

# ulm universität **UUUIM**



Constraint Handling Rules -Basic CHR programs and their analysis

-2

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

## Table of Contents

## Basic CHR programs and their analysis

Multiset transformation Procedural algorithms Graph-based algorithms

## Overview

Analysis of CHR programs regarding

- Logical reading and program correctness
- Termination and complexity
  - Upper bound from meta-complexity theorem
  - Actual worst-case complexity in CHR (refined semantics)

- Confluence
- Anytime and online algorithm property
- Concurrency and parallelism

## Multiset transformation

- Programs consisting of essentially one constraint
- Constraint represents active data
- Pairs of constraints rewritten by single simplification rule
- Often possible: more compact notation with simpagation rule
- Simpagation rule removes one constraint, keeps (and updates) other

## Minimum

## Minimum program

min(N)  $\setminus$  min(M) <=> N=<M | true.

Computes minimum of numbers given as

 $\min(n_1)$ ,  $\min(n_2)$ , ...,  $\min(n_k)$ 

Keeps removing larger values until only one value remains

#### Example computation

| <u>min(1)</u> , | <u>min(0)</u> , | min(2), | min(1) |
|-----------------|-----------------|---------|--------|
| <u>min(0)</u> , | <u>min(2)</u> , | min(1)  |        |
| <u>min(0)</u> , | <u>min(1)</u>   |         |        |
| min(O)          |                 |         |        |

# Logical reading (I)

- min constraints represent candidates for minimum
  - Actual minimum remains when calculation finished
  - Cannot be expressed straightforward in first-order logic
- First-order logic reading

$$\forall (N \leq M \rightarrow (\min(N) \land \min(M) \leftrightarrow \min(N))$$

Logically equivalent to

$$N \leq M \rightarrow (min(M) \leftarrow min(N))$$

"Given a minimum, any larger value is also a minimum"

Logical reading (II)

Linear logic reading

 $!\forall ((N \leq M) \multimap (min(N) \otimes min(M) \multimap min(N)))$ 

- Reads as: Of course, consuming min (N) and min (M) where (N=<M) produces min (N)</p>
- Properly reflects the dynamics of the minimum computation.

## Correctness

Correctness by contradiction

- Minimum is not correctly computed
  - Case 1: more than one min constraint left
  - ► Case 2: remaining min constraint does not contain minimum
- Case 1: rule is still applicable
- Case 2: minimum must have been removed
  - Contradiction: rule always removes larger value

Termination and worst-case complexity

#### Termination

- Rule removes constraints, does not introduce new ones
- Rule application in constant time (applies to every pair of min constraints)
- Number of rule applications (derivation length) bounded by number of min constraints
- Worst-case time complexity
  - Given n min constraints
  - O(n) under refined semantics (left-to-right, immediate reaction, one constraint will be removed)

# Meta-complexity

- Abstract semantics: undetermined order of tried constraints and rules
- Meta-complexity theorem (MCT)

$$O(D\sum_{i}((n+D)^{n_{i}}(O_{H_{i}}+O_{G_{i}}) + (O_{C_{i}}+O_{B_{i}}))),$$

(*D* derivation length, *i* ranges over rules,  $n_i$  number of head constraints in *i*th rule, costs  $O_{H_i}$  of head matching,  $O_{G_i}$  of guard checking,  $O_{C_i}$  of imposing built-in constraints of body,  $O_{B_i}$  of imposing CHR constraints of body)

In this case

$$O(n(n^2(1+0) + (1+0))) = O(n^3).$$

Highly over-estimates (applies to all two-head simpagation rules)

# Confluence (I)

- Correctness implies result is single specific min constraint
   Program is confluent for ground queries (ground confluent)
- One rule, only overlaps with itself
- One nontrivial full overlap (all head constraints equated): min(A),min(B), A=<B,B=<A. (equivalent to min(A),min(A), A=B.)
- Apply rule in given or reversed order
  - ▶ Both cases lead to min (A), A=B (hence rule removes duplicates)

# Confluence (II)

Four overlaps where one constraint shared

min(A),min(B),min(C), A=<B,B=<C.
min(A),min(B),min(C), A=<B,B=<C.
min(A),min(B),min(C), A=<B,A=<C.</pre>

min(A), min(B), min(C), A=<B, C=<B.

First (and second) overlap leads to joinable critical pair

Only smallest constraint min (A) is left

## Confluence (III)

#### Next overlap (similar)

Last overlap

- Cannot proceed until relationship between A and C known (but then common state is reached)
- $\Rightarrow$  Program is confluent

## Anytime algorithm property

## Anytime algorithm (approximation)

- One can interrupt program at any time and restart on immediate result
  - On interrupt: subset of initial min constraints containing actual minimum
    - $\Rightarrow$  interruption and restart possible
- Intermediate results approximate final result
  - Set of possible minima gets smaller and smaller
- $\Rightarrow$  Program is an anytime algorithm

Online algorithm property

- Online (incremental)
  - Possibility to add constraints while program is running
    - Additional min constraints can be added at any point
    - Immediately react with other constraints
    - Confluence guarantees same result, no matter when constraint is added
  - $\Rightarrow$  Program is incremental

## Concurrency and parallelism (I)

- Program is well-behaved (terminating, confluent)
  - $\Rightarrow$  parallelization easy
- Weak parallelism
  - Apply rule to different nonoverlapping parts of query
    - Rule can be applied to pairs of min constraints in parallel
    - Halves number of min constraints in each parallel computation step
    - O(log(n)) on n/2 parallel processing units (processors)

| Example computation                |                                  |
|------------------------------------|----------------------------------|
| <pre>min(1), min(0), min(0),</pre> | <pre>min(2), min(1) min(1)</pre> |
| min(0)                             |                                  |

## Concurrency and parallelism (II)

- Strong parallelism
  - Apply rule to overlapping parts of query (fix one min constraint to be kept)
  - Linear complexity as in sequential execution (worst-case: with largest value fixed, no rule application possible)
- Cost (Time complexity times number of processors)
  - Parallel execution: O(n log(n))
  - Sequential execution: O(n)

# **Boolean XOR**

| XOR progra         | am     |             |  |
|--------------------|--------|-------------|--|
| xor(X),            | xor(X) | <=> xor(0). |  |
| xor(1) $\setminus$ | xor(0) | <=> true.   |  |

- Implements Exclusive Or operation of propositional logic (0 means false, 1 means true)
- > Query: multiset of xor constraints for input truth values (e.g. xor(1), xor(0), xor(0), xor(1))
- First rule: Identical inputs replaced by xor(0)
- Second rule: Remove xor(0) if there is xor(1)

Logical reading and correctness

- First-order logical reading
  - ▶  $xor(X) \leftrightarrow xor(0)$  (particularly  $xor(1) \leftrightarrow xor(0)$ )
  - Means all xor constraints are equivalent
  - Resort to linear logic reading
- Correctness
  - Map CHR conjunction to xor operation
    - Both associative, commutative, not idempotent

イロト イポト イヨト イヨト ヨー わへの

- Each rule application computes one xor
- One xor constraint left in the end

Termination and complexity

- Terminating
  - Each rule removes more constraints than it introduces
- Complexity
  - ▶ For each pair of constraints one rule application in constant time

- Linear complexity under refined semantics
- Cubic complexity under abstract semantics

# Confluence (I)

| XOR program |        |     |        |  |  |
|-------------|--------|-----|--------|--|--|
| xor(X),     | xor(X) | <=> | xor(0) |  |  |

 $xor(1) \setminus xor(0) \iff true.$ 

- Overlap xor(X), xor(X)
  - First rule fully with itself
  - Always leads to xor(0)
- Overlap xor(X), xor(X), xor(X)
  - First rule with itself
  - Always leads to xor(0), xor(X)

# Confluence (II)

## XOR program

```
xor(X), xor(X) \iff xor(0).
```

```
xor(1) \setminus xor(0) \iff true.
```

- Overlap xor(1), xor(1), xor(0)
  - Occurs twice (first and second rule, second rule with itself)
  - Always leads to xor(0)
- Overlap xor(1), xor(0), xor(0)
  - Occurs twice (first and second rule, second rule with itself)
  - Always leads to xor (1)
- $\Rightarrow$  Program is confluent

Remaining properties

- Anytime: fewer and fewer xor constraints, result not necessarily contained (xor(1), xor(1))
- Online: xor constraints can be added at any point
- ▶ Rules applicable in parallel (as for min)  $\Rightarrow O(n \log(n))$

イロト 不得 トイヨト イヨト 二三

## Greatest common divisor



## Either sub or mod rule can be used

| Example computation (sub) | Example computation (mod) |  |
|---------------------------|---------------------------|--|
| gcd(7), gcd(12)           | gcd(7), gcd(12)           |  |
| gcd(7), gcd(5)            | gcd(7), gcd(5)            |  |
| gcd(5), gcd(2)            | gcd(5), gcd(2)            |  |
| gcd(2), gcd(3)            | gcd(2), gcd(1)            |  |
| gcd(2), gcd(1)            | gcd(1), gcd(0)            |  |
| gcd(1), gcd(1)            | gcd(1)                    |  |
| gcd(1), gcd(0)            |                           |  |
| gcd(1)                    |                           |  |

# Logical Reading

First-order logical reading

 $gcd(0) \leftrightarrow true$ 

 $0 < N \land N = <M \to (gcd(N) \land gcd(M) \leftrightarrow gcd(N) \land gcd(M-N))$ Latter is equivalent to  $0 < N \land 0 = <M \to (gcd(N) \land gcd(M+N) \leftrightarrow gcd(N) \land gcd(M))$ 

- Correct, but does not characterize gcd, only all its multiples
- Linear-logic semantics reflects dynamics of computation properly

## Correctness

- All divisors d preserved under rule application
- Computation produces smaller and smaller values

• 
$$N = Ad, M = Bd$$

From logical reading

 $0 < Ad \land Ad = < Bd$ 

 $\rightarrow (\mathit{gcd}(\mathit{Ad}) \land \mathit{gcd}(\mathit{Bd}) \leftrightarrow \mathit{gcd}(\mathit{Ad}) \land \mathit{gcd}(\mathit{Bd}{-}\mathit{Ad}))$ 

• gcd(Bd - Ad) is equivalent to gcd((B - A)d)

 $\Rightarrow$  Divisor *d* preserved during computation

- Computation continues until M = N = gcd
- Rule is applied a last time
- gcd(0) is removed leaving only actual gcd

## Termination and complexity

## Termination

- Guard condition ensure new value smaller than removed M
- New value cannot become negative
- Complexity
  - Rules applicable in constant time to any gcd pair
  - Two gcd constraints
    - sub: complexity linear in larger number
    - mod: complexity logarithmic in larger number
  - More than two gcd constraints: consider all numbers
    - sub linear in sum of numbers
    - mod logarithmic in product of numbers

# Confluence

- GCD program is ground confluent (unique result for given values)
- Not confluent in general:
  - Overlaps analogous to min
  - Difference: rule not only removes constraints but also adds
  - Nonjoinable critical pair (cp)

```
gcd(A),gcd(B),gcd(C),0<A,A=<B,0<C,C=<B
| | |
gcd(A),gcd(B-A),gcd(C),0<A,A=<B,0<C,C=<B |
|
gcd(A),gcd(B-C),gcd(C),0<A,A=<B,0<C,C=<B |
```

Computation cannot proceed until relationship of A, B, and C is known

## Remaining properties

- Anytime: fewer and fewer gcd constraints with smaller and smaller numbers (result not necessarily contained)
- Online: additional gcd constraints can be added anytime
- ► Complexity of parallel execution not better nor worse than sequential (since O(max(a, b)) = O(a + b))
- But gcd's may get smaller more quickly
- In practice: super-linear speed up with parallel CHR implementation in Haskell

## Prime sieve

## Prime sieve program

```
sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.
```

- Removes multiples in given set until only prime numbers left
- > Query: prime candidates from 2 upto N
  (prime(2), prime(3), prime(4),..., prime(N))

## Example computation

```
prime(7), prime(6), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(4), prime(3), prime(2)
prime(7), prime(5), prime(3), prime(2)
```

Logical reading and correctness

First-order logical reading

 $\forall ((M \bmod N = 0) \rightarrow (prime(M) \land prime(N) \leftrightarrow prime(N)))$ 

- Means a number is prime if it is a multiple of another prime number
- Linear logic reading reflects dynamics of filtering correctly
- Correctness
  - ▶ Program confluent ⇒ result always the same
  - All composite numbers removed (with correct query)
  - Primes not removed (only multiple of 1, not included)

## Termination and complexity

- Termination
  - Rule only removes constraints
- Complexity
  - Rule not applicable to all pairs of numbers
  - Thus complexity quadratic in number of constraints (refined semantics)
  - Runtime can be improved by starting from lower numbers

# Confluence

- Program is confluent
  - Reason: transitivity of divisibility
  - I|J and  $J|K \Rightarrow I|K$
  - Overlaps and joinability analogous to min

```
prime(A),prime(B), A|B,B|A
prime(A),prime(B),prime(C), A|B,B|C
prime(A),prime(B),prime(C), A|B,A|C
prime(A),prime(B),prime(C), A|B,C|B
```

- First three overlaps lead to joinable critical pair
- Last overlap also:

# Other properties

- Anytime and online properties as for min
- sift does not hold for all pairs
  - All  $O(n^2)$  pairs have to be tried in O(n) rounds
    - $\Rightarrow$  some scheduling needed
- Strong parallelism
  - Fix one prime constraint for first head constraint
  - Search for prime constraint matching second head constraint
  - Needs O(n) rounds
- Cost same as for sequential execution (quadratic)
- Linear time: maximal, linear parallel speed-up

## Exchange sort

## Exchange sort program

a(I,V),  $a(J,W) \iff I>J$ ,  $V \le W \mid a(J,V)$ , a(I,W).

- Exchanges values that are in the wrong order
- Query: array of values A<sub>i</sub> (a (1, A1), ... a (n, An))

#### Example computation

 $\begin{array}{l} a(0,1), \ a(1,7), \ a(2,5), \ \underline{a(3,9)}, \ \underline{a(4,2)} \\ a(0,1), \ a(1,5), \ \underline{a(2,7)}, \ \underline{a(3,2)}, \ a(4,9) \\ a(0,1), \ \underline{a(1,5)}, \ \underline{a(2,2)}, \ a(3,7), \ a(4,9) \\ a(0,1), \ a(1,2), \ a(2,5), \ a(3,7), \ a(4,9) \end{array}$ 

Logical reading and correctness

First-oder logical reading

$$I > J \land V < W \to (a(I, V) \land a(J, W) \leftrightarrow a(J, V) \land a(I, W))$$

- Means all arrays with same set of values are equivalent
- Resort to linear logic reading
- Correctness
  - ► Sorted: for each (a(I,V), a(J,W)) with I>J it holds that V>=W
  - If condition  $V \ge W$  does not hold, rule is applicable
    - $\Rightarrow$  condition holds after application
    - $\Rightarrow$  if rule not applicable, array must be sorted
## Termination

- Rule application cannot introduce more wrong than right orderings
- Guard: counter in each array entry
  - Counts how many values with larger index are smaller
  - On exchange:
    - Counter of smaller value increases
    - Counter of larger value decreases by same number +1
    - Counter of values in between can only decrease
    - $\Rightarrow$  Sum of counters decrease with each rule application

# Complexity

- Derivation length quadratic in number of constraints (cf. counter)
- Two head constraints: MCT gives overestimated complexity

$$O(n^2((n^2)^2(1+1) + (0+1))) = O(n^6)$$

- Fix one value (refined semantics): Each try costs O(n)
  - Rule can be applied in constant time once pair found
- ▶ At most  $O(n^2)$  applications  $\Rightarrow$  actual worst-case complexity  $O(n^3)$

# Confluence (I)

- Program is ground confluent by correctness (unique result)
- Not confluent in general
- First critical pair is joinable

```
a(I,V), a(J,W), a(K,U), I>J,V<W, J>K,W<U

/ I,J | J,K

/ a(I,V), a(K,W), a(J,U), I>J,V<W, J>K,W<U

/

a(J,V), a(I,W), a(K,U), I>J,V<W, J>K,W<U |

| I,K | I,K | I,K

| a(K,V), a(I,W), a(J,U), I>J,V<W, J>K,W<U |

|

a(J,V), a(K,W), a(I,U), I>J,V<W, J>K,W<U |

| J,K | I,J

|

a(K,V), a(J,W), a(I,U), I>J,V<W, J>K,W<U
```

# Confluence (II)

### Two nonjoinable critical pairs

- $\blacktriangleright$  Only joinable when relationship between  ${\mathbb J}$  and  ${\mathbb K}$  as well as  ${\mathbb W}$  and  ${\mathbb U}$  known
- Analogous situation for

```
a(I,V), a(J,W), a(K,U), I>K,V<U, J>K,W<U
```

#### ◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

# **Remaining properties**

- Number of wrongly ordered pairs decreases over time
- Additional array entries can be added at any point
- Rule not applicable to arbitrary pairs of constraints
   ⇒ only weak parallelism possible
  - Associate each array entry with a processor
  - Try all pairs in O(n) (macro-step)
  - Each entry reacts with at most O(n) other entries
  - Overall  $O(n^2)$  rule applications
  - ► All rule applications can be performed in O(n) macro-steps ⇒ Complexity quadratic, cost cubic

Square root

## Square root program

sqrt(X,G) <=> abs(G\*G/X-1)>eps | sqrt(X,(G+X/G)/2).

- Rule implements Newton's method
- sqrt(X,G): square root of X is approximated by G
- eps is greater but close to 0
- Start with positive numbers X and G

Logical reading and termination

Logical reading

 $abs(G * G/X - 1) > \epsilon \rightarrow (sqrt(X, G) \leftrightarrow sqrt(X, (G + X/G)/2))$ 

- Means that any value is an approximation of  $\sqrt{X}$
- Resort to linear logic reading
- Termination
  - After first rule application  $G \ge \sqrt{X}$
  - If  $G = \sqrt{X}$  rule not applicable
  - Otherwise rule applicable, second argument will decrease

**Remaining properties** 

- Confluence, anytime, online algorithm
  - Hold trivially (single rule with single head constraint)
- Concurrency, parallelism
  - Several constraints can run independently in parallel

イロン 不得 とくき とくきとうき

## Maximum

### Maximum program

max(X,Y,Z) <=> X=<Y | Z=Y.
max(X,Y,Z) <=> Y=<X | Z=X.</pre>

max(X,Y,Z) means Z is the maximum of X and Y

► =< and < built-ins</p>

### Example computation

max(1,2,M): first rule applicable, reduces to M=2

max(1,2,3): fails because of built-in 3=2

max(1,1,M): both rules applicable, reduces to M=1

Logical reading and correctness

First-order logical reading is

$$X \leq Y \to (max(X, Y, Z) \leftrightarrow Z = Y)$$

$$Y \leq X \to (max(X, Y, Z) \leftrightarrow Z = X)$$

Logical consequences of the definition of max

$$max(X, Y, Z) \leftrightarrow (X \leq Y \land Z = Y \lor Y \leq X \land Z = X)$$

イロン イボン イヨン 一注

This shows logical correctness

## Termination and complexity

- One constraint removed in each step
  - $\Rightarrow$  At most *n* (number of constraints) derivation steps
- In each step at most n constraints checked against rules
- Checking or establishing syntactic equality in constant time
- Matching constraint against rule in quasi-constant time
- Rule application in quasi-constant time
- $\Rightarrow$  Worst-case complexity slightly worse than  $O(n^2)$ 
  - Same complexity is obtained using MCT

## Remaining properties

- Confluence
  - ► Only overlap is max(X, Y, Z) ∧ X ≤ Y ∧ Y ≤ X
  - Leads to critical pair

 $(Y = Z \land X \le Y \land Y \le X, X = Z \land X \le Y \land Y \le X)$ 

- Both states equivalent to  $X = Y \land Y = Z$
- Anytime, online algorithm
  - Hold trivially (single-headed simplification rule)
- Concurrency, parallelism
  - max constraint may have to wait for result of other constraint (e.g. max(X,Y,Z), max(Y,Z,W))

## Fibonacci numbers

### Fibonacci program

```
f0 @ fib(0,M) <=> M=1.
f1 @ fib(1,M) <=> M=1.
fn @ fib(N,M) <=> N>=2 |
        fib(N-1,M1), fib(N-2,M2), M is M1+M2.
```

### fib(N,M) holds if M is Nth Fibonacci number

### Example computations

Query fib(8,A) yields A=34Query fib(12,233) succeeds Query fib(11,233) fails Query fib(N,233) delays Logical reading and correctness

First-oder logical reading

 $fib(0, M) \leftrightarrow M = 1$  $fib(1, M) \leftrightarrow M = 1$  $N \ge 2 \rightarrow (fib(N, M) \leftrightarrow fib(N - 1, M1) \land fib(N - 2, M2) \land M = M1 + M2)$ 

Shows correctness (coincides with mathematical definition)

## Termination and complexity

- Program terminates
  - First argument of fib decreases in each call
  - Call only possible with positive first argument
- Ranking gives upper bound on derivation length

$$rank(fib(n,m)) = 2^n$$

- Expected exponential complexity  $O(2^n)$
- If first argument unknown complexity may increase (depending on wake-up policy)
- ▶ MCT reflects this and gives *O*(4<sup>*n*</sup>)

# **Remaining properties**

- Confluence:
  - No overlaps (single-headed simplification rules whose heads and guards exclude each other)

イロン 不得 とくき とくき とうき

- Anytime, online algorithm, and concurrency
  - Hold trivially (single-headed simplification rule)

Fibonacci numbers (memorization version)

### Fibonacci program with memorization

```
mem @ fib(N,M1) \setminus fib(N,M2) <=> M1=M2.
```

### Example computations

Query fib(8, A) returns all Fibonacci numbers up to 8:

fib(0,1), fib(1,1), fib(2,2), ..., fib(7,21), fib(8,34)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Complexity

- With indexing on the first argument
  - Linear complexity (each Fibonacci number only computed once)
- Without indexing on first argument
  - Quadratic complexity (Searching for suitable pairs in mem)
- MCT does not apply here (propagation rules)

# Confluence

- Nontrivial overlaps between mem and each propagation rule
- First critical pair: fib(0,M1), fib(0,M2)

#### ◆□ > ◆□ > ◆ □ > ◆ □ > □ □ ● ○ ○ ○

## Confluence

イロン 不得 とくき とくきとう

- The two reached states are equivalent
- Overlap with rule f1 analogous

## Other properties

- Online: trivial
- Anytime
  - In theory: no computation steps redone when started on intermediate result
  - In practice: recomputation my occur (propagation history not explicit)
  - Additional computations absorbed (confluence and mem rule)
  - Execution of two recursive calls in parallel possible
  - No gain: mem rule will absorb multiple computations

Fibonacci numbers (program variations)

- Similar reasoning, results hold for fib as function with given first argument
- Exception: finite bottom-up computation

 Quadratic complexity (no indexing between to fib constraints in head)

## Depth-first search

| Depth-first search program |   |                                                                     |
|----------------------------|---|---------------------------------------------------------------------|
| empty                      | 0 | <pre>dfsearch(nil,X) &lt;=&gt; false.</pre>                         |
| found                      | 0 | <pre>dfsearch(node(N,L,R),X) &lt;=&gt; X=N   true.</pre>            |
| left                       | G | dfsearch(node(N,L,R),X) <=> X <n dfsearch(l,x).<="" td=""  =""></n> |
| right                      | 0 | dfsearch(node(N,L,R),X) <=> X>N   dfsearch(R,X).                    |

- Tree encoding node (Data, Lefttree, Righttree)
- Data ordered such that every node in left subtree smaller, every node in right subtree larger than parent node
- Search for datum Data in binary tree Tree by calling dfsearch (Tree, Data)
- All analyzed properties hold in a trivial way (single-headed simplification rules with exclusive heads and guards)
- Complexity linear in depth in tree per search

## Depth-first search

### Depth-first search program (variant)

```
empty @ nil(I) \ dfsearch(I,X) <=> fail.
found @ node(I,N,L,R) \ dfsearch(I,X) <=> X=N | true.
left @ node(I,N,L,R) \ dfsearch(I,X) <=> X<N | dfsearch(L,X).
right @ node(I,N,L,R) \ dfsearch(I,X) <=> X>N | dfsearch(R,X).
```

- Different granularity: node represented by CHR data constraint
- Tree is set of such node constraints
- For valid binary search tree properties of previous programs inherited
- With indexing complexity unaffected
- ▶ Data constraints can be added ⇒ online algorithm

Depth-first search

### Depth-first search program (another variant)

found @ node(N) \ search(N) <=> true.
empty @ search(N) <=> fail.

- Directly access data by mentioning in rule head
- All properties except anytime break down (due to empty rule)
- With indexing constant time complexity

## Destructive assignment

### Destructive assignment program

```
assign(Var,New), cell(Var,Old) <=> cell(Var,New).
```

- Constraint assign assigns new value to variable Var
- Not confluent
  - Nonjoinable overlap:

```
assign(Var, New1), assign(Var, New2), cell(Var, Old)
```

- Results in either cell(Var, New1) or cell(Var, New2)
- Order matters  $\Rightarrow$  not executable in parallel as intended
- First-order logical reading does not reflect intended meaning (linear-logic semantics needed)

## Transitive closure

### Transitive closure program

```
dp @ p(X,Y) \ p(X,Y) <=> true.
p1 @ e(X,Y) ==> p(X,Y).
pn @ e(X,Y), p(Y,Z) ==> p(X,Z).
```

- Relation: edge e between two nodes
- Transitive closure: path p between two nodes

### Example computation

Query e(1,2), e(2,3), e(2,4) adds path constraints

p(1,4), p(2,4), p(1,3), p(2,3), p(1,2)

Logical reading and correctness

- ► First-order logical reading as implications  $p(X, Y) \land p(X, Y) \leftrightarrow p(X, Y)$   $e(X, Y) \rightarrow p(X, Y)$   $e(X, Y) \land p(Y, Z) \rightarrow p(X, Z)$ 
  - Logical reading of duplicate removal is tautology
  - Not expressible in FOL but in linear logic: transitive closure is smallest transitive relation
  - Rules actually calculate smallest relation (left to right application produces relation bottom-up)
  - $\Rightarrow$  Program is correct

# Termination

- Refined semantics
  - Duplicates removed by dp before propagation rules applied

- Finite number of paths in finite graph
- $\Rightarrow$  Program terminates
- Abstract semantics
  - dp can be applied too late in cyclic graph
  - Same paths generated again and again
  - $\Rightarrow$  Termination not guaranteed

# Complexity (I)

- ▶ It holds that  $v/2 \le e \le p \le v^2$  (v #vertices, e #edges, p #paths)
- Rules can be applied in constant time
- Without indexing
  - Upper bound for propagation rule attempts: product of number of head constraints occurring during computation
  - pl tried at most e times, applies e times
  - ▶ pn tried at most *ep* times, applies at most max(*ev*, *vp*) = *vp* times
  - Path constraint produced with each rule application
  - Thus, dp applied pvp times

 $\Rightarrow$  Worst-case complexity due to dp  $O(vp^2) = O(v^5)$ 

# Complexity (II)

- With indexing
  - Index constraints on arguments with shared variables in heads
  - Upper bounds for rule attempts and rule application coincide now
  - p1 tried and applied at most e times
  - ▶ pn tried and applied at most max(ev, vp) = vp times
  - ▶ Thus, dp applied *vp* times now
  - $\Rightarrow$  Worst-case complexity due to pn  $O(vp) = O(v^3)$
- Optimal for this algorithm

## Confluence



Program is confluent

## **Remaining properties**

- Anytime: Repeated application of propagation rule does not matter
  - Confluence, duplicate paths removed
- Online: edges can be added during computation
- Strong parallelism
  - Apply p1 to all edges in parallel
  - Next rounds: all possible applications of pn and then dp
  - With indexing vp application of those rules
  - Given v processors parallel complexity  $O(v^2)$
  - Cost  $O(v^3)$

Single-source and single-target paths

### Transitive closure program(single-source)

```
dp @ p(X,Y) \ p(X,Y) <=> true.
s1 @ source(X), e(X,Y) ==> p(X,Y).
sn @ source(X), p(X,Y), e(Y,Z) ==> p(X,Z).
```

- Only paths from (or to) a certain node computed
- Complexity
  - ▶ Number of created path constraints reduced by factor v( $p \le v \le 2e \le 2v^2$ )
  - Without indexing  $O(vp^2) = O(v^3)$
  - With indexing:  $O(vp) = O(v^2)$

```
Shortest path
```

### Shortest path program

```
dp @ p(X, Y, N) \land p(X, Y, M) \iff N = M | true.
 e(X, Y) = p(X, Y, 1).
 e(X, Y), p(Y, Z, N) = p(X, Z, N+1).
```

Computes shortest path length between all pairs of nodes

### Example computation

Query e(X, Y), e(Y, Z), e(X, Z) adds path constraints

```
p(X,Z,1), p(Y,Z,1), p(X,Y,1)
```

Termination and complexity

- $\blacktriangleright$  New active path constraint only removed by  ${\rm dp}$  if equal or longer
- ► Otherwise old path removed (work repeated, at most *v* times) ⇒ Worst-case complexity with indexing  $O(ev^2) = O(v^4)$
- Better complexity (i.e. ev) needs more clever scheduling
  - E.g. in Dijkstra's algorithm, computation always continues with shortest path found so far
#### Partial order constraint

#### Partial order program

duplicate @ X leq Y \ X leq Y <=> true. reflexivity @ X leq X <=> true. antisymmetry @ X leq Y , Y leq X <=> X=Y. transitivity @ X leq Y , Y leq Z ==> X leq Z.

#### Maintains nonstrict partial order relation leq ≤

#### Example computation

<u>A leq B</u>, <u>C leq A</u>, B leq C <u>A leq B</u>, <u>C leq A</u>, <u>B leq C</u>, <u>C leq B</u> <u>A leq B</u>, <u>C leq A</u>, <u>B=C</u> <u>A=B</u>, <u>B=C</u>

#### Termination and complexity

- duplicate and transitivity analog to transitive closure (i.e. cubic)
- reflexivity does not change complexity
- With indexing
  - Application of antisymmetry triggers at most O(v) constraints (all leq with X and Y)
  - In those constraints, one variable is replaced by other
    - $\Rightarrow$  problem shrinks by one variable (at most O(v) times)
    - $\Rightarrow$  Thus, antisymmetry applied O(v) times
    - $\Rightarrow$  Trying and applying of antisymmetry:  $O(v^2)$
  - $\Rightarrow$  Overall complexity  $O(v^3)$

## Remaining properties

- Algorithm is anytime and online (as discussed in chapter 4)
- Similar to transitive closure:transitivity can be applied in parallel to all pairs, then all other rules can be applied
- First-order logical reading

- duplicate rule is tautology
- Other rules give axioms of partial order
- FOL reading suffices and shows correctness (see also chapter 3)

#### Cocke-Younger-Kasami

| $\sim$ |      |       |    |
|--------|------|-------|----|
| ( VK   | າງໄດ | inrit | hm |
|        | aic  | υπ    |    |
|        |      |       |    |

| duplicate   | Q | $p(A, I, J) \setminus p(A, I, J) \iff true.$                            |
|-------------|---|-------------------------------------------------------------------------|
| terminal    | g | $A \rightarrow T$ , $e(T, I, J) = p(A, I, J)$ .                         |
| nonterminal | Q | $A \rightarrow B \star C$ , $p(B,I,J)$ , $p(C,J,K) \implies p(A,I,K)$ . |

- Parses a string according to a context-free grammar bottom-up.
- Specialization of transitive closure

# Termination and complexity

General idea: With indexing:

- Arguments of constraints can be associated with finite domains
   Product of domain sizes of variables in rule head gives upper bound on number of rule applications and attempts
- ▶ Chain representing string has v nodes and e(=v-1) edges
- ▶ Grammar with *t* terminals and *n* nonterminals
- ▶ Number of grammar rules  $r \le nt + n^3$  (assuming  $t \le n^2$ )
- Products of domain sizes
  - ▶ terminal (variables A, T, I, J):  $ntvv = ntv^2$
  - ▶ nonterminal (variables A, B, C, I, J, K):  $n^3v^3$
  - duplicate tried with each p produced:  $n^3v^3$

 $\Rightarrow$  Overall complexity of  $O(n^3v^3)$  with indexing (*n* usually fixed)

## Confluence

- Confluent when used on ground chains
- Not confluent in general
- Nonjoinable critical pair from overlap

```
A->B*B, p(B,I,I), p(B,I,I)

/ nonterminal \ duplicate

A->B*B, p(B,I,I), p(B,I,I), p(A,I,I) A->B*B, p(B,I,I)

| duplicate

A->B*B, p(B,I,I), p(A,I,I)
```

## Mergesort

#### Merge sort program

```
A \rightarrow B \setminus A \rightarrow C \iff A < B, B = < C | B \rightarrow C.
```

- Implements merge sort algorithm
- Query contains only arcs  $0 \rightarrow A_i$
- Answer: sequence of values stored as arcs (e.g 0, 2, 5 is 0 -> 2, 2->5)

#### Example computation

Logical reading and correctness

Classical logical reading is sufficient

$$A < B \land B \rightarrow > C \rightarrow (A \rightarrow B \land A \rightarrow > C \leftrightarrow A \rightarrow > B \land B \rightarrow > C).$$

A → B means A ≤ B, thus logical correctness is consequence of axioms for ≤

$$A < B \land B \leq C \to (A \leq B \land A \leq C \leftrightarrow A \leq B \land B \leq C)$$

# Termination and complexity

- ▶ Complexity of merging two ordered chains (lengths *n* and *m*)
  - Indexing on the first argument of arc constraint:
    - $\Rightarrow$  Second arc constraint found in constant time since rule is applicable to arbitrary pairs of arcs with same first argument
  - ► Each rule application processes one arc constraint ⇒ O(m + n)
- Complexity of sorting n values given as second argument of arc
  - ► First argument can be replaced at most *n* times in each arc ⇒ Worst time complexity  $O(n^2)$

# Confluence

- Ground confluent (correct, unique result)
- Overlaps and joinability analog to gcd (gcd (N) mapped to X->N, gcd (M-N) to N->M)
- One nonjoinable overlap

 $\blacktriangleright$  Cannot proceed until relationship between  $\mathbb A$  and  $\mathbb C$  is known

#### Anytime and online algorithm

- Anytime property
  - Intermediate results: connected acyclic graph
  - Smallest value is root
  - Longer and longer chains without branches
- Online property
  - Sorting incrementally, new arcs can be added at any time

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mergesort (optimal complexity sorting)

- Complexity can be improved to optimal O(n log(n)) by optimal merging order
- Merging chains of same length
  - Precede chain with length (N=>Firstnode)
  - Rule to initiate merging of chains of same length

N = >A, N = >B < => A < B | N + N = >A, A - >B.

- Works only if length of query is a power of 2
- Start by merging n chains of length 1 then merge n/2 chains of length 2 and so on
- Finished after log(n) rounds  $\Rightarrow$  complexity O(n log(n))
- works for any length with one more rule

## Concurrency and parallelism

- Follows structure of proof of optimal complexity
- Merging of two chains strictly sequential
- In second round start merging new chains while tail of chains still produced
- ▶ log(n) rounds of merging, last round my need *n* more steps
- Overall  $n + \log(n)$  steps
- With *n* processors: complexity O(n) and cost  $O(n^2)$
- Also possible for original version (scheduling)