
Constraint Handling Rules -
Properties of CHR

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Page 2 Properties of CHR

Table of Contents

Properties of CHR
Anytime approximation algorithm property
Monotonicity and online algorithm property
Declarative concurrency and logical parallelism
Computational power and expressiveness

Page 3 Properties of CHR

Overview

I CHR programs automatically implement algorithms with certain
properties

I Anytime (approximation): Interrupt program, see approximation of
result, restart from this intermediate result

I Online (incremental): Additional constraints can be added during
execution without restart

I Concurrency: rules can be applied in parallel to certain parts of
goal

I Properties result from operational semantics
I (Very) abstract semantics used in this chapter
I Results carry over to refined semantics if program is confluent

Page 4 Properties of CHR | Anytime approximation algorithm property

Anytime property

I Anytime property
I No need to restart computation from scratch after interruption
I Intermediate results approximate final result better and better
I Can guarantee response times (for embedded systems, for hard

problems)

I In CHR
I When program interrupted, states are meaningful (logical reading)
I All information needed contained in states
I Approximation to to answer: more built-ins added and CHR

constraints simplified

Page 5 Properties of CHR | Anytime approximation algorithm property

Example

Example computation (partial order constraint)

A≤B ∧ B≤C ∧ C≤A 7→ (transitivity)

A≤B ∧ B≤C ∧ C≤A ∧ A≤C 7→ (antisymmetry)

A≤B ∧ B≤C ∧ A=C 7→ (antisymmetry)

A=B ∧ A=C

I Interruption at any point possible

I Proceed the same way as if not interrupted

Page 6 Properties of CHR | Anytime approximation algorithm property

Limitations

Limitations of current CHR implementations
I No support for interruption and adding constraints

I But rules can be used to support this behavior

I Usually only logical reading of state observable
I Refined semantics: propagation history, location of constraints,

identifiers and order of CHR constraints lost

Page 7 Properties of CHR | Anytime approximation algorithm property

Differences regarding semantics

Differences between semantics
I Abstract semantics

I If logical reading of intermediate state used as initial goal,
transitions Solve and Introduce reconstruct state

I Now same transitions are possible as from original state

I Refined semantics
I Transition system may not reconstruct state because constraint

order is lost
I Confluence can still guarantee same answer

Page 8 Properties of CHR | Monotonicity and online algorithm property

Monotonicity property

If transition is possible in state, it is possible in any larger state
I Implies incremental processing of constraints
I Allows for concurrently composed computations

Lemma

If A 7→ B
then A ∧ D 7→ B ∧ D

(for states A, B, and D)

Example computation (partial order constraint)

A≤B ∧ B≤C 7→ (transitivity)

A≤B ∧ B≤C ∧ A≤C ∧ C≤A (added) 7→ (antisymmetry)

A≤B ∧ B≤C ∧ A=C 7→

. . .

Page 9 Properties of CHR | Monotonicity and online algorithm property

Monotonicity property

Lemma can be restated for abstract semantics
I In nonfailed state:

I can add satisfiable constraints and global variables
I can remove entries from propagation history

Lemma
Nonfailed ωt states (no shared local variables, B∧B′ consistent)

A = 〈G, S, B, T〉Vn and D = 〈G′, S′, B′, T ′〉V
′

m ,

Then the combined state A ∧ D = 〈G]G′
+n, S∪S′+n, B∧B′, T ′′〉V∪V

′∪V′′
n+m

admits same transitions as state A (and D).

(+n increments identifier, T ′′ ⊂ T∪T ′
+n, V ′′ arbitrary variables)

In refined semantics two different ways of combining states (order
matters in stack)

Page 10 Properties of CHR | Monotonicity and online algorithm property

Online property

I Online algorithm property
I Adding constraints during execution without restart from scratch
I Same behavior as if constraints were there from beginning
I Useful for interactive, reactive, control systems, agent programming

Page 11 Properties of CHR | Declarative concurrency and logical parallelism

Concurrency and parallelism (I)

I Concurrency allows for logically independent computations

I Parallelism allows for computations that happen simultaneously
I Concurrency can be implemented in sequential or parallel way

I Parallel implementations require suitable hardware
I Sequential implementations use interleaving of computations

I Interleaving semantics of concurrency
I For each parallel computation exists a sequential interleaving with

same result
I Parallel execution can be simulated by sequential one

Page 12 Properties of CHR | Declarative concurrency and logical parallelism

Concurrency and parallelism (II)

I Declarative programming languages are compositional
I Different computations can be composed without interference
I Techniques for programming, reasoning, analysis still apply for

composed program
I Makes concurrency and distribution easier

Example

Destructive assignments x:=5 and x:=7 versus equations x=5 and
x=7

I In imperative languages: unpredictable result in parallel
execution (x=5 or x=7)

I In concurrent constraint languages: unintended interference
leads to failure (noticeable)

Page 13 Properties of CHR | Declarative concurrency and logical parallelism

Processes

I Main notion in concurrent and distributed programming

I Programs that are executed independently but interact
(concurrent programs)

I Can communicate and synchronize by sending and receiving
messages

I Can build a dynamically changing process network

Page 14 Properties of CHR | Declarative concurrency and logical parallelism

Concurrency in CHR

I Concurrent processes are CHR constraints
I Communication via shared built-in constraint store
I Built-in constraints: (partial) messages
I Shared variables: communication channels
I Communication usually asynchronous

I Running processes: active CHR constraints
I check/ask (in guard) and place/tell (in body) built-in constraints on

shared variables

Page 15 Properties of CHR | Declarative concurrency and logical parallelism

Parallelism in CHR

I Rules needed such that for parallel A 7→7→ B execution exists
sequentialized A 7→+ B execution

I Parallelization without change for confluent programs

Weak and strong parallelism in CHR
I Weak: rules can be applied to separate parts of the problem in

parallel
I Due to monotonicity: Adding constraints cannot inhibit rule

applicability

I Strong: rules can be applied to overlapping parts of problem too
I Overlap must not be removed

Page 16 Properties of CHR | Declarative concurrency and logical parallelism

Weak Parallelism (I)

Weak parallelism: rule application to separate parts of problem

Definition (Weak parallelism)

If A 7→ B
and C 7→ D
then A ∧ C 7→7→ B ∧ D

(A, B, C, D conjunction of constraints, 7→7→ parallel transition relation)

Page 17 Properties of CHR | Declarative concurrency and logical parallelism

Weak parallelism (II)

Theorem (Trivial confluence)

If A 7→ B
and C 7→ D
then A ∧ C 7→ S 7→ B ∧ D

where S is either A ∧ D or B ∧ C

I Two interpretations
I Rule applications on separate parts of goal can be exchanged
I Rule applications from different goals can be composed

I Holds for (very) abstract semantics

I Constraints can only be involved in one rule application
simultaneously

Page 18 Properties of CHR | Declarative concurrency and logical parallelism

Weak parallelism (III)

Example (Minimum)

min(N) \ min(M) ⇔ N≤M true.

Rule of min can be applied in parallel to different parts of query

min(1) ∧ min(0) ∧ min(2) ∧ min(3)
7→7→

min(0) ∧ min(2) 7→
min(0)

One rule instance applied to min(1)∧min(0),
the other to
min(2) ∧ min(3)

Page 19 Properties of CHR | Declarative concurrency and logical parallelism

Weak parallelism (IV)

Example (Partial order constraint)
duplicate @ X≤Y ∧ X≤Y ⇔ X≤Y.
reflexivity @ X≤X ⇔ true.
antisymmetry @ X≤Y ∧ Y≤X ⇔ X=Y.
transitivity @ X≤Y ∧ Y≤Z ⇒ X≤Z.

Rules antisymmetry and transitivity can be applied in parallel in

A≤B ∧ C≤A ∧ B≤C ∧ B≤A 7→7→
A=B ∧ C≤A ∧ B≤C ∧ B≤A

Antisymmetry rule applied to A≤B ∧ B≤A,
transitivity rule to B≤C ∧ C≤A

Page 20 Properties of CHR | Declarative concurrency and logical parallelism

Shortcomings of weak parallelism

Weak parallelism is too strict

I Application of propagation rules to overlapping parts of state not
allowed

I Sharing built-ins for guard checks of parallel applications not
allowed

Page 21 Properties of CHR | Declarative concurrency and logical parallelism

Strong parallelism (I)

Parallel rule applications to overlapping parts allowed if overlap kept

Definition (Strong parallelism)

If A ∧ E 7→ B ∧ E
and C ∧ E 7→ D ∧ E
then A ∧ E ∧ C 7→7→ B ∧ E ∧ D

I With weak parallelism either two copies of E needed or E must
have been empty

Page 22 Properties of CHR | Declarative concurrency and logical parallelism

Strong parallelism (II)

Theorem (Trivial confluence with context)

If A ∧ E 7→ B ∧ E
and C ∧ E 7→ D ∧ E
then A ∧ C ∧ E 7→ S 7→ B ∧ D ∧ E

where S is either A ∧ D ∧ E or B ∧ C ∧ E

I CHR constraint can be used several times if kept in all rule
matchings

I CHR constraint can be used only once if it is removed

Page 23 Properties of CHR | Declarative concurrency and logical parallelism

Strong parallelism (III)

I Propagation rules: only add constraints, any constraint can be in
overlap

I Several propagation rules can be applied simultaneously

I Simpagation rules: Constraint which are not removed allowed in
overlap

I Simpagation rule may remove arbitrary number of constraints
simultaneously in one concurrent step

I Simplification rules: Remove all constraints, cannot be involved
in overlap except for built-ins

Page 24 Properties of CHR | Declarative concurrency and logical parallelism

Strong parallelism (IV)

Example (Parallel computation of minimum)

min(N) \ min(M) <=> N=<M | true.

min(1) matches kept head constraint of simpagation rule
min(2) and min(3) match in parallel two different instances of head
constraint to be removed

min(1) ∧ min(0) ∧ min(2) ∧ min(3)
7→7→

min(1) ∧ min(0) 7→
min(0)

Choosing min(0) as kept constraint would have computed result in
just one step

Page 25 Properties of CHR | Declarative concurrency and logical parallelism

Strong parallelism (V)

Example (Parallel computation of partial order constraint)

Apply transitivity rule, then antisymmetry rule, each three times in
parallel:

A≤B ∧ B≤C ∧ C≤A 7→7→

A≤B ∧ B≤C ∧ C≤A ∧ A≤C ∧ B≤A ∧ C≤B 7→7→

A=B ∧ B=C ∧ A=C

First transition only possible with strong parallelism (several
propagation rules applied to same constraint simultaneously)

Page 26 Properties of CHR | Declarative concurrency and logical parallelism

Stronger parallelism

I Even stronger parallelism (removing constraints from overlap)
may lead to incorrect behavior

I Example:
I Rule min(N) \ min(M) ⇔ N≤M true
I Query min(1)∧min(1)
I One rule tries matching in given, one in reversed order
⇒ Both constraints will be removed (not correct)

I This behavior is not allowed by weak or strong parallelism

I Still, even stronger parallelism is possible...

Page 27 Properties of CHR | Declarative concurrency and logical parallelism

Implementation of parallelism

Locking mechanism for atomic CHR constraints
I Weak parallelism

I On rule application lock all matched constraints
I If one fails, unlock all, try redoing rule application
I If all constraints locked successfully, apply rule
I Unlock kept constraints before executing rule body

I Strong parallelism
I Analogous, but only removed head constraints locked
I No unlocking necessary (locked constraints removed)

Use standard algorithms to avoid deadlocks and cyclic behavior

Page 28 Properties of CHR | Declarative concurrency and logical parallelism

Programs under refined semantics(I)

I Parallelization of every program in (very) abstract semantics
possible

I Incorrect results under refined semantics possible
I Order of rules in program and constraints in goal

I Trivial confluence does not hold in in refined semantics
I Combination of states is not symmetric

I Solution: make programs confluent
I Order of rule application and constraints in goal does not matter
I ⇒ Can always be run in parallel

Page 29 Properties of CHR | Declarative concurrency and logical parallelism

Programs under refined semantics(II)

Example (Destructive assignment in parallel)

Destructive assignment rule:

assign(Var,New), cell(Var,Old) <=> cell(Var,New).

Query:

cell(x,2), assign(x,1), assign(x,3)

Undetermined which update through assign comes first

Page 30 Properties of CHR | Computational power and expressiveness

Computational power and expressiveness

I CHR machine: fragment of CHR language (analogous to RAM
or Turing machines)

I CHR, RAM, and Turing machine simulate each other in
polynomial time
⇒ CHR is Turing complete
⇒ CHR can implement every algorithm without

performance penalty
(Not known for other purely declarative paradigms)

⇒ CHR first declarative language with “optimal complexity”

Page 31 Properties of CHR | Computational power and expressiveness

Sufficiently strong constraint theory

CHR machine needs sufficiently strong constraint theory

Definition (Sufficiently strong constraint theory)

CT is sufficiently strong if it defines at least the built-ins
true, false,=, 6= and the arithmetic operations +,−, ∗, / over integers

Page 32 Properties of CHR | Computational power and expressiveness

CHR machine (I)

CHR program to simulate RAM machine

I Memory cell represented by m(A,V) (address A, value V)

I Program counter pointing to code line L represented by c(L)
I Instruction i(L,L1,I,D1,D2) consists of

I L, L1 current and new line number
I Name of instruction I
I Arguments of instruction D1, D2

Page 33 Properties of CHR | Computational power and expressiveness

CHR machine (II)

Typical rules of the Ram machine simulation in CHR

add
i(L,L1,add,B,A), m(B,Y) \ m(A,X), c(L)

<=> Z is X+Y, m(A,Z), c(L1).

move
i(L,L1,move,B,A), m(B,X) \ m(A,Y), c(L)

<=> m(A,X), c(L1).

jump
i(L,L1,jump,A) \ c(L) <=> c(A).

halt
i(L,L1,halt) \ c(L) <=> true.

Page 34 Properties of CHR | Computational power and expressiveness

CHR machine (III)

I Query: instructions, memory cells, line number of first instruction

I Instruction at line L is executed, updating memory m and
program counter

I Essential aspect: Destructive assignment effectively simulated

Page 35 Properties of CHR | Computational power and expressiveness

CHR machine (IV)

Theorem
Given a sufficiently strong constraint theory CT , there exists a CHR
(machine) program which can simulate in O(T + P + S) time and
O(P + S) space a T-time, S-space RAM machine with a program of P
lines.

Page 36 Properties of CHR | Computational power and expressiveness

CHR machine (V)

Effectively realized in optimized CHR implementation of K.U. Leuven

Theorem
For every (RAM machine) algorithm which uses at least as much time
as it uses space, a CHR program exists which can be executed in the
K.U. Leuven CHR system, with time and space complexity within a
constant factor from the original complexities.

Page 37 Properties of CHR | Computational power and expressiveness

Summary

I Questions still left
I Can algorithms be expressed naturally and elegantly?
I How big are the constant factors?

I Experience with classical algorithms shows conciseness and
elegance

I Empirical evidence shows
I CHR is faster than other rule-based languages
I constant factor in comparison to low-level imperative languages
I Slow-down over C is within an order of magnitude now

	Properties of CHR
	Anytime approximation algorithm property
	Monotonicity and online algorithm property
	Declarative concurrency and logical parallelism
	Computational power and expressiveness

