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Overview

I CHR programs automatically implement algorithms with certain
properties

I Anytime (approximation): Interrupt program, see approximation of
result, restart from this intermediate result

I Online (incremental): Additional constraints can be added during
execution without restart

I Concurrency: rules can be applied in parallel to certain parts of
goal

I Properties result from operational semantics
I (Very) abstract semantics used in this chapter
I Results carry over to refined semantics if program is confluent
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Anytime property

I Anytime property
I No need to restart computation from scratch after interruption
I Intermediate results approximate final result better and better
I Can guarantee response times (for embedded systems, for hard

problems)

I In CHR
I When program interrupted, states are meaningful (logical reading)
I All information needed contained in states
I Approximation to to answer: more built-ins added and CHR

constraints simplified
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Example

Example computation (partial order constraint)

A≤B ∧ B≤C ∧ C≤A 7→ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C 7→ (antisymmetry)

A≤B ∧ B≤C ∧ A=C 7→ (antisymmetry)

A=B ∧ A=C

I Interruption at any point possible

I Proceed the same way as if not interrupted
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Limitations

Limitations of current CHR implementations
I No support for interruption and adding constraints

I But rules can be used to support this behavior

I Usually only logical reading of state observable
I Refined semantics: propagation history, location of constraints,

identifiers and order of CHR constraints lost
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Differences regarding semantics

Differences between semantics
I Abstract semantics

I If logical reading of intermediate state used as initial goal,
transitions Solve and Introduce reconstruct state

I Now same transitions are possible as from original state

I Refined semantics
I Transition system may not reconstruct state because constraint

order is lost
I Confluence can still guarantee same answer
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Monotonicity property

If transition is possible in state, it is possible in any larger state
I Implies incremental processing of constraints
I Allows for concurrently composed computations

Lemma

If A 7→ B
then A ∧ D 7→ B ∧ D

(for states A, B, and D)

Example computation (partial order constraint)

A≤B ∧ B≤C 7→ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A (added) 7→ (antisymmetry)

A≤B ∧ B≤C ∧ A=C 7→

. . .
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Monotonicity property

Lemma can be restated for abstract semantics
I In nonfailed state:

I can add satisfiable constraints and global variables
I can remove entries from propagation history

Lemma
Nonfailed ωt states (no shared local variables, B∧B′ consistent)

A = 〈G, S, B, T〉Vn and D = 〈G′, S′, B′, T ′〉V
′

m ,

Then the combined state A ∧ D = 〈G]G′
+n, S∪S′+n, B∧B′, T ′′〉V∪V

′∪V′′
n+m

admits same transitions as state A (and D).

(+n increments identifier, T ′′ ⊂ T∪T ′
+n, V ′′ arbitrary variables)

In refined semantics two different ways of combining states (order
matters in stack)
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Online property

I Online algorithm property
I Adding constraints during execution without restart from scratch
I Same behavior as if constraints were there from beginning
I Useful for interactive, reactive, control systems, agent programming
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Concurrency and parallelism (I)

I Concurrency allows for logically independent computations

I Parallelism allows for computations that happen simultaneously
I Concurrency can be implemented in sequential or parallel way

I Parallel implementations require suitable hardware
I Sequential implementations use interleaving of computations

I Interleaving semantics of concurrency
I For each parallel computation exists a sequential interleaving with

same result
I Parallel execution can be simulated by sequential one
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Concurrency and parallelism (II)

I Declarative programming languages are compositional
I Different computations can be composed without interference
I Techniques for programming, reasoning, analysis still apply for

composed program
I Makes concurrency and distribution easier

Example

Destructive assignments x:=5 and x:=7 versus equations x=5 and
x=7

I In imperative languages: unpredictable result in parallel
execution (x=5 or x=7)

I In concurrent constraint languages: unintended interference
leads to failure (noticeable)
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Processes

I Main notion in concurrent and distributed programming

I Programs that are executed independently but interact
(concurrent programs)

I Can communicate and synchronize by sending and receiving
messages

I Can build a dynamically changing process network
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Concurrency in CHR

I Concurrent processes are CHR constraints
I Communication via shared built-in constraint store
I Built-in constraints: (partial) messages
I Shared variables: communication channels
I Communication usually asynchronous

I Running processes: active CHR constraints
I check/ask (in guard) and place/tell (in body) built-in constraints on

shared variables
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Parallelism in CHR

I Rules needed such that for parallel A 7→7→ B execution exists
sequentialized A 7→+ B execution

I Parallelization without change for confluent programs

Weak and strong parallelism in CHR
I Weak: rules can be applied to separate parts of the problem in

parallel
I Due to monotonicity: Adding constraints cannot inhibit rule

applicability

I Strong: rules can be applied to overlapping parts of problem too
I Overlap must not be removed
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Weak Parallelism (I)

Weak parallelism: rule application to separate parts of problem

Definition (Weak parallelism)

If A 7→ B
and C 7→ D
then A ∧ C 7→7→ B ∧ D

(A, B, C, D conjunction of constraints, 7→7→ parallel transition relation)
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Weak parallelism (II)

Theorem (Trivial confluence)

If A 7→ B
and C 7→ D
then A ∧ C 7→ S 7→ B ∧ D

where S is either A ∧ D or B ∧ C

I Two interpretations
I Rule applications on separate parts of goal can be exchanged
I Rule applications from different goals can be composed

I Holds for (very) abstract semantics

I Constraints can only be involved in one rule application
simultaneously
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Weak parallelism (III)

Example (Minimum)

min(N) \ min(M) ⇔ N≤M true.

Rule of min can be applied in parallel to different parts of query

min(1) ∧ min(0) ∧ min(2) ∧ min(3)
7→7→

min(0) ∧ min(2) 7→
min(0)

One rule instance applied to min(1)∧min(0),
the other to
min(2) ∧ min(3)
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Weak parallelism (IV)

Example (Partial order constraint)
duplicate @ X≤Y ∧ X≤Y ⇔ X≤Y.
reflexivity @ X≤X ⇔ true.
antisymmetry @ X≤Y ∧ Y≤X ⇔ X=Y.
transitivity @ X≤Y ∧ Y≤Z ⇒ X≤Z.

Rules antisymmetry and transitivity can be applied in parallel in

A≤B ∧ C≤A ∧ B≤C ∧ B≤A 7→7→
A=B ∧ C≤A ∧ B≤C ∧ B≤A

Antisymmetry rule applied to A≤B ∧ B≤A,
transitivity rule to B≤C ∧ C≤A
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Shortcomings of weak parallelism

Weak parallelism is too strict

I Application of propagation rules to overlapping parts of state not
allowed

I Sharing built-ins for guard checks of parallel applications not
allowed
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Strong parallelism (I)

Parallel rule applications to overlapping parts allowed if overlap kept

Definition (Strong parallelism)

If A ∧ E 7→ B ∧ E
and C ∧ E 7→ D ∧ E
then A ∧ E ∧ C 7→7→ B ∧ E ∧ D

I With weak parallelism either two copies of E needed or E must
have been empty
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Strong parallelism (II)

Theorem (Trivial confluence with context)

If A ∧ E 7→ B ∧ E
and C ∧ E 7→ D ∧ E
then A ∧ C ∧ E 7→ S 7→ B ∧ D ∧ E

where S is either A ∧ D ∧ E or B ∧ C ∧ E

I CHR constraint can be used several times if kept in all rule
matchings

I CHR constraint can be used only once if it is removed
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Strong parallelism (III)

I Propagation rules: only add constraints, any constraint can be in
overlap

I Several propagation rules can be applied simultaneously

I Simpagation rules: Constraint which are not removed allowed in
overlap

I Simpagation rule may remove arbitrary number of constraints
simultaneously in one concurrent step

I Simplification rules: Remove all constraints, cannot be involved
in overlap except for built-ins
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Strong parallelism (IV)

Example (Parallel computation of minimum)

min(N) \ min(M) <=> N=<M | true.

min(1) matches kept head constraint of simpagation rule
min(2) and min(3) match in parallel two different instances of head
constraint to be removed

min(1) ∧ min(0) ∧ min(2) ∧ min(3)
7→7→

min(1) ∧ min(0) 7→
min(0)

Choosing min(0) as kept constraint would have computed result in
just one step
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Strong parallelism (V)

Example (Parallel computation of partial order constraint)

Apply transitivity rule, then antisymmetry rule, each three times in
parallel:

A≤B ∧ B≤C ∧ C≤A 7→7→

A≤B ∧ B≤C ∧ C≤A ∧ A≤C ∧ B≤A ∧ C≤B 7→7→

A=B ∧ B=C ∧ A=C

First transition only possible with strong parallelism (several
propagation rules applied to same constraint simultaneously)
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Stronger parallelism

I Even stronger parallelism (removing constraints from overlap)
may lead to incorrect behavior

I Example:
I Rule min(N) \ min(M) ⇔ N≤M true
I Query min(1)∧min(1)
I One rule tries matching in given, one in reversed order
⇒ Both constraints will be removed (not correct)

I This behavior is not allowed by weak or strong parallelism

I Still, even stronger parallelism is possible...
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Implementation of parallelism

Locking mechanism for atomic CHR constraints
I Weak parallelism

I On rule application lock all matched constraints
I If one fails, unlock all, try redoing rule application
I If all constraints locked successfully, apply rule
I Unlock kept constraints before executing rule body

I Strong parallelism
I Analogous, but only removed head constraints locked
I No unlocking necessary (locked constraints removed)

Use standard algorithms to avoid deadlocks and cyclic behavior
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Programs under refined semantics(I)

I Parallelization of every program in (very) abstract semantics
possible

I Incorrect results under refined semantics possible
I Order of rules in program and constraints in goal

I Trivial confluence does not hold in in refined semantics
I Combination of states is not symmetric

I Solution: make programs confluent
I Order of rule application and constraints in goal does not matter
I ⇒ Can always be run in parallel
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Programs under refined semantics(II)

Example (Destructive assignment in parallel)

Destructive assignment rule:

assign(Var,New), cell(Var,Old) <=> cell(Var,New).

Query:

cell(x,2), assign(x,1), assign(x,3)

Undetermined which update through assign comes first
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Computational power and expressiveness

I CHR machine: fragment of CHR language (analogous to RAM
or Turing machines)

I CHR, RAM, and Turing machine simulate each other in
polynomial time
⇒ CHR is Turing complete
⇒ CHR can implement every algorithm without

performance penalty
(Not known for other purely declarative paradigms)

⇒ CHR first declarative language with “optimal complexity”
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Sufficiently strong constraint theory

CHR machine needs sufficiently strong constraint theory

Definition (Sufficiently strong constraint theory)

CT is sufficiently strong if it defines at least the built-ins
true, false,=, 6= and the arithmetic operations +,−, ∗, / over integers
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CHR machine (I)

CHR program to simulate RAM machine

I Memory cell represented by m(A,V) (address A, value V)

I Program counter pointing to code line L represented by c(L)
I Instruction i(L,L1,I,D1,D2) consists of

I L, L1 current and new line number
I Name of instruction I
I Arguments of instruction D1, D2
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CHR machine (II)

Typical rules of the Ram machine simulation in CHR

add
i(L,L1,add,B,A), m(B,Y) \ m(A,X), c(L)

<=> Z is X+Y, m(A,Z), c(L1).

move
i(L,L1,move,B,A), m(B,X) \ m(A,Y), c(L)

<=> m(A,X), c(L1).

jump
i(L,L1,jump,A) \ c(L) <=> c(A).

halt
i(L,L1,halt) \ c(L) <=> true.
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CHR machine (III)

I Query: instructions, memory cells, line number of first instruction

I Instruction at line L is executed, updating memory m and
program counter

I Essential aspect: Destructive assignment effectively simulated
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CHR machine (IV)

Theorem
Given a sufficiently strong constraint theory CT , there exists a CHR
(machine) program which can simulate in O(T + P + S) time and
O(P + S) space a T-time, S-space RAM machine with a program of P
lines.
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CHR machine (V)

Effectively realized in optimized CHR implementation of K.U. Leuven

Theorem
For every (RAM machine) algorithm which uses at least as much time
as it uses space, a CHR program exists which can be executed in the
K.U. Leuven CHR system, with time and space complexity within a
constant factor from the original complexities.
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Summary

I Questions still left
I Can algorithms be expressed naturally and elegantly?
I How big are the constant factors?

I Experience with classical algorithms shows conciseness and
elegance

I Empirical evidence shows
I CHR is faster than other rule-based languages
I constant factor in comparison to low-level imperative languages
I Slow-down over C is within an order of magnitude now
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