
Constraint Handling Rules -
Basic CHR programs and their
analysis

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Page 2 Basic CHR programs and their analysis

Table of Contents

Basic CHR programs and their analysis
Multiset transformation
Procedural algorithms
Graph-based algorithms

Page 3 Basic CHR programs and their analysis

Overview

Analysis of CHR programs regarding

I Logical reading and program correctness
I Termination and complexity

I Upper bound from meta-complexity theorem
I Actual worst-case complexity in CHR (refined semantics)

I Confluence

I Anytime and online algorithm property

I Concurrency and parallelism

Page 4 Basic CHR programs and their analysis | Multiset transformation

Multiset transformation

I Programs consisting of essentially one constraint

I Constraint represents active data

I Pairs of constraints rewritten by single simplification rule

I Often possible: more compact notation with simpagation rule

I Simpagation rule removes one constraint, keeps (and updates)
other

Page 5 Basic CHR programs and their analysis | Multiset transformation | Minimum

Minimum

Minimum program

min(N) \ min(M) <=> N=<M | true.

I Computes minimum of numbers given as
min(n1), min(n2), . . . , min(nk)

I Keeps removing larger values until only one value remains

Example computation
min(1), min(0), min(2), min(1)

min(0), min(2), min(1)

min(0), min(1)

min(0)

Page 6 Basic CHR programs and their analysis | Multiset transformation | Minimum

Logical reading (I)

I min constraints represent candidates for minimum
I Actual minimum remains when calculation finished
I Cannot be expressed straightforward in first-order logic

I First-order logic reading

∀(N ≤ M → (min(N) ∧ min(M)↔ min(N))

Logically equivalent to

N ≤ M → (min(M)← min(N))

I “Given a minimum, any larger value is also a minimum”

Page 7 Basic CHR programs and their analysis | Multiset transformation | Minimum

Logical reading (II)

I Linear logic reading

!∀ ((N ≤ M)((min(N)⊗ min(M)(min(N)))

I Reads as: Of course, consuming min(N) and min(M) where
(N=<M) produces min(N)

I Properly reflects the dynamics of the minimum computation.

Page 8 Basic CHR programs and their analysis | Multiset transformation | Minimum

Correctness

Correctness by contradiction
I Minimum is not correctly computed

I Case 1: more than one min constraint left
I Case 2: remaining min constraint does not contain minimum

I Case 1: rule is still applicable
I Case 2: minimum must have been removed

I Contradiction: rule always removes larger value

Page 9 Basic CHR programs and their analysis | Multiset transformation | Minimum

Termination and worst-case complexity

I Termination
I Rule removes constraints, does not introduce new ones
I Rule application in constant time (applies to every pair of min

constraints)
I Number of rule applications (derivation length) bounded by number

of min constraints

I Worst-case time complexity
I Given n min constraints
I O(n) under refined semantics (left-to-right, immediate reaction, one

constraint will be removed)

Page 10 Basic CHR programs and their analysis | Multiset transformation | Minimum

Meta-complexity

I Abstract semantics: undetermined order of tried constraints and
rules

I Meta-complexity theorem (MCT)

O(D
∑

i

((n + D)ni(OHi + OGi) + (OCi + OBi))),

(D derivation length, i ranges over rules, ni number of head constraints in ith rule,

costs OHi of head matching, OGi of guard checking, OCi of imposing built-in

constraints of body, OBi of imposing CHR constraints of body)

I In this case

O(n(n2(1 + 0) + (1 + 0))) = O(n3).

I Highly over-estimates (applies to all two-head simpagation rules)

Page 11 Basic CHR programs and their analysis | Multiset transformation | Minimum

Confluence (I)

I Correctness implies result is single specific min constraint
⇒ Program is confluent for ground queries (ground confluent)

I One rule, only overlaps with itself

I One nontrivial full overlap (all head constraints equated):
min(A),min(B), A=<B,B=<A.

(equivalent to min(A),min(A), A=B.)
I Apply rule in given or reversed order

I Both cases lead to min(A), A=B (hence rule removes duplicates)

Page 12 Basic CHR programs and their analysis | Multiset transformation | Minimum

Confluence (II)

I Four overlaps where one constraint shared
min(A),min(B),min(C), A=<B,B=<C.

min(A),min(B),min(C), A=<B,B=<C.

min(A),min(B),min(C), A=<B,A=<C.

min(A),min(B),min(C), A=<B,C=<B.

I First (and second) overlap leads to joinable critical pair
min(A),min(B),min(C), A=<B,B=<C

/ \

min(A),min(B), A=<B,B=<C min(A),min(C), A=<B,B=<C

\ /

min(A), A=<B,B=<C

I Only smallest constraint min(A) is left

Page 13 Basic CHR programs and their analysis | Multiset transformation | Minimum

Confluence (III)

I Next overlap (similar)
min(A),min(B),min(C), A=<B,A=<C

/ \

min(A),min(B), A=<B,A=<C min(A),min(C), A=<B,A=<C

\ /

min(A), A=<B,A=<C

I Last overlap
min(A),min(B),min(C), A=<B,C=<B

| |

min(A),min(C), A=<B,C=<B

I Cannot proceed until relationship between A and C known (but then
common state is reached)

⇒ Program is confluent

Page 14 Basic CHR programs and their analysis | Multiset transformation | Minimum

Anytime algorithm property

I Anytime algorithm (approximation)
I One can interrupt program at any time and restart on immediate

result
I On interrupt: subset of initial min constraints containing actual

minimum
⇒ interruption and restart possible

I Intermediate results approximate final result
I Set of possible minima gets smaller and smaller

⇒ Program is an anytime algorithm

Page 15 Basic CHR programs and their analysis | Multiset transformation | Minimum

Online algorithm property

I Online (incremental)
I Possibility to add constraints while program is running

I Additional min constraints can be added at any point
I Immediately react with other constraints
I Confluence guarantees same result, no matter when constraint is

added

⇒ Program is incremental

Page 16 Basic CHR programs and their analysis | Multiset transformation | Minimum

Concurrency and parallelism (I)

I Program is well-behaved (terminating, confluent)
⇒ parallelization easy

I Weak parallelism
I Apply rule to different nonoverlapping parts of query

I Rule can be applied to pairs of min constraints in parallel
I Halves number of min constraints in each parallel computation step
I O(log(n)) on n/2 parallel processing units (processors)

Example computation
min(1), min(0), min(2), min(1)

min(0), min(1)

min(0)

Page 17 Basic CHR programs and their analysis | Multiset transformation | Minimum

Concurrency and parallelism (II)

I Strong parallelism
I Apply rule to overlapping parts of query (fix one min constraint to

be kept)
I Linear complexity as in sequential execution (worst-case: with

largest value fixed, no rule application possible)

I Cost (Time complexity times number of processors)
I Parallel execution: O(n log(n))

I Sequential execution: O(n)

Page 18 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Boolean XOR

XOR program
xor(X), xor(X) <=> xor(0).

xor(1) \ xor(0) <=> true.

I Implements Exclusive Or operation of propositional logic (0
means false, 1 means true)

I Query: multiset of xor constraints for input truth values
(e.g. xor(1), xor(0), xor(0), xor(1))

I First rule: Identical inputs replaced by xor(0)

I Second rule: Remove xor(0) if there is xor(1)

Page 19 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Logical reading and correctness

I First-order logical reading
I xor(X)↔ xor(0) (particularly xor(1)↔ xor(0))
I Means all xor constraints are equivalent
I Resort to linear logic reading

I Correctness
I Map CHR conjunction to xor operation

I Both associative, commutative, not idempotent

I Each rule application computes one xor
I One xor constraint left in the end

Page 20 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Termination and complexity

I Terminating
I Each rule removes more constraints than it introduces

I Complexity
I For each pair of constraints one rule application in constant time
I Linear complexity under refined semantics
I Cubic complexity under abstract semantics

Page 21 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Confluence (I)

XOR program
xor(X), xor(X) <=> xor(0).

xor(1) \ xor(0) <=> true.

I Overlap xor(X), xor(X)

I First rule fully with itself
I Always leads to xor(0)

I Overlap xor(X), xor(X), xor(X)

I First rule with itself
I Always leads to xor(0), xor(X)

Page 22 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Confluence (II)

XOR program
xor(X), xor(X) <=> xor(0).

xor(1) \ xor(0) <=> true.

I Overlap xor(1), xor(1), xor(0)

I Occurs twice (first and second rule, second rule with itself)
I Always leads to xor(0)

I Overlap xor(1), xor(0), xor(0)

I Occurs twice (first and second rule, second rule with itself)
I Always leads to xor(1)

⇒ Program is confluent

Page 23 Basic CHR programs and their analysis | Multiset transformation | Boolean Exclusive Or

Remaining properties

I Anytime: fewer and fewer xor constraints,
result not necessarily contained (xor(1), xor(1))

I Online: xor constraints can be added at any point

I Rules applicable in parallel (as for min)⇒ O(n log(n))

Page 24 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Greatest common divisor

GCD program
gcd(0) <=> true.

sub @ gcd(N) \ gcd(M) <=> 0<N,N=<M | gcd(M-N).

mod @ gcd(N) \ gcd(M) <=> 0<N,N=<M | gcd(M mod N).

I Either sub or mod rule can be used

Example computation (sub)
gcd(7), gcd(12)

gcd(7), gcd(5)

gcd(5), gcd(2)

gcd(2), gcd(3)

gcd(2), gcd(1)

gcd(1), gcd(1)

gcd(1), gcd(0)

gcd(1)

Example computation (mod)
gcd(7), gcd(12)

gcd(7), gcd(5)

gcd(5), gcd(2)

gcd(2), gcd(1)

gcd(1), gcd(0)

gcd(1)

Page 25 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Logical Reading

I First-order logical reading

gcd(0)↔ true

0<N ∧ N=<M → (gcd(N) ∧ gcd(M)↔ gcd(N) ∧ gcd(M−N))

Latter is equivalent to

0<N ∧ 0=<M → (gcd(N) ∧ gcd(M+N)↔ gcd(N) ∧ gcd(M))

I Correct, but does not characterize gcd, only all its multiples
I Linear-logic semantics reflects dynamics of computation properly

Page 26 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Correctness

I All divisors d preserved under rule application
I Computation produces smaller and smaller values

I N = Ad, M = Bd
I From logical reading

0<Ad ∧ Ad=<Bd

→ (gcd(Ad) ∧ gcd(Bd)↔ gcd(Ad) ∧ gcd(Bd−Ad))

I gcd(Bd − Ad) is equivalent to gcd((B− A)d)

⇒ Divisor d preserved during computation

I Computation continues until M = N = gcd

I Rule is applied a last time

I gcd(0) is removed leaving only actual gcd

Page 27 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Termination and complexity

I Termination
I Guard condition ensure new value smaller than removed M
I New value cannot become negative

I Complexity
I Rules applicable in constant time to any gcd pair
I Two gcd constraints

I sub: complexity linear in larger number
I mod: complexity logarithmic in larger number

I More than two gcd constraints: consider all numbers
I sub linear in sum of numbers
I mod logarithmic in product of numbers

Page 28 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Confluence

I GCD program is ground confluent (unique result for given values)
I Not confluent in general:

I Overlaps analogous to min
I Difference: rule not only removes constraints but also adds
I Nonjoinable critical pair (cp)

gcd(A),gcd(B),gcd(C),0<A,A=<B,0<C,C=<B

| |

gcd(A),gcd(B-A),gcd(C),0<A,A=<B,0<C,C=<B |

|

gcd(A),gcd(B-C),gcd(C),0<A,A=<B,0<C,C=<B

I Computation cannot proceed until relationship of A, B, and C is
known

Page 29 Basic CHR programs and their analysis | Multiset transformation | Greatest common divisor

Remaining properties

I Anytime: fewer and fewer gcd constraints with smaller and
smaller numbers (result not necessarily contained)

I Online: additional gcd constraints can be added anytime

I Complexity of parallel execution not better nor worse than
sequential (since O(max(a, b)) = O(a + b))

I But gcd’s may get smaller more quickly

I In practice: super-linear speed up with parallel CHR
implementation in Haskell

Page 30 Basic CHR programs and their analysis | Multiset transformation | Prime sieve of Eratosthenes

Prime sieve

Prime sieve program
sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

I Removes multiples in given set until only prime numbers left

I Query: prime candidates from 2 upto N
(prime(2), prime(3), prime(4),..., prime(N))

Example computation
prime(7), prime(6), prime(5), prime(4), prime(3), prime(2)

prime(7), prime(5), prime(4), prime(3), prime(2)

prime(7), prime(5), prime(3), prime(2)

Page 31 Basic CHR programs and their analysis | Multiset transformation | Prime sieve of Eratosthenes

Logical reading and correctness

I First-order logical reading

∀((M mod N = 0)→ (prime(M) ∧ prime(N)↔ prime(N)))

I Means a number is prime if it is a multiple of another prime number
I Linear logic reading reflects dynamics of filtering correctly

I Correctness
I Program confluent⇒ result always the same
I All composite numbers removed (with correct query)
I Primes not removed (only multiple of 1, not included)

Page 32 Basic CHR programs and their analysis | Multiset transformation | Prime sieve of Eratosthenes

Termination and complexity

I Termination
I Rule only removes constraints

I Complexity
I Rule not applicable to all pairs of numbers
I Thus complexity quadratic in number of constraints (refined

semantics)
I Runtime can be improved by starting from lower numbers

Page 33 Basic CHR programs and their analysis | Multiset transformation | Prime sieve of Eratosthenes

Confluence

I Program is confluent
I Reason: transitivity of divisibility
I I|J and J|K⇒ I|K
I Overlaps and joinability analogous to min

prime(A),prime(B), A|B,B|A

prime(A),prime(B),prime(C), A|B,B|C

prime(A),prime(B),prime(C), A|B,A|C

prime(A),prime(B),prime(C), A|B,C|B

I First three overlaps lead to joinable critical pair
I Last overlap also:

prime(A),prime(B),prime(C), A|B, C|B

| |

prime(A),prime(C), A|B, C|B

Page 34 Basic CHR programs and their analysis | Multiset transformation | Prime sieve of Eratosthenes

Other properties

I Anytime and online properties as for min
I sift does not hold for all pairs

I All O(n2) pairs have to be tried in O(n) rounds
⇒ some scheduling needed

I Strong parallelism
I Fix one prime constraint for first head constraint
I Search for prime constraint matching second head constraint
I Needs O(n) rounds

I Cost same as for sequential execution (quadratic)

I Linear time: maximal, linear parallel speed-up

Page 35 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Exchange sort

Exchange sort program
a(I,V), a(J,W) <=> I>J, V<W | a(J,V), a(I,W).

I Exchanges values that are in the wrong order

I Query: array of values Ai (a(1,A1),...a(n,An))

Example computation
a(0,1), a(1,7), a(2,5), a(3,9), a(4,2)

a(0,1), a(1,5), a(2,7), a(3,2), a(4,9)

a(0,1), a(1,5), a(2,2), a(3,7), a(4,9)

a(0,1), a(1,2), a(2,5), a(3,7), a(4,9)

Page 36 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Logical reading and correctness

I First-oder logical reading

I>J ∧ V< W → (a(I, V) ∧ a(J, W)↔ a(J, V) ∧ a(I, W))

I Means all arrays with same set of values are equivalent
I Resort to linear logic reading

I Correctness
I Sorted: for each (a(I,V), a(J,W)) with I>J it holds that V>=W
I If condition V ≥ W does not hold, rule is applicable
⇒ condition holds after application
⇒ if rule not applicable, array must be sorted

Page 37 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Termination

I Rule application cannot introduce more wrong than right
orderings

I Guard: counter in each array entry
I Counts how many values with larger index are smaller
I On exchange:

I Counter of smaller value increases
I Counter of larger value decreases by same number +1
I Counter of values in between can only decrease

⇒ Sum of counters decrease with each rule application

Page 38 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Complexity

I Derivation length quadratic in number of constraints (cf. counter)

I Two head constraints: MCT gives overestimated complexity

O(n2((n2)
2
(1 + 1) + (0 + 1))) = O(n6)

I Fix one value (refined semantics): Each try costs O(n)
I Rule can be applied in constant time once pair found

I At most O(n2) applications⇒ actual worst-case complexity O(n3)

Page 39 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Confluence (I)

I Program is ground confluent by correctness (unique result)

I Not confluent in general
I First critical pair is joinable

a(I,V), a(J,W), a(K,U), I>J,V<W, J>K,W<U

/ I,J | J,K

/ a(I,V), a(K,W), a(J,U), I>J,V<W, J>K,W<U

/ |

a(J,V), a(I,W), a(K,U), I>J,V<W, J>K,W<U |

| I,K | I,K

| a(K,V), a(I,W), a(J,U), I>J,V<W, J>K,W<U

| |

a(J,V), a(K,W), a(I,U), I>J,V<W, J>K,W<U |

\ J,K | I,J

\ |

a(K,V), a(J,W), a(I,U), I>J,V<W, J>K,W<U

Page 40 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Confluence (II)

I Two nonjoinable critical pairs
a(I,V), a(J,W), a(K,U), I>J,V<W, I>K,V<U

/ I,J |

a(J,V), a(I,W), a(K,U), I>J,V<W, I>K,V<U |

| I,K

a(K,V), a(J,W), a(I,U), I>J,V<W, I>K,V<U

I Only joinable when relationship between J and K as well as W and
U known

I Analogous situation for
a(I,V), a(J,W), a(K,U), I>K,V<U, J>K,W<U

Page 41 Basic CHR programs and their analysis | Multiset transformation | Exchange sort

Remaining properties

I Number of wrongly ordered pairs decreases over time

I Additional array entries can be added at any point

I Rule not applicable to arbitrary pairs of constraints
⇒ only weak parallelism possible

I Associate each array entry with a processor
I Try all pairs in O(n) (macro-step)
I Each entry reacts with at most O(n) other entries
I Overall O(n2) rule applications
I All rule applications can be performed in O(n) macro-steps⇒

Complexity quadratic, cost cubic

Page 42 Basic CHR programs and their analysis | Multiset transformation | Square root

Square root

Square root program
sqrt(X,G) <=> abs(G*G/X-1)>eps | sqrt(X,(G+X/G)/2).

I Rule implements Newton’s method

I sqrt(X,G): square root of X is approximated by G

I eps is greater but close to 0

I Start with positive numbers X and G

Page 43 Basic CHR programs and their analysis | Multiset transformation | Square root

Logical reading and termination

I Logical reading

abs(G ∗ G/X − 1) > ε→ (sqrt(X, G)↔ sqrt(X, (G + X/G)/2))

I Means that any value is an approximation of
√
X

I Resort to linear logic reading

I Termination
I After first rule application G ≥

√
X

I If G =
√
X rule not applicable

I Otherwise rule applicable, second argument will decrease

Page 44 Basic CHR programs and their analysis | Multiset transformation | Square root

Remaining properties

I Confluence, anytime, online algorithm
I Hold trivially (single rule with single head constraint)

I Concurrency, parallelism
I Several constraints can run independently in parallel

Page 45 Basic CHR programs and their analysis | Procedural algorithms | Maximum

Maximum

Maximum program
max(X,Y,Z) <=> X=<Y | Z=Y.

max(X,Y,Z) <=> Y=<X | Z=X.

I max(X,Y,Z) means Z is the maximum of X and Y

I =< and < built-ins

Example computation
max(1,2,M): first rule applicable, reduces to M=2

max(1,2,3): fails because of built-in 3=2

max(1,1,M): both rules applicable, reduces to M=1

Page 46 Basic CHR programs and their analysis | Procedural algorithms | Maximum

Logical reading and correctness

I First-order logical reading is

X≤Y → (max(X, Y, Z)↔ Z = Y)

Y≤X → (max(X, Y, Z)↔ Z = X)

I Logical consequences of the definition of max

max(X, Y, Z)↔ (X≤Y ∧ Z = Y ∨ Y≤X ∧ Z = X)

I This shows logical correctness

Page 47 Basic CHR programs and their analysis | Procedural algorithms | Maximum

Termination and complexity

I One constraint removed in each step
⇒ At most n (number of constraints) derivation steps

I In each step at most n constraints checked against rules

I Checking or establishing syntactic equality in constant time

I Matching constraint against rule in quasi-constant time

I Rule application in quasi-constant time

⇒Worst-case complexity slightly worse than O(n2)

I Same complexity is obtained using MCT

Page 48 Basic CHR programs and their analysis | Procedural algorithms | Maximum

Remaining properties

I Confluence
I Only overlap is max(X,Y,Z) ∧ X ≤ Y ∧ Y ≤ X
I Leads to critical pair

(Y = Z ∧ X ≤ Y ∧ Y ≤ X, X = Z ∧ X ≤ Y ∧ Y ≤ X)

I Both states equivalent to X = Y ∧ Y = Z

I Anytime, online algorithm
I Hold trivially (single-headed simplification rule)

I Concurrency, parallelism
I max constraint may have to wait for result of other constraint

(e.g. max(X,Y,Z), max(Y,Z,W))

Page 49 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Fibonacci numbers

Fibonacci program
f0 @ fib(0,M) <=> M=1.

f1 @ fib(1,M) <=> M=1.

fn @ fib(N,M) <=> N>=2 |

fib(N-1,M1), fib(N-2,M2), M is M1+M2.

I fib(N,M) holds if M is Nth Fibonacci number

Example computations
Query fib(8,A) yields A=34
Query fib(12,233) succeeds
Query fib(11,233) fails
Query fib(N,233) delays

Page 50 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Logical reading and correctness

I First-oder logical reading

fib(0, M)↔ M = 1

fib(1, M)↔ M = 1

N ≥ 2 → (fib(N, M)↔ fib(N − 1, M1) ∧ fib(N − 2, M2) ∧M = M1 + M2)

I Shows correctness (coincides with mathematical definition)

Page 51 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Termination and complexity

I Program terminates
I First argument of fib decreases in each call
I Call only possible with positive first argument

I Ranking gives upper bound on derivation length

rank(fib(n, m)) = 2n.

I Expected exponential complexity O(2n)

I If first argument unknown complexity may increase (depending
on wake-up policy)

I MCT reflects this and gives O(4n)

Page 52 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Remaining properties

I Confluence:
I No overlaps (single-headed simplification rules whose heads and

guards exclude each other)

I Anytime, online algorithm, and concurrency
I Hold trivially (single-headed simplification rule)

Page 53 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Fibonacci numbers (memorization version)

Fibonacci program with memorization
mem @ fib(N,M1) \ fib(N,M2) <=> M1=M2.

f0 @ fib(0,M) ==> M=1.

f1 @ fib(1,M) ==> M=1.

fn @ fib(N,M) ==> N>=2 |

fib(N-1,M1), fib(N-2,M2), M is M1+M2.

Example computations

Query fib(8,A) returns all Fibonacci numbers up to 8:
fib(0,1), fib(1,1), fib(2,2), ..., fib(7,21), fib(8,34)

Page 54 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Complexity

I With indexing on the first argument
I Linear complexity (each Fibonacci number only computed once)

I Without indexing on first argument
I Quadratic complexity (Searching for suitable pairs in mem)

I MCT does not apply here (propagation rules)

Page 55 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Confluence

I Nontrivial overlaps between mem and each propagation rule

I First critical pair: fib(0,M1), fib(0,M2)

fib(0,M1), fib(0,M2)

/ mem \ f0

fib(0,M2), M1=M2 fib(0,M1), M1=1, fib(0,M2)

| f0 | mem

fib(0,M2), M1=M2, M2=1 ≡ M1=M2, M1=1, fib(0,M2)

Page 56 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Confluence

I Second critical pair fib(N,M1), fib(N,M2) (shown split)
fib(N,M1)

| mem

fib(N,M2),M1=M2

| fn

fib(N,M2),M1=M2,fib(N-1,M5),fib(N-2,M6),M2 is M5+M6

fib(N,M2)

| fn

fib(N,M1),fib(N-1,M3),fib(N-2,M4),M1 is M3+M4,fib(N,M2)

| mem

M1=M2,fib(N-1,M3),fib(N-2,M4),M1 is M3+M4,fib(N,M2)

I The two reached states are equivalent

I Overlap with rule f1 analogous

Page 57 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Other properties

I Online: trivial
I Anytime

I In theory: no computation steps redone when started on
intermediate result

I In practice: recomputation my occur (propagation history not
explicit)

I Additional computations absorbed (confluence and mem rule)
I Execution of two recursive calls in parallel possible
I No gain: mem rule will absorb multiple computations

Page 58 Basic CHR programs and their analysis | Procedural algorithms | Fibonacci numbers

Fibonacci numbers (program variations)

I Similar reasoning, results hold for fib as function with given first
argument

I Exception: finite bottom-up computation
fn @ fib_upto(Max), fib(N1,M1), fib(N2,M2)

==> Max>N2,N2=:=N1+1 | fib(N2+1,M1+M2).

I Quadratic complexity (no indexing between to fib constraints in
head)

Page 59 Basic CHR programs and their analysis | Procedural algorithms | Depth-first search in trees

Depth-first search

Depth-first search program
empty @ dfsearch(nil,X) <=> false.

found @ dfsearch(node(N,L,R),X) <=> X=N | true.

left @ dfsearch(node(N,L,R),X) <=> X<N | dfsearch(L,X).

right @ dfsearch(node(N,L,R),X) <=> X>N | dfsearch(R,X).

I Tree encoding node(Data, Lefttree, Righttree)

I Data ordered such that every node in left subtree smaller, every
node in right subtree larger than parent node

I Search for datum Data in binary tree Tree by calling
dfsearch(Tree, Data)

I All analyzed properties hold in a trivial way (single-headed
simplification rules with exclusive heads and guards)

I Complexity linear in depth in tree per search

Page 60 Basic CHR programs and their analysis | Procedural algorithms | Depth-first search in trees

Depth-first search

Depth-first search program (variant)
empty @ nil(I) \ dfsearch(I,X) <=> fail.

found @ node(I,N,L,R) \ dfsearch(I,X) <=> X=N | true.

left @ node(I,N,L,R) \ dfsearch(I,X) <=> X<N | dfsearch(L,X).

right @ node(I,N,L,R) \ dfsearch(I,X) <=> X>N | dfsearch(R,X).

I Different granularity: node represented by CHR data constraint

I Tree is set of such node constraints

I For valid binary search tree properties of previous programs
inherited

I With indexing complexity unaffected

I Data constraints can be added⇒ online algorithm

Page 61 Basic CHR programs and their analysis | Procedural algorithms | Depth-first search in trees

Depth-first search

Depth-first search program (another variant)
found @ node(N) \ search(N) <=> true.

empty @ search(N) <=> fail.

I Directly access data by mentioning in rule head

I All properties except anytime break down (due to empty rule)

I With indexing constant time complexity

Page 62 Basic CHR programs and their analysis | Procedural algorithms | Destructive assignment

Destructive assignment

Destructive assignment program
assign(Var,New), cell(Var,Old) <=> cell(Var,New).

I Constraint assign assigns new value to variable Var

I Not confluent
I Nonjoinable overlap:

assign(Var,New1), assign(Var,New2), cell(Var,Old)

I Results in either cell(Var,New1) or cell(Var,New2)

I Order matters⇒ not executable in parallel as intended

I First-order logical reading does not reflect intended meaning
(linear-logic semantics needed)

Page 63 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Transitive closure

Transitive closure program
dp @ p(X,Y) \ p(X,Y) <=> true.

p1 @ e(X,Y) ==> p(X,Y).

pn @ e(X,Y), p(Y,Z) ==> p(X,Z).

I Relation: edge e between two nodes

I Transitive closure: path p between two nodes

Example computation

Query e(1,2),e(2,3),e(2,4) adds path constraints
p(1,4), p(2,4), p(1,3), p(2,3), p(1,2)

Page 64 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Logical reading and correctness

I First-order logical reading as implications
p(X, Y) ∧ p(X, Y)↔ p(X, Y)
e(X, Y)→ p(X, Y)
e(X, Y) ∧ p(Y, Z)→ p(X, Z)

I Logical reading of duplicate removal is tautology
I Not expressible in FOL but in linear logic: transitive closure is

smallest transitive relation
I Rules actually calculate smallest relation (left to right application

produces relation bottom-up)

⇒ Program is correct

Page 65 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Termination

I Refined semantics
I Duplicates removed by dp before propagation rules applied
I Finite number of paths in finite graph

⇒ Program terminates
I Abstract semantics

I dp can be applied too late in cyclic graph
I Same paths generated again and again

⇒ Termination not guaranteed

Page 66 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Complexity (I)

I It holds that v/2 ≤ e ≤ p ≤ v2 (v #vertices, e #edges, p #paths)

I Rules can be applied in constant time
I Without indexing

I Upper bound for propagation rule attempts: product of number of
head constraints occurring during computation

I p1 tried at most e times, applies e times
I pn tried at most ep times, applies at most max(ev, vp) = vp times
I Path constraint produced with each rule application
I Thus, dp applied pvp times

⇒Worst-case complexity due to dp O(vp2) = O(v5)

Page 67 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Complexity (II)

I With indexing
I Index constraints on arguments with shared variables in heads
I Upper bounds for rule attempts and rule application coincide now
I p1 tried and applied at most e times
I pn tried and applied at most max(ev, vp) = vp times
I Thus, dp applied vp times now

⇒Worst-case complexity due to pn O(vp) = O(v3)

I Optimal for this algorithm

Page 68 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Confluence

I Only nontrivial overlap (between dp and pn)
e(X,Y), p(Y,Z), p(Y,Z)

/ dp \ pn

e(X,Y), p(Y,Z) e(X,Y), p(Y,Z), p(Y,Z), p(X,Z)

\ pn / dp

e(X,Y), p(Y,Z), p(X,Z)

I Program is confluent

Page 69 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Remaining properties

I Anytime: Repeated application of propagation rule does not
matter

I Confluence, duplicate paths removed

I Online: edges can be added during computation
I Strong parallelism

I Apply p1 to all edges in parallel
I Next rounds: all possible applications of pn and then dp
I With indexing vp application of those rules
I Given v processors parallel complexity O(v2)

I Cost O(v3)

Page 70 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Single-source and single-target paths

Transitive closure program(single-source)
dp @ p(X,Y) \ p(X,Y) <=> true.

s1 @ source(X), e(X,Y) ==> p(X,Y).

sn @ source(X), p(X,Y), e(Y,Z) ==> p(X,Z).

I Only paths from (or to) a certain node computed
I Complexity

I Number of created path constraints reduced by factor v
(p ≤ v ≤ 2e ≤ 2v2)

I Without indexing O(vp2) = O(v3)

I With indexing: O(vp) = O(v2)

Page 71 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Shortest path

Shortest path program
dp @ p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.

e(X,Y) ==> p(X,Y,1).

e(X,Y), p(Y,Z,N) ==> p(X,Z,N+1).

I Computes shortest path length between all pairs of nodes

Example computation

Query e(X,Y),e(Y,Z),e(X,Z) adds path constraints
p(X,Z,1), p(Y,Z,1), p(X,Y,1)

Page 72 Basic CHR programs and their analysis | Graph-based algorithms | Transitive closure

Termination and complexity

I New active path constraint only removed by dp if equal or longer

I Otherwise old path removed (work repeated, at most v times)
⇒Worst-case complexity with indexing O(ev2) = O(v4)

I Better complexity (i.e. ev) needs more clever scheduling
I E.g. in Dijkstra’s algorithm, computation always continues with

shortest path found so far

Page 73 Basic CHR programs and their analysis | Graph-based algorithms | Partial order constraint

Partial order constraint

Partial order program
duplicate @ X leq Y \ X leq Y <=> true.

reflexivity @ X leq X <=> true.

antisymmetry @ X leq Y , Y leq X <=> X=Y.

transitivity @ X leq Y , Y leq Z ==> X leq Z.

I Maintains nonstrict partial order relation leq ≤

Example computation
A leq B, C leq A, B leq C

A leq B, C leq A, B leq C, C leq B

A leq B, C leq A, B=C

A=B, B=C

Page 74 Basic CHR programs and their analysis | Graph-based algorithms | Partial order constraint

Termination and complexity

I duplicate and transitivity analog to transitive closure
(i.e. cubic)

I reflexivity does not change complexity
I With indexing

I Application of antisymmetry triggers at most O(v) constraints (all
leq with X and Y)

I In those constraints, one variable is replaced by other
⇒ problem shrinks by one variable (at most O(v) times)
⇒ Thus, antisymmetry applied O(v) times
⇒ Trying and applying of antisymmetry: O(v2)

⇒ Overall complexity O(v3)

Page 75 Basic CHR programs and their analysis | Graph-based algorithms | Partial order constraint

Remaining properties

I Algorithm is anytime and online (as discussed in chapter 4)

I Similar to transitive closure:transitivity can be applied in
parallel to all pairs, then all other rules can be applied

I First-order logical reading
(duplicate) ∀ X,Y (X≤Y ∧ X≤Y ⇔ X≤Y)
(reflexivity) ∀ X (X≤X ⇔ true)
(antisymmetry) ∀ X,Y (X≤Y ∧ Y≤X ⇔ X=Y)

(transitivity) ∀ X,Y,Z (X≤Y ∧ Y≤Z ⇒ X≤Z)

I duplicate rule is tautology
I Other rules give axioms of partial order
I FOL reading suffices and shows correctness (see also chapter 3)

Page 76 Basic CHR programs and their analysis | Graph-based algorithms | Grammar parsing

Cocke-Younger-Kasami

CYK algorithm
duplicate @ p(A,I,J) \ p(A,I,J) <=> true.

terminal @ A->T, e(T,I,J) ==> p(A,I,J).

nonterminal @ A->B*C, p(B,I,J), p(C,J,K) ==> p(A,I,K).

I Parses a string according to a context-free grammar bottom-up.

I Specialization of transitive closure

Page 77 Basic CHR programs and their analysis | Graph-based algorithms | Grammar parsing

Termination and complexity

General idea: With indexing:

I Arguments of constraints can be associated with finite domains
⇒ Product of domain sizes of variables in rule head gives upper
bound on number of rule applications and attempts

I Chain representing string has v nodes and e(= v− 1) edges

I Grammar with t terminals and n nonterminals

I Number of grammar rules r ≤ nt + n3(assuming t ≤ n2)
I Products of domain sizes

I terminal (variables A, T, I, J): ntvv = ntv2

I nonterminal (variables A, B, C, I, J, K): n3v3

I duplicate tried with each p produced: n3v3

⇒ Overall complexity of O(n3v3) with indexing (n usually fixed)

Page 78 Basic CHR programs and their analysis | Graph-based algorithms | Grammar parsing

Confluence

I Confluent when used on ground chains

I Not confluent in general
I Nonjoinable critical pair from overlap

A->B*B, p(B,I,I), p(B,I,I)

/ nonterminal \ duplicate

A->B*B, p(B,I,I), p(B,I,I), p(A,I,I) A->B*B, p(B,I,I)

| duplicate

A->B*B, p(B,I,I), p(A,I,I)

Page 79 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Mergesort

Merge sort program
A -> B \ A -> C <=> A<B,B=<C | B -> C.

I Implements merge sort algorithm
I Query contains only arcs 0 -> Ai

I Answer: sequence of values stored as arcs
(e.g 0,2,5 is 0 -> 2, 2->5)

Example computation
0 -> 2, 0 -> 5, 0 -> 1, 0 -> 7.

0 -> 2, 2 -> 5, 0 -> 1, 0 -> 7.

1 -> 2, 2 -> 5, 0 -> 1, 0 -> 7.

1 -> 2, 2 -> 5, 0 -> 1, 1 -> 7.

1 -> 2, 2 -> 5, 0 -> 1, 2 -> 7.

1 -> 2, 2 -> 5, 0 -> 1, 5 -> 7.

Page 80 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Logical reading and correctness

I Classical logical reading is sufficient

A<B ∧ B->C→ (A->B ∧ A->C↔ A->B ∧ B->C).

I A -> B means A ≤ B, thus logical correctness is consequence
of axioms for ≤

A<B ∧ B≤C→ (A≤B ∧ A≤C↔ A≤B ∧ B≤C)

Page 81 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Termination and complexity

I Complexity of merging two ordered chains (lengths n and m)
I Indexing on the first argument of arc constraint:
⇒ Second arc constraint found in constant time since rule is
applicable to arbitrary pairs of arcs with same first argument

I Each rule application processes one arc constraint
⇒ O(m + n)

I Complexity of sorting n values given as second argument of arc
I First argument can be replaced at most n times in each arc
⇒Worst time complexity O(n2)

Page 82 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Confluence

I Ground confluent (correct, unique result)

I Overlaps and joinability analog to gcd
(gcd(N) mapped to X->N, gcd(M-N) to N->M)

I One nonjoinable overlap
X->A,X->B,X->C, X<A,A=<B, X<C,C=<B

/ |

X->A,A->B,X->C, X<A,A=<B, X<C,C=<B |

|

X->A,C->B,X->C, X<A,A=<B, X<C,C=<B

I Cannot proceed until relationship between A and C is known

Page 83 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Anytime and online algorithm

I Anytime property
I Intermediate results: connected acyclic graph
I Smallest value is root
I Longer and longer chains without branches

I Online property
I Sorting incrementally, new arcs can be added at any time

Page 84 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Mergesort (optimal complexity sorting)

I Complexity can be improved to optimal O(n log(n)) by optimal
merging order

I Merging chains of same length
I Precede chain with length (N=>Firstnode)
I Rule to initiate merging of chains of same length

N=>A, N=>B <=> A<B | N+N=>A, A->B.

I Works only if length of query is a power of 2

I Start by merging n chains of length 1 then merge n/2 chains of
length 2 and so on

I Finished after log(n) rounds⇒ complexity O(n log(n))

I works for any length with one more rule

Page 85 Basic CHR programs and their analysis | Graph-based algorithms | Ordered merging and sorting

Concurrency and parallelism

I Follows structure of proof of optimal complexity

I Merging of two chains strictly sequential

I In second round start merging new chains while tail of chains still
produced

I log(n) rounds of merging, last round my need n more steps

I Overall n + log(n) steps

I With n processors: complexity O(n) and cost O(n2)

I Also possible for original version (scheduling)

	Basic CHR programs and their analysis
	Multiset transformation
	Procedural algorithms
	Graph-based algorithms

