PDF files and even flash videos. Moreover, PHP includes many
text processing capabilities. To use PHP for server-side scripting, three pre-requisites
are needed:

CHAPTER 2. BACKGROUND 6

• PHP parser.

• Web server.

• Web browser.

After running the web server with a connected PHP installation, one can view the output
of a PHP program in the web browser through the web server [8].

2.4.2 JavaScript

JavaScript is a client-side interpreted object-based programming language and it is used
and supported to a great extent. It is a client-side programming language since it runs
on the client computer. Variables in JavaScript does not have types since JavaScript
is a weakly typed programming language. One advantage of the weakly typed pro-
gramming languages is that programmers do not need to specify variable types, which
makes it easier on them, since the compiler or the interpreter does the type conversion.
JavaScript code is embedded in HTML between special tags. The code begins with
<Script language = "JavaScript"> tag and end with </Script> tag. The client
browser interprets and runs the JavaScript code [9].

2.4.3 API

API stands for Application Programmable Interface. An API is typically an interface
which contains set of functions and methods that can be used in ones project to extend
a certain application or an operating system and communicate with other software
components [10].

2.4.4 JSON

JavaScript Object Notation (JSON) is a text format for representing structured data.
Four primitive and two structured types can be represented by JSON. The primitive
types are string, numbers, boolean and null. The structured types are arrays and ob-
jects. Many applications written in many programming language use JSON for data
exchanging [11].

2.4.5 Atom

Atom is a format based on the XML language, which is the Extensible Markup Language.
Atom is used for describing lists of related information known as “feeds”. The main use
of Atom is to provide web feeds including web-logs and news headlines [12].

2.4.6 Highcharts

Highcharts is a library for charts written in JavaScript. Highcharts enable web devel-
opers to add interactive charts to their websites easily. Moreover, it is compatible with
all modern browsers and it is free for all non-profit organizations. Highcharts has many
features; numerous chart types, tool tip labels, dynamic, exporting and printing, text
rotation for Labels and zooming. See figure 2.1 for an example [13].

CHAPTER 2. BACKGROUND 7

Figure 2.1: Highcharts combinational chart example, example from [1].

2.5 SWI-Prolog

SWI-Prolog is an open source implementation for Prolog. It is used for implementing
in logic programming paradigm and experiment interactions with other programming
paradigms. SWI-Prolog lacks optimization, since it focuses on two main objectives:
portability(SWI is written in C and Prolog) and modifiability. It has many features
such as multi-threading, Graphical user interface, interface with Java, IDE and libraries
for constraint logic programming. SWI-Prolog has a specific library for CHR. The CHR
system of SWI-Prolog is the K.U.Leuven CHR system, see chapter seven of [14]. SWI-
prolog is available on Windows, Unix and MACOSX [14] [15].

Chapter 3

Approach

Accomplishing the aim to develop a summarization tool, starts with solving the three
main issues stated in the introduction, which were

1. Searching for the best way to extract data from Google.

2. Performing linguistic analysis using CHR.

3. Improving the tool by trying different web development techniques as algorithms
and visualizations.

In this chapter, a description of the approach taken to tackle these three problems can
be found.

3.1 Data Extraction

According to Google terms and conditions [16], the only legal way to extract data from
Google is through its interface (API). However, sending a request to Google API and
receiving the response can be done in different ways:

• Using programming languages.

• Using web page.

3.1.1 Programming Languages VS Web Page

Both of the previously mentioned ways will retrieve Google results. However, since the
desired tool is a web tool, using a web page is more preferable. Moreover, using a web
page has many advantages over other programming languages. For this work, we are
interested in two of these advantages; the parser and Google Custom Search Engine.

8

CHAPTER 3. APPROACH 9

Parser

Using a programming language will require implementing a parser since the received
data is in form of Atom, JSON or plain text, which can be an overload. On the other
hand the web page does not need a parser since the results are received as an object
which contains the contents of each result, see object representation in 3.1.

Figure 3.1: Drawing to show the object returned from Google, drawn by [2].

Google Custom Search Engine (CSE)

Google Custom Search API helps retrieving and displaying search results through Google
Custom Search Engine, which is a customized search engine that has a control panel.
It searches on specific websites in which the administrator specifies. However, the CSE
can be adjusted through its control panel to search the whole web but these results are
unlikely to match Google Web Search results. Google CSE control panel also allows its
administrator to generate the code as a JavaScript code according to the desired features
chosen from the control panel [17]. The CSE returns a maximum of 10 result pages. To
create a CSE, first one must create a Google account, then go to www..google.com/cse

and create a search engine specifying its features. Afterwards, the code for the search
engine will be generated. Some of the control panel features are:

• View statistics about what people are searching for in the CSE.

• Collaboration by inviting another developers to contribute in the search engine.

• Enabling auto-completeness in the search bar.

• Expanding users search query by adding synonyms for the search query. For ex-
ample, when the user searches for “car” results for “car” and “auto” are returned.

• Displaying returned results and enabling administrator to change layout and style.

CHAPTER 3. APPROACH 10

3.2 Linguistic Analysis and Sequences

3.2.1 Frequent Words

Frequent words or important words are words which appear frequently in a text doc-
ument. In order to realize these frequent words, one needs to count each word in this
text document then filter these counts according to a certain threshold.

3.2.2 Sequences

A sequence is an ordered, non-empty set of items [18]. To detect sequences, three steps
are presented:

1. Every N consecutive words represent N -word sequence. Hence, one must keep
track of words’ order and for every N consecutive words, N -word sequence should
be generated.

Figure 3.2: Example on sequences, drawn by [2].

2. After generating the N -word sequences, merging identical sequences into one se-
quence and increasing the appearance count of the generated merged sequence, is
essential. Thus, disabling same sequence occurring more than once.

Figure 3.3: Merging two sequences into one, drawn by [2].

CHAPTER 3. APPROACH 11

3. Finally, filtering sequences which have a small appearance count leaving only im-
portant sequences having large counts. These sequences are filtered according to
a defined threshold number.

3.2.3 Words Gravity

Words gravity or relativity is the strength between the non sequential words, generating
a sequence of these non sequential words. However, the words should be in the same
sentence. Moreover, the gravity strength is set according to the distance between the
chosen words. Afterwards, these sequences are summed up and filtered out as the
previous sequences. The algorithm for the calculating strength is:

Algorithm 1 Gravity Algorithm

Given two words in the same sentence
For every wordi, wordk and k > i, where k and i are the indices of the words

Gravity between wordi, wordk =
(
1
2

)f
where f = the number of words between wordi, wordk

Figure 3.4: Example on gravity and how it is calculated, drawn by [2].

3.3 Web Development

By using one or more scripting language, several algorithms and visualizations are in-
troduced to simplify viewing important words and sequences, and to cluster data into
different groups according to their similarity.

CHAPTER 3. APPROACH 12

3.3.1 Case Folding

Case folding is the process which alter all characters of a text document into the same
case, either upper case or lower case. For example, the words “car”, “Car”, “cAr”,
“caR”, “cAR”, “CaR”, “CAr”, “CAR” should be all altered to the word “car” if its a
lower case folding or “CAR” if its an upper case folding [7]. Case folding is essential for
pattern matching, because trying to match “Car” with “car” would not match despite
the insignificant difference.

3.3.2 Stop Words Removal

Stop words are the words which appear many times in a text document and do not
contribute much in the document content where they appear. The words “the”, “can”,
“will” are examples for the stopping words. Removing this stopping words will decrease
the document size which will in tern increase execution speed and efficiency. Moreover,
the number of non informative patterns and counts will decrease significantly [7].

3.3.3 Charts and Highlighting

Viewing important words or sequences as bar charts, where each bar represents a word
or a sequence, and their count is indicated by the bar’s length. Moreover, by selecting
the bar, the word or sequence that corresponds to this bar will be highlighted in the
original text.

3.3.4 Scored Results

Scored results is an algorithm to find the score of each result according to the number of
important words which appeared in the result. The importance of a word is calculated
according to how frequent it appeared in the search results. Afterwards, results are
sorted according to this score in descending order to facilitate viewing more important
results first. The algorithm to implement the scored results is as follows:

Algorithm 2 Scores Algorithm

Given That R holds the search results, S holds the result score which is initially equal
zero, W holds the important words and C holds the important words’ counts.

For each < Ri, Si >
For each < Wj , Cj >

If (Ri.contains(Wj))
then Si ← Si + Cj

End If
End for

End for

3.3.5 Results Clustering

Classifying search results into small groups which differentiate between different conno-
tations. Assume that we have the list of search results indices where each important
word appeared in, e.g. the word “help” appeared in result {64,63,40,4,12}. The

CHAPTER 3. APPROACH 13

numbers in the list indicates the indices of the search results. Then, after giving each
pair of an important word (W) and set of result indices (R), a unique number repre-
senting a cluster (C), where W ,R and C represent a tuple <W,C,R>. The algorithm
starts by comparing pairs of tuples, through calculating the intersection between the
set of result indices (R) in one tuple with all the other tuples; the pair with maximum
intersection is chosen and is given the same group numbers (C). For instance, the tuple
<W1,1,{1,2,3,4,5}> is in cluster group one and the tuple <W2,2,{2,3,4,5,6}> is in
cluster group two, if they have maximum intersection then both of them will be assigned
to group one, always switching cluster numbers with the smaller number to ensure cor-
rectness of the algorithm. If we used switching with larger group number failures could
happen. For example, if there are three tuples <X,C1,R1>,<Y,C2,R2> and <Z,C3,R3>

and they have group numbers C1, C2 and C3 respectively, where C3>C2>C1 and we figure
out that R1 and R2 have maximum intersection and should have the same group num-
ber, then their group numbers will be changed to C2 since C2 > C1, therefore, the tuples
will be changed to <X,C2,R1> and <Y,C2,R2>. Then, if R2 has maximum intersection
with R3 and should also have the same group number, then their group numbers will
be changed to C3 to have <Y,C3,R2> and <Z,C3,R3>. This is wrong because they all
should belong to the same group. Because if X has maximum intersection with Y, then
they should have the same cluster number even if Y changed afterwards, same for Y and
Z. However, switching with the smaller number will not cause this hazard because all of
them will have group number C1. The algorithm is as follows:

Algorithm 3 Clustering Algorithm

Given that C is the cluster group, W is the important word, R is the set of search results
indices.

All distinct Ci

Important word tuple←< Wi, Ci, Ri >
For each < Wi, Ci, Ri >

get from all other tuples an important word tuple
such that < Wj , Cj , Rj > hasmax |Ri ∩Rj |.

End For
set Ci and Cj ←min(Ci, Cj)

Chapter 4

Implementation

In this chapter, the tool implementation details are explained by applying the algo-
rithms described in chapter 3 using the technologies presented in chapter 2. Moreover,
the chapter includes a user guide section in addition to a tool evaluation and limitation
section. Please note that, mapped arrays are arrays which have their elements corre-
sponding to each other. Meaning, the first element of the first array has related data to
the first element in the second array.

4.1 Implementation Outline

Initially search results are extracted using the data extraction code and then these search
results are sent to PHP to remove the stopping words and case fold the text characters.
Afterwards, PHP writes the text without stopping words and case folded in a text file,
then calls SWI-Prolog using command prompt running a specific predicate. SWI-Prolog
will run the Prolog predicate and the CHR rules returning the CHR output to PHP
again. Eventually, PHP will perform some algorithms and visualizations to output the
summary. This chapter discusses each step in more detail. Figure 4.1 gives an overview
of the tool implementation architecture.

14

CHAPTER 4. IMPLEMENTATION 15

Figure 4.1: Code flow chart, drawn by [2].

4.2 Data Extraction Implementation

First, one needs to load the search engine and draw the search page, to enable the user
to search a specific query returning one page of search results. Drawing the search page
means having the search bar and a search button in the page as in figure 4.2, which
is done automatically by Google CSE. However, to have a conclusive and informative
summary one must have more than one result page, thus one must request more pages
programmatically. Afterwards, some text manipulation is done and then the data is
sent to PHP for data analysis and web development.

Galaxy Search

pow ered by

Figure 4.2: A figure showing the drawn Google search page.

The following code snippet is generated by Google CSE used to load and draw the
search page and initialize custom search and the custom search options, enabling the
auto-complete in the search bar. Also, linking the search engine with the online control
panel. The search bar is drawn in a division with id cse.

<script>

google.load(’search’, ’1’, {language : ’en’,});

google.setOnLoadCallback(function() {

var customSearchOptions = {};

CHAPTER 4. IMPLEMENTATION 16

var customSearchControl = new google.search.CustomSearchControl(

’002978428225665678344:-pyzpchfj_w’, customSearchOptions);

customSearchControl.setResultSetSize

(google.search.Search.LARGE_RESULTSET);

var options = new google.search.DrawOptions();

options.setAutoComplete(true);

customSearchControl.setAutoCompletionId(’002978428225665678344:-

pyzpchfj_w+qptype:1’;

customSearchControl.draw(’cse’, options);

}, true);

</script>

<div id="cse" style="width: 100%;">Loading</div>

The next three lines are manually added to the previous script code for different
reasons. The first line calls back the function searchComplete after the search results
for each page are returned. The last two lines bind some global variables to the search
objects for future manipulation

customSearchControl.setSearchCompleteCallback(this, searchComplete);

s = customSearchControl.getWebSearcher();

customSearch=customSearchControl;

Requesting more pages programmatically is done in this function searchComplete.
The function simply saves the search results in an array of objects then checks; if the
number of pages is less than 10 then add the search results to the array and go to the
next page, else call a function process which sends the data to PHP. The new page
is requested by calling a predefined function from the Google search object which was
bounded previously. The variable page is initialized to one because page zero results are
retrieved in the initial search call done by the user.

var page = 1;

var resultsCounter = 0;

function searchComplete()

{

if(s.results && s.results.length > 0)

{

var results = s.results;

for(var i = 0; i < s.results.length; i++)

{

allResultsArray[resultsCounter] = s.results[i];

resultsCounter++;

}

if(page < 10)

{

s.gotoPage(page);

page++;

}

else

{

process();

}

}

}

CHAPTER 4. IMPLEMENTATION 17

The process function loops over the results and removes some unwanted characters
using a predefined JavaScript string function replace, then puts the results content
and the corresponding links alternatingly in a string. Putting between the contents and
links some special characters to differentiate between them. Finally, submitting a form
which sends the data to a PHP page and also sends the search query to the page.

<script>

function process()

{

for (var i = 0; i < allResultsArray.length; i++)

{

if(allResultsArray[i] != null)

{

var x = allResultsArray[i].content;

x=x.replace(//gi,"");

x=x.replace(new RegExp("","gi"), "");

allResults =allResults + x + "******";

allResults =allResults + allResultsArray[i].url+ "******";

}

else

{

break;

}

}

// Submitting the form and sending data to PHP.

document.getElementById(’allResults’).value=allResults;

document.getElementById(’searchQuery’).value=

customSearch.getInputQuery();

document.getElementById(’form’).submit();

}

</script>

<form id="form" method="post"

action="http://localhost/phpmyadmin/Clusters.php">

<input type="hidden" id="allResults" name="allResults">

<input type="hidden" id="searchQuery" name="searchQuery">

</form>

4.3 Stop Words Removal and Case Folding (Web De-
velopment I)

4.3.1 Preparations

Firstly, the search results sent from the data extraction process have to be read. Then,
one can split the data sent to have the results and the links in an array. Search results
and links will be alternating in this array. Each search result has its link in the following
element of an array. However, splitting the original text had to be done twice; one before
removing the stop words and one after it, taking the links from the first split output
and the search results from the second split output, because if the stop words were
removed before splitting, links will be destroyed, and if it was done after splitting, then
the results array had to be concatenated again to a string to perform the stop words

CHAPTER 4. IMPLEMENTATION 18

removal. Having the results and links alternating in an array, one can distribute them
into two mapped arrays as well as case folding the results into a third mapped array to
have the original search results and the case folded ones. The function used for splitting
the results is a predefined function explode. The detailed implementation can be found
in A.1.

4.3.2 Stop Words

Stop words removal is done by searching for these stop words and replacing them with
an empty string. Using the predefined PHP function preg_replace which searches for a
subject that matches a specific pattern and replaces it with a replacement. The function
implode used to surround the word with \b and /i. This creates a regular expression.
The b tags indicates a word boundaries. For example, the word “web” is matched and
not a word partial as “webbing” or “website”, the i indicates case insensitivity. The
used PHP library was brought from an online website for code snippets, then some other
words were added experimentally.

// The library is trimmed because its too big.

$commonWords = array(’the’,’can’,’an’,’a’,....);

$name0=preg_replace(’/\b(’.implode(’|’,$commonWords).’)\b/i’,’’,$name0);

4.3.3 Case Folding

Simply case folding is done by a predefined PHP string function strtolower which
converts characters to lower case.

$results[$resultsCounter] = strtolower($splitted[$counter]);

4.4 Linguistic Analysis

Linguistic analysis is done using CHR and Prolog. When PHP calls SWI-prolog from
the command prompt, a specific Prolog predicate starts executing. Afterwards, CHR
rules are fired until there is no more rules to fire. Then an output is returned.

4.4.1 PHP Preparations

For PHP to call SWI-prolog, the text file which have the search results case folded has
to be ready, because SWI-Prolog will read this file to perform the linguistic analysis on
it.

Writting In a Text File

To write in a file, one must specify its path. Then to open it, fopen which is a predefined
PHP function is used. Afterwards, iterating over the case folded results and writing them
in order. A predefined PHP function fwrite is used to write the results in the file.

CHAPTER 4. IMPLEMENTATION 19

$myFile =

"C:\\Dokumente und Einstellungen\\Alexander\\Desktop\\text.txt";

$fh = fopen($myFile, ’w’) or die("can’t open file");

for ($counter = 0; $counter < sizeof($results); $counter += 1)

{

fwrite($fh, "$results[$counter]");

results)

}

fclose($fh);

Calling SWI-Prolog

Calling SWI-Prolog is done via command prompt. PHP has a predefined function that
executes a command and return the output of executing this command. The function
is called shell_exec. It takes a command as an input. The command used to run
SWI-Prolog consists of several parts; the SWI-Prolog path, path of the file to consult,
name of the predicate to execute, size of the global and local stack and eventually “halt”
which means close SWI-Prolog after returning the output.

$cmd = "C:\\Programme\\pl\\bin\\swipl.exe -f C:\\PrologTest.pl

-g test -L128m -G32g ,halt";

// Explaning the command by example:

// Path for SWI-Prolog (C:\\Programme\\pl\\bin\\swipl.exe)

// which file to consult (-f C:\\PrologTest.pl)

// which predicate to execute (-g test)

// increasing local and global stack (-L128m -G32g).

// halt is to close SWI-Prolog.

$output = shell_exec($cmd);

4.4.2 Prolog and CHR Implementation

In order to detect sequences using CHR, one should have the text file represented as
ordered constraints. Meaning, each word in the text will be represented as a constraint,
in which each word have an identifier for its place in the sentence and an identifier for
the sentence in the text as shown in figure 4.3. Afterwards, sequences can be detected
easily using CHR. For this tool, two-word sequences, gravity and words count are used.
However, sequences till the four-word sequences are implemented.

Figure 4.3: Changing the text to ordered constraints, drawn by [2].

CHAPTER 4. IMPLEMENTATION 20

Preparations

Before converting the text into ordered constraints, the data sent form PHP has to be
read. Prolog has a predefined predicate called open which takes as an input the path of
the file to be read and output the text file as a stream. This stream is used by another
function called read_file_to_codes which takes the stream as an input and output a
list which have all the characters in the file represented in ASCII codes. Afterwards, the
function removePunc is invoked on this list to remove some unwanted characters. The
function simply takes the list of characters as an input and output the same list without
the unwanted characters. Preparations code in A.2.

From Text to Ordered Constraints

After having all the characters in the text file in one list, it can be divided into sentences
to have each sentence as a sub-list. Moreover, each sentence can be divided into words
to have each word as a sub-sub-list. This results in a list of sentences, where in tern
each sentence list contains list of words

First dividing the list that contains all characters to sentences. The following predi-
cate cTs simply iterates over the list of characters till it finds “.” followed by a space, or
a new line. Then the section that was iterated over will become a sub-list of the output
list etc. The predicate outputs a list of sub-lists, each sub-list represents a sentence.

cTs([],[[]|[]]).

cTs([F,F2|L],[[F|R]|S]):-

(F\=46;

F\=10;

F2\=32),

cTs([F2|L],[R|S]).

cTs([L],[[L|R]|S]):-

cTs([],[R|S]).

cTs([F,F2|L],[[]|S]):-

((F=46,

F2=32);

F=10),

cTs(L,S).

Then dividing these sentences, each sentence will be divided into a list of words.
This is done by the next predicate, which takes as an input a list of sub-lists, where
each sub-list represents a sentence. The predicate basically iterates over each sentence,
splitting it on space. Meaning, it iterates over each sub-list until it finds a space and sets
the covered selection so far as a sub-sub-list of the output list (word). In the output list,
sentences are the sub-lists and words are the sub-sub-lists. Also the predicate changes
the characters from their ASCII codes to their original form using char_code, which is
a predefined Prolog function that takes the ASCII code of the character as an input and
returns its original form.

CHAPTER 4. IMPLEMENTATION 21

allcTc([],[]).

allcTc([H|T],[R|R2]):-

cTc(H,R),

allcTc(T,R2).

cTc([],[[]|[]]).

cTc([F|L],[[N|R]|S]):-

F\=32,F\=46,

char_code(T4,F),

N=T4,

cTc(L,[R|S]).

cTc([F|L],[[]|S]):-

(F=32;F=46),

cTc(L,S).

Having the text file as a list containing the sentences as sub-list and the words
as sub-sub-list, ordered constraints can be simply done by creating a sentence identifier
according to the position of the sentence in the list (text). Also, creating a word identifier
according to the position of the word in the sub-list (sentence). These CHR rules take
the output list and generate word constraint, where each constraint (word/3) contains
the word itself and two identifiers; the identifier of the word in the sentence and the
identifier of the sentence itself in the text.

comp([],_,_) <=> true.

wordify([],_) <=> true.

wordify([],_) <=> true.

wordify([H|T],ID) <=> comp(H,1,ID),ID2 is ID+1,wordify(T,ID2).

comp([H|T],ID ,ID3) <=> word(H,ID,ID3),ID2 is ID+1 ,comp(T,ID2,ID3).

Frequent Words Implementation

In the implementation of frequent words, sentence and word identifiers in the generated
constraints were not used, since positions of the words in the text are not crucial. It is
only important to know if the words appear or not. A word constraint (word/3) is a
constraint having the word and the two identifiers, which were not used in the frequent
words implementation. A count constraint (count/2) is a constraint having the word
and its count value in the text. The CHR implementation of frequent words is simple
and is based on two main conditions:

• If there is a word constraint, then simplify this word constraint to a new count
constraint for this word, with its count value equal to one.

• If there are two count constraints for the same word, then simplify them to a new
one, with its count value equal to the sum of both input count constraints values.

word(W,_,_) <=> count(W,1).

count(W,C), count(W,C1) <=> C2 is C + C1, count(W,C2).

After all the counts have been calculated, filtering process takes place. In the current
implementation of the tool, the threshold for filtering the counts is three. The next rule
prints the words which has a count greater than three.

count(W,C) <=> C>3 | writeWord(W), writeln(’ ’), writeln(C).

CHAPTER 4. IMPLEMENTATION 22

Sequences and Word Gravity Implementation

Possessing the words as constraints, it is easy to detect sequences. For example, if you
need to recognize a two-word sequence, one only needs to check if the two words are in
the same sentence by checking the sentence identifier and also check if the two words
are consecutive by checking the words identifier, and the same goes to the three-word
sequence etc. Also, for detecting the non sequential word patterns, one only needs to
check if the two words are in the same sentence and that the second word comes after
the first one.

The following CHR rule detect two-word sequences and gravity at the same time.
The rule takes two constraints representing two words with their identifiers as an input,
and if they are a sequential or non sequential word patterns then the rule generates a
sequence constraint (sequence/3) of the two words with a calculated gravity. If the two
words are exactly following each other then when applying the gravity rule presented in
the approach in algorithm 1, the calculated gravity will be one, otherwise the gravity
will be powers of half according to how far the words are from each other. Also, a
limitation is applied which is, the distance between two non sequential words should not
exceed five words to generate a non sequential pattern. This rule generates sequences
constraints (sequence/3) where each one consists of the two words contributing in the
sequence and the gravity of the sequences.

word(W,I,S), word(W1,I1,S) ==>

I1>I , R is I1-I-1 , R<5

| R2 is 0.5 ** R , sequence(W,W1,R2).

Also the rule to generate three-word sequences is as follows:

word(W,I,S), word(W1,I1,S), word(W2,I2,S) ==>

I1 is I+1, I2 is I1+1, sequence3(W,W1,W2,1).

Now that the sequences have been generated, identical sequences should be summed
to calculate a sequence strength. This is done by checking on the two words in the
sequences constraints. If the sequences are identical then the two sequences are sim-
plified to new sequence containing the same two words but with their gravity summed
to magnify the strength. Also, same for the three-words sequences to the N -words se-
quences. The CHR rule for summing sequences is the same idea as the rule that sum
the important words’ counts introduced in 4.4.2.

After summing the sequences, the filtering process starts in order to have only the
important sequences. The sequences are filtered according to an experimental threshold,
which is taken to be three in this tool. The CHR rule simply states that if there is a
sequence which has strength less than three then filter it out.

sequence(W,W1,Count) <=> Count < 3 | true.

In order for the CHR output to be written in command prompt and consequently
to be read in PHP, the CHR output has to be written i.e. printed. Printing out
was implemented using a CHR rule and a Prolog predicate. The rule calls the Prolog
predicate, giving it as input the words to be written. Also the rule writes the strength
of the sequence on a new line.

CHAPTER 4. IMPLEMENTATION 23

Overlapping Sequences

Another CHR rule was implemented yet not used in the tool, is the overlapping se-
quences. Its idea is, merging every two overlapping sequences together to generate a
new sequence. For instance, the sequences Constraint Handling and Handling Rules

are overlapping, since the first sequence ends with Handling and the second sequence
starts with Handling. If two sequence fulfil this condition a new sequence is gen-
erated combining them both, in the previous case the resulting sequence would be
Constraint Handling Rules. The overlapping sequences are generated after all se-
quences are summed and filtered out, to ensure that there are no redundant sequences
and only important overlapping sequences are generated.

sequence(W,W2,_), sequence(W2,W3,_) ==> sumsequence3(W,W2,W3).

4.4.3 PHP Handling Ouptut

After the SWI-Prolog terminates and the output is written on the command window,
the written output is stored in a PHP array. Then, this PHP array is divided into
four arrays; an array for the two-word sequences mapped with an array that holds the
strengths of the two-word sequences, an array for the counts mapped with an array that
holds the strengths of the counts array.

4.5 Algorithms and Visualizations(Web Development
II)

4.5.1 Charts and Highlighting Implementation (JavaScript)

Having the counts and sequences represented in PHP arrays, they can be converted into
JavaScript arrays to use Highcharts. The following code is a JavaScript code that does
a simple conversion from a PHP array to a JavaScript array. However, conversions of
arrays which hold numbers needs to parsed.

var words = <?php echo json_encode($counts); ?>;

var numbers = <?php echo json_encode($countsValues) ; ?>;

for(var i = 0 ; i< numbers.length;i++)

{

numbers[i]= parseFloat(numbers[i]);

}

Two bar charts were implemented in the tool; one visualizes the important words as
bars, where the bar length indicates how many times did the important words appear.
The second one is as the previous but visualizes two-word sequences. Bar charts were
implemented using an example downloaded from Highcharts [19] and using the converted
arrays described above. However, some minor changes were made to the example code;
changing the size of the chart according to the array size, and changing the on-click
event handler to highlight the selected word or sequence. The click event handler calls
a JavaScript function called highlight. This function highlights the selected word in
the original text. Also, there is another function that highlights the sequences.

CHAPTER 4. IMPLEMENTATION 24

plotOptions:

{

column: {

pointPadding: 0.2,

borderWidth: 0,

cursor: ’pointer’,

point: {events: {click: function() {

highlight(this.category);}}}},

dataLabels:{

enabled: true}

}

function highlight(text)

{

var inputText = document.getElementById("inputText")

var strLen = text.length;

var re = new RegExp(’(’+text+’)’,’gi’);

inputText.innerHTML = inputText.innerHTML.replace(re,’<span

style="background-color:yellow;">$1<\/span>’);

}

The charts output is shown in figures 4.4, 4.5 and 4.6 when running the search query
Galaxy. Where, figure 4.4 shows the bar chart of important words’ counts for the query
Galaxy. Moreover, the word galaxies is selected to be highlighted within the search
results. Also, it is hovered over to show its exact count. The chart is sorted in descending
order; from the higher counts to the lower ones.

Figure 4.4: Important words’ counts chart.

The second figure 4.5 also shows a bar chart of the two-word sequences for the
same query. The chart is also sorted as the previously mentioned chart. The word
science fiction is selected to be highlighted within the search results. Some of the
counts might have decimals because of the gravity calculation.

CHAPTER 4. IMPLEMENTATION 25

Figure 4.5: Two-word sequences chart.

The last figure 4.6 shows the search results, having the selected words in both of the
previous charts highlighted.

Figure 4.6: Search results having the selected words highlighted.

4.5.2 Scored Results Implementation

Scored results are implemented according to the algorithm illustrated in the approach in
algorithm 2. The following code is an implementation of the presented algorithm, where
$resultsUS is an array which contains the search results. Moreover, the array $counts

contains the important words found in the text mapped with $countCounter, which
contains $counts array strengths. The code loops over the search results and checks if
it has any important word, then it adds the count of the important word to the result
score. The scores of all the results are stored in the array $rating which is mapped
with $resultsUS. Matching the important words to the result is done using a predefined
function called preg_match_all which returns true if there is a match or false otherwise.
Also, the function returns the pattern matches found and store them in an array, which

CHAPTER 4. IMPLEMENTATION 26

is $matches array in this case. The function takes as an input a pattern, a subject to
match this pattern on and a flag. The flag used is PREG_PATTERN_ORDER which orders
the first element of the array $matches to have all the full pattern matches, and the
second element to have the matched sub-patterns. Using this array, one can easily get
how many full pattern matches are found by getting the size of the first element of the
array $matches.

$rating = array();

$ratingCounter=0;

for ($counter = 0; $counter < sizeof($resultsUC); $counter += 1)

{

$varC =0;

for ($counter2 = 0; $counter2 < sizeof($counts); $counter2 += 1)

{

$var = "~" . substr_replace($counts[$counter2] ,"",-1) . "~i" ;

if(preg_match_all($var,$resultsUC[$counter],$matches,

PREG_PATTERN_ORDER))

{

$varC= $varC + $countsCounter[$counter2];

}

}

$rating[$ratingCounter]=$varC;

$ratingCounter+=1;

}

The following line of code is added to remove an extra trailing space in each important
word for pattern matching, because matching the word “Google” with “Google ” will
return false.

$var = "~" . substr_replace($counts[$counter2] ,"",-1) . "~i" ;

After calculating all the results score in the array $rating, the array is sorted ac-
cording to the highest score to have the highest scores result at the top of the array and
the least scores at the end. Insertion sort is used for this sorting.

The output of the scored results is shown in figures 4.7, 4.8, when running Galaxy

as a search query, where figure 4.7 shows some of the top scored results and figure 4.8
shows some of the least scored results. Moreover, the important words that affected the
score of the results are shown in larger font.

CHAPTER 4. IMPLEMENTATION 27

Figure 4.7: Snapshot showing top scored search results.

Figure 4.8: Snapshot showing the least scored search results.

4.5.3 Results Clustering Implementation

As presented in the approach in 3.3.5, before applying the clustering algorithm, deter-
mining for each important word the set of numbers which represent the indices of the
results list in which each important word appeared in, should be done first. For in-
stance, word “help” appeared in results {63,62,54,7,1}. However, before determining
these sets, the search query is removed from the list of important words. Because most
probably the search query would appear in every search result, which may result in only
one cluster group and this is undesirable. The following code generates the set of result
indices R for each important word W , it iterates over the array $counts which holds the
important words. The code holds an important word and creates an array for it, then
checks, in which search results did it appear in. If an important word appeared in a
search result, then the index of the search result is pushed in the array of the important
word. The output of this algorithm is an array of arrays, where each sub-array holds
the set of numbers indicating the indices of the search results for a certain important
word. The resulting two-dimensional array $Cluster is mapped with $counts, where
each important word in $counts has its result set as a sub-array in the same index in
$Cluster, presenting the pair < W,R >

for ($counter2 = 0; $counter2 < sizeof($counts); $counter2 += 1)

{

$Cluster[$counter2]=array();

for ($counter = 0; $counter < sizeof($resultsUC); $counter += 1)

{

CHAPTER 4. IMPLEMENTATION 28

$var = "~" . " " . $counts[$counter2] . " " . "~i" ;

if(preg_match_all($var,$resultsUC[$counter],$matches

,PREG_PATTERN_ORDER))

{

array_push($Cluster[$counter2], $counter);

}

}

}

The code is an implementation to algorithm 3 presented in the approach. where
$Cluster is a list of sub-lists, each sub-list indicate the set of numbers representing the
indices of the search results an important word appeared in. However, a small part was
added to the implementation which is, if there are no intersections between a sub-list
and all the other sub-lists then a new unique group is created for it. Intersection calcula-
tion is done using the PHP predefined predicate array_intersect, the function simply
check if two arrays intersect and returns the intersection count. The output array is
$clusterGroups, it is an array of numbers mapped with $Cluster and $counts. The
numbers in $clusterGroups represents the unique cluster numbers for each important
word in $counts, this mapping presents the tuple < W,C,R >. The implementation
code in A.3.

The figures 4.9, 4.10 show the output of the cluster algorithm running Galaxy as a
search query. The figures show two out of seven clusters for the word Galaxy.

Figure 4.9: The first cluster for the query “Galaxy”.

CHAPTER 4. IMPLEMENTATION 29

Figure 4.10: The second cluster for the query “Galaxy”.

4.6 User Guide

This section describes how to install this tool. The implemented tool includes an HTML
file, a Prolog file and four PHP files. The following are some guidelines to install the
tool:

• First installing PHP, in this tool Wampserver is used to install PHP, more infor-
mation in [20]. After installation, put the PHP files in this path C:\wamp\apps

\phpmyadmin3.4.5. The following are some notes regarding the path:

– The path may differ according to the Wampserver installation path and the
PHP version.

– The path may completely change if another tool other than Wampserver is
used.

• Download and install SWI-prolog from [15]. The installation has to be in a path
which includes no spaces, because the command prompt cannot access a path with
spaces. For example, C:\Programe Files\ is not valid because there is a space
between program and Files.

• The Prolog file has to also be put in a path with the same specifications as SWI-
Prolog.

• Create a text file in any place so that PHP can write in it and Prolog can read it.

• Modify the paths in the HTML file, Prolog file and the PHP files according to the
installation paths of PHP, SWI-Prolog and the text file.

4.7 Tool Evaluation

In this section, we conduct some general feature comparisons to other online tools trying
to evaluate this tool, and introduce its limitations.

CHAPTER 4. IMPLEMENTATION 30

4.7.1 Basic Comparison

After searching for online tools for text mining, plenty of online tools were found in this
context; summarizing tools, clustering tools and also analyzing tools, examples for these
tools are [21], [22] and [23] respectively. Each one of the previously mentioned tools has
a lot of features and capabilities. However, a tool which combines all the basic features
of summarizing, analyzing and clustering was not found. Moreover, the most common
way found for representing important words and sequences was the tag clouds, also no
tool visualizing them as charts was found. Also, this is the first tool to use CHR in text
mining and classification of Google search results.

4.7.2 General Limitations

The tool is relatively computationally slow, it takes around 22.03 seconds to output the
result for nearly 100 search results. Counts of important words, sequences and gravity
mainly consumes majority of the time taken.

4.7.3 SWI-Prolog Limitation

According to the SWI-Prolog manual regarding the local stack size [14]. The maximum
local stack size that could be obtained on 32-bit windows using 32-bit SWI-Prolog is
128MB (mega bytes), which is very small in size for modern applications while having
modern hardware. This affects the amount of input text to the tool, since the tool
transforms the text file into a list which in tern needs a large stack according to how big
is the text file. However, on a 64-bit windows with a 64-bit SWI-Prolog, the maximum
local stack that can be obtained is 232 times higher, utilizing and exceeding nowadays
hardware capabilities. Increasing the stack size has a very slight effect on decreasing
the execution time of small amount of input data. However, this slight effect increases
as the input text increases.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main goal of the thesis was to implement a web text mining tool for Google search
results, that uses CHR as a base for its implementation. It is the first tool to use
CHR for text mining purposes, and combines it with algorithms and visualizations to
summarize Google search results. The algorithms and visualizations which are the web
development part of this tool, were implemented using PHP. Three main issues had to
be dealt with in order to implement this tool. First, searching for the best way to extract
Google search results. Second, performing linguistic analysis by detecting sequences and
calculating important words’ counts. Last but not least, improving the tool by adding
some algorithms and visualization. Handling the first issue, Google search results were
extracted using Google Custom Search Engine, which is a customized search engine that
possesses an online control panel. The control panel allows its administrator to gener-
ate implementation code according to the desired features. It introduces collaboration,
viewing statistics of the engine, auto-completeness in search bar and other features. Af-
terwards, text transformation was performed on the returned search results, converting
the text within the search results into ordered constraints in CHR. Then, CHR was
used to analyze Google search results by calculating important words’ counts besides
generating two-word sequences and gravity, where gravity is the strength between non
sequential patterns. Implementing sequences in CHR is effortless, any N -word sequence
can be generated in a single rule, and to leave the important sequences only, another two
rules were added. However, as N increases, computational time increases. Finally, some
algorithms to improve the tool were added, and a combination of some basic but impor-
tant features was created. The combination includes interactive charts which were used
to represent important words’ counts and sequences as bar charts, ranking the search
results according to the important words it has. Eventually, the search results were
classified to realize a comprehensive and clustered summary of results.

5.2 Future Work

There are many future expansions that can be done for this tool to enhance its perfor-
mance and improve its capabilities. Some of the these enhancements are

• Speed enhancement: Speeding CHR execution through prallelizing the CHR rules.
Strong parallelism can be applied, running overlapping parts in parallel. However,

31

CHAPTER 5. CONCLUSION AND FUTURE WORK 32

confluence and monotonicity features has to be proven for these rules. Strong
parallelism, confluence and monotonicity properties are discussed in part two of
the CHR book [5]. Parallelizing CHR rules would enhance the speed of execution
significantly.

• More linguistic analysis and better algorithms and visualizations: If the parallelism
proved significant speed increase, three- and four-word sequences and gravity can
be generated and added to the tool. Moreover, these three- and four-word se-
quences can be also used to enhance charts and scored results; viewing two-, three-
and four-word sequences as bar charts in addition to important words’ counts, in-
stead of only viewing important words’ counts and two-word sequences. Moreover,
scored results also could be enhanced by modifying the algorithm to include two,
three, four-word sequences in the calculation, to have a better scoring algorithm.

• Language independence: The tool can be advanced to be a language independent
tool. The stop words library is the only restriction that makes this tool language
dependant. If other libraries for different languages are added to the tool, a lan-
guage independent tool can be achieved.

• Iterative clustering and tree maps: Improve the clustering algorithm to have itera-
tive clustering, where each group can be itself clustered into more groups, resulting
in more specified and detailed clustered data. Moreover, the clusters visualization
can be improved by using tree maps, an example of such tree maps is shown in
[24].

Appendix A

Implementation Code

A.1 Preparations for Stop Words and Case Folding
Implementation

if (isset($_POST[’allResults’]))

{

// Getting the results from google search page.

$name0 = $_POST[’allResults’];

}

if (isset($_POST[’searchQuery’]))

{

// Getting the search query from google search page.

$name1 = $_POST[’searchQuery’];

}

$name1 =explode(" ",$name1);

// The library is trimmed because its too big.

$commonWords = array(’the’,’can’,’an’,’a’,....);

$splitted2= explode("******",$name0);

$name0=preg_replace(’/\b(’.implode(’|’,$commonWords).’)\b/i’,’’,$name0);

$search = array(’ ’,’ ’);

$name0 = str_replace($search,’ ’, $name0);

$splitted= explode("******",$name0);

$results=array();

$urls=array();

$resultsCounter=0;

$urlsCounter=0;

$resultsUC = array();

for ($counter = 0; $counter < sizeof($splitted)-1 ; $counter += 2)

{

$resultsUC[$resultsCounter] =($splitted[$counter]);

$results[$resultsCounter] = strtolower($splitted[$counter]);

$urls[$urlsCounter]=$splitted2[$counter+1];

$resultsCounter+=1;

$urlsCounter+=1;

}

33

APPENDIX A. IMPLEMENTATION CODE 34

A.2 Preparations for CHR

test:-

readFile(’C:/Dokumente und Einstellungen/Alexander/Desktop/text.txt’).

readFile(X):-

open(X, read, Stream),

read_stream_to_codes(Stream,Y,[]),

removePunc(Y,Y2).

removePunc([],[]).

removePunc([F|T],[F|T2]):-

F\=44,F\=63,F\=59,F\=34,F\=58,F\=40,F\=41,F\=93,F\=91,F\=124,

removePunc(T,T2).

removePunc([F|T],R):-

(F=44;F=63;F=59;F=34;F=58;F=40;F=41;F=93;F=91;F=124),

removePunc(T,R).

A.3 Clustering Implementation

$groupsCounter=200;

for ($counter = 0; $counter < sizeof($Cluster);$counter+=1)

{

$var = $Cluster[$counter];

$flag =0;

$maxSoFar = -1;

$indexSoFar = -1;

for($counter2 = 0; $counter2 <sizeof($Cluster)

&& $counter2 != $counter; $counter2+=1)

{

$var2 = $Cluster[$counter2];

$result = array_intersect($var, $var2);

$size =sizeof($result);

if($size>0)

{

$flag=1;

if($maxSoFar < $size)

{

$indexSoFar=$counter2;

$maxSoFar= $size;

}

}

}

if($flag==0)

{

$groupsCounter++;

$clusterGroups[$counter]=$groupsCounter;

$clusterArraySize[$counter]= count($Cluster[$counter]);

}

else

APPENDIX A. IMPLEMENTATION CODE 35

{

if($clusterGroups[$counter] > $clusterGroups[$indexSoFar])

{

$clusterGroups[$counter]=$clusterGroups[$indexSoFar];

$clusterArraySize[$counter]=$clusterArraySize[$indexSoFar];

}

else

{

$clusterGroups[$indexSoFar]=$clusterGroups[$counter];

$clusterArraySize[$indexSoFar]=$clusterArraySize[$counter];

}

}

}

Bibliography

[1] “Highcharts example.” http://www.highcharts.com/demo/combo, June 2012.

[2] “Lucid charts an online tool for drawing flow charts.” https://www.lucidchart.

com/, June 2012.

[3] “Alexa the web information company.” http://www.alexa.com/siteinfo/

google.com, March 2012.

[4] “Extensive list of the major internet search engines.” http://www.

listofsearchengines.info, March 2012.

[5] T. Frühwirth, Constraint Handling Rules. Cambridge University Press, Aug. 2009.

[6] A. hwee Tan, “Text mining: The state of the art and the challenges,” in In Pro-
ceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced
Databases, pp. 65–70, 1999.

[7] J. Larocca Neto, A. D. Santos, C. A. A. Kaestner, and A. A. Freitas, “Document
clustering and text summarization,” in Proceedings of the 4th International Con-
ference Practical Applications of Knowledge Discovery and Data Mining (PADD-
2000) (N. Mackin, ed.), (London), pp. 41–55, The Practical Application Company,
January 2000.

[8] “Php manual.” http://www.php.net/manual/en/intro-whatis.php, June 2012.

[9] D. Flanagan, JavaScript: The Definitive Guide. O’Reilly Media, Inc., 2006.

[10] “Apidef.” http://msdn.microsoft.com/en-us/library/aa141380(v=office.

10).aspx, June 2012.

[11] D. Crockford, “The application/json media type for javascript object notation
(json),” tech. rep., July 2006.

[12] M. Nottingham and R. Sayre, “The atom syndication format.” Internet RFC 4287,
December 2005.

[13] “Highcharts.” http://www.highcharts.com/products/highcharts, June 2012.

[14] J. Wielemaker, “Swi-prolog 6.0 reference manual,” March 2012.

[15] “Swi-prolog official website.” http://www.swi-prolog.org/index.txt, June
2012.

[16] “Google terms and conditions.” http://www.google.com/intl/en/policies/

terms/, June 2012.

36

http://www.highcharts.com/demo/combo
https://www.lucidchart.com/
https://www.lucidchart.com/
http://www.alexa.com/siteinfo/google.com
http://www.alexa.com/siteinfo/google.com
http://www.listofsearchengines.info
http://www.listofsearchengines.info
http://www.php.net/manual/en/intro-whatis.php
http://msdn.microsoft.com/en-us/library/aa141380(v=office.10).aspx
http://msdn.microsoft.com/en-us/library/aa141380(v=office.10).aspx
http://www.highcharts.com/products/highcharts
http://www.swi-prolog.org/index.txt
http://www.google.com/intl/en/policies/terms/
http://www.google.com/intl/en/policies/terms/

BIBLIOGRAPHY 37

[17] “Google cse.” http://www.google.com/cse/, June 2012.

[18] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the
Eleventh International Conference on Data Engineering, ICDE ’95, (Washington,
DC, USA), pp. 3–14, IEEE Computer Society, 1995.

[19] “Highcharts downloaded example.” http://www.highcharts.com/download, June
2012.

[20] “Wampserver, a windows web development environment.” http://www.

wampserver.com/en/s, March 2012.

[21] “Summarization tool.” http://www.sensebot.net/, June 2012.

[22] “Clustering tool.” http://search.carrot2.org/stable/search, June 2012.

[23] “Analysis tool.” http://textalyser.net/index.php?lang=en#analysis, June
2012.

[24] “News map.” http://newsmap.jp/, June 2012.

http://www.google.com/cse/
http://www.highcharts.com/download
http://www.wampserver.com/en/s
http://www.wampserver.com/en/s
http://www.sensebot.net/
http://search.carrot2.org/stable/search
http://textalyser.net/index.php?lang=en#analysis
http://newsmap.jp/

	Acknowledgments
	Introduction
	Motivation
	Aim and Problem Statement
	Outline

	Background
	CHR
	Syntax

	Text Mining
	General Text Mining Framework
	Text Mining Products
	Challenges

	Text Summarization and Document Clustering
	Web Development
	PHP
	JavaScript
	API
	JSON
	Atom
	Highcharts

	SWI-Prolog

	Approach
	Data Extraction
	Programming Languages VS Web Page

	Linguistic Analysis and Sequences
	Frequent Words
	Sequences
	Words Gravity

	Web Development
	Case Folding
	Stop Words Removal
	Charts and Highlighting
	Scored Results
	Results Clustering

	Implementation
	Implementation Outline
	Data Extraction Implementation
	Stop Words Removal and Case Folding (Web Development I)
	Preparations
	Stop Words
	Case Folding

	Linguistic Analysis
	PHP Preparations
	Prolog and CHR Implementation
	PHP Handling Ouptut

	Algorithms and Visualizations(Web Development II)
	Charts and Highlighting Implementation (JavaScript)
	Scored Results Implementation
	Results Clustering Implementation

	User Guide
	Tool Evaluation
	Basic Comparison
	General Limitations
	SWI-Prolog Limitation

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Implementation Code
	 Preparations for Stop Words and Case Folding Implementation
	Preparations for CHR
	Clustering Implementation

	References

