
Constraint Handling Rules -
Syntax and Semantics of CHR

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Page 2 Syntax and semantics

Table of Contents

Syntax and Semantics of CHR
Introduction
Preliminaries
Abstract syntax
Operational semantics
Declarative semantics

Page 3 Syntax and semantics | Introduction

Constraint Handling Rules (CHR)

CHR logo

I CHR is both: logical and practical
I related to subset of first-order logic and linear

logic
I general-purpose programming like Prolog and

Haskell

I Rules are descriptive and executable

Page 4 Syntax and semantics | Introduction

Constraint Handling Rules (CHR)

I no distinction between data and operations
I constraints cover both

I CHR is a language extension
I Implementations available for Prolog, Haskell, C, Java, . . .
I in host language CHR constraints can be posted/inspected
I in CHR rules host language statements can be used

I CHR is synthesis of
I propagation rules
I multiset transformation
I logical variables
I built-in constraints

with a formal foundation in logic and methods for powerful
program analysis

Page 5 Syntax and semantics | Introduction

CHR programming language

I for theorem proving and computational logic, integrating
I forward and backward chaining
I (integrity) constraints
I deduction and abduction
I tabulation

I as flexible production rule system with constraints

I as general-purpose concurrent constraint language

Page 6 Syntax and semantics | Introduction

Available Distributions

More than a dozen free libraries to

I Prolog: SICStus, Yap, Eclipse, XSB, hProlog, HAL, SWI,...

I Java, also C

I Haskell, also parallel

Most advanced implementations from K.U. Leuven

Page 7 Syntax and semantics | Introduction

Highlight Properties of CHR

Complexity

Every algorithm can be implemented in CHR with best-known time
and space complexity.

Algorithmic properties

Any CHR program will automatically implement a concurrent anytime
(approximation) and online (incremental) algorithm.

Decidability

For terminating CHR programs confluence of rule applications and
operational equivalence are decidable.

Page 8 Syntax and semantics | Introduction

Overview

I Syntax: describes how constituents of a formal language are
combined to form valid expressions

I Semantics:
I Operational: Description of what it means to execute a statement

(as transition system)
I Declarative: Description of the meaning without referring to

execution (in logic)
I Goal: Corresponding operational and declarative semantics

I Soundness: Result of computation according to operational
semantics is correct regarding declarative semantics

I Completeness: Everything proven by declarative semantics can
be computed

Page 9 Syntax and semantics | Preliminaries | Syntactic expressions

Preliminaries
Syntactic expressions (I)

I Signature:
I Set of variables V
I Set of function symbols Σ

I Set of predicate symbols Π

I Function and predicate symbols have arity (number of arguments
they take)

I Functor f /n: symbol f with arity n

I Constants: function symbols with arity zero

I Propositions: predicate symbols with arity zero

Page 10 Syntax and semantics | Preliminaries | Syntactic expressions

Syntactic expressions (II)

I Term: variable or function term f (t1, . . . , tn) (f /n ∈ Σ, ti terms)

I Atomic formula (atom): p(t1, . . . , tn) (p/n ∈ Π, ti terms)

I (Logical) expressions: Terms and atoms; sets, multisets, and
sequences (lists) of logical expressions

Page 11 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Substitution, instance and matching

Definition (Substitution)

Substitution θ : V → T (Σ,V ′): finite function from variables to terms
θ = {X1/t1, . . . , Xn/tn} where each Xi 6= ti
Identity substitution ε = ∅
Extension to terms, θ : T (Σ,V) → T (Σ,V ′)
defined by implicit homomorphic extension,
f (t1, . . . , tn)θ := f (t1θ, . . . , tnθ)

Substitution θ obtained by replacing each Xi in E with ti at once.
Subsitutions written as postfix operators, applied from left to right.

Page 12 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Example – Substitution

Example
I θ = {X/2, Y/5}: (X ∗ (Y + 1))θ = 2 ∗ (5 + 1)

I θ = {X/Y, Z/5}: (X ∗ (Z + 1))θ = Y ∗ (5 + 1)

I θ = {X/Y, Y/Z}: p(X)θ = p(Y) 6= p(X)θθ = p(Z)
I θ = {X/Y}, τ = {Y/2}:

I (X ∗ (Y + 1))θτ = (Y ∗ (Y + 1))τ = (2 ∗ (2 + 1))

I (X ∗ (Y + 1))τθ = (X ∗ (2 + 1))θ = (Y ∗ (2 + 1))

Page 13 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Instance, Renaming, Variants

Definition (Instance)

Eθ is instance of E.
Eθ matches E with matching substitution θ.
(θ = {X1/t1, . . . , Xn/tn}, E expression)

Definition (Variant, Variable Renaming)

If E and F are instances of each other then E and F are variants of
each other.
Substitution θ is a variable renaming in E = Fθ.

Variable renaming θ is bijective, maps variables to variables.

I Renamed apart: Variants with no variables in common

I Fresh variant: Variant containing only new variables

Page 14 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Groundness

I Variables either free or bound (instantiated) to term

I Ground, fixed (determined) variable: bound or equivalent to
ground term (variable is indistinguishable from the term it is
bound to)

I Ground expression: Expression not containing (nonground)
variables

Page 15 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Unification and syntactic equality

Unification: making expressions syntactically equivalent by
substituting variables with terms.

Definition (Unifier)

Substitution θ is unifier of E and F if Eθ = Fθ.

E, F unifiable: unifier exists.
{p1, . . . , pn} = {q1, . . . , qm} shorthand for p1 = q1 ∧ . . . ∧ pn = qn if
n = m and for false otherwise

Page 16 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Most General Unifier

Definition (Most General Unifier (MGU))

θ is MGU for E, F: every unifier τ for E, F is instance of θ, i.e., τ = θρ

for some ρ

(E, F expressions, θ, τ , ρ, θi substitutions)

Page 17 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Example – Most General Unifier

Example

f (X, a) = f (g(U), Y) = Z

MGU:
θ = {X/g(U), Y/a, Z/f (g(U), a)}

Proof: f (X, a)θ = f (g(U), Y)θ = Zθ = f (g(U), a) one element.

Unifier, but not MGU:

θ′ = {X/g(h(b)), U/h(b), Y/a, Z/f (g(h(b)), a)}

Proof: θ′ = θ{U/h(b)}.

Page 18 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Computing Most General Unifier

I Start with empty substitution ε

I scan terms simultaneously from left to right according to their
structure

I check the syntactic equivalence of the terms encountered
repeat

I different function symbols: halt with failure
I identical function symbols: continue
I one is unbound variable and other term:

I variable occurs in other term: halt with failure
I apply the new substitution to the logical expressions

add corresponding substitution
I variable is bound: replace it by applying substitution

Page 19 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Example – Most General Unifier (2)

Example

Computing the MGU:
to unify current substitution, remarks
p(X, f (a)) = p(a, f (X)) ε, start
X = a {X/a}, substitution added
f (a) = f (X) continue
a = X {X/a}, variable is not unbound
a = a continue

MGU is {X/a}
What about p(X, f (b)) = p(a, f (X))?

Page 20 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Example – Most General Unifier (3)

Example

s t θ

f g failure
a a ε

X a {X/a}
X Y {X/Y}, but also {Y/X}
f (a, X) f (Y, b) {Y/a, X/b}
f (g(a, X), Y) f (c, X) failure
f (g(a, X), h(c)) f (g(a, b), Y) {X/b, Y/h(c)}
f (g(a, X), h(Y)) f (g(a, b), Y) failure

Page 21 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Example – Most General Unifier (4)

Example

Examples involving cyclicity:
X = X is unifiable but not:

I X = f (X)

I X = p(A, f (X, a))

I X = Y ∧ X = f (Y)

Page 22 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Clark’s Equality Theory (CET)

Reflexivity (true → X =X)
Symmetry (X=Y → Y=X)
Transitivity (X=Y ∧ Y=Z → X=Z)
Compatibility (X1=Y1 ∧ . . . ∧ Xn=Yn → f (X1, . . . , Xn)=f (Y1, . . . , Yn))
Decomposition (f (X1, . . . , Xn)=f (Y1, . . . , Yn) → X1=Y1 ∧ . . . ∧ Xn=Yn)
Contradiction
(Clash)

(f (X1, . . . , Xn)=g(Y1, . . . , Ym) → false) if f 6=g or n6=m

Acyclicity (X=t → false) if t is function term and X appears in t

(Σ signature with infinitely many functions, including at least one
constant)

Page 23 Syntax and semantics | Preliminaries | Substitution and syntactic equality

Theorems equality and matching

Theorem (Equality)

Expressions E and F are unifiable if and only if

CET |= ∃(E = F).

Theorem (Matching)

For expressions E, F and substitution θ = {X1/t1, . . . , Xn/tn}

CET |= ∀(E = Fθ ↔ (X1 = t1 ∧ · · · ∧ Xn = tn → E = F)).

E matches F with substitution θ.
(∀F denotes universal closure of formula F)

Page 24 Syntax and semantics | Preliminaries | Constraint systems

Constraint systems

I Constraints are distinguished predicates of first-order-logic

I Constraint systems take data types and operations and interpret
expressions as constraints

I Data types: typically numbers are used to represent scalars,
terms to represent structures

Page 25 Syntax and semantics | Preliminaries | Constraint systems

Definition constraint system

I Set of constraint symbols

I Set of values called domain
I Logical theory CT called constraint theory

I consists of universally closed formulas (axioms)
I must be nonempty and consistent
I must include axiomatization for syntactic equality = (CET) and the

propositions true (always holds) and false (never holds)
I Complete: for all constraints c either CT |= ∀c or CT |= ∀¬c holds

Page 26 Syntax and semantics | Preliminaries | Constraint systems

Terminology constraint system

I Atomic constraint: atomic formula whose predicate symbol is
constraint symbol

I Constraint: conjunction of atomic constraints

I Solution: substitution θ s.t. Cθ holds (CT |= Cθ)

I Satisfiable (consistent) constraint: solution exists, otherwise
unsatisfiable (inconsistent)

I Equivalent constraints C1, C2: have the same solutions
(CT |= ∀(C1 ↔ C2))

Page 27 Syntax and semantics | Preliminaries | Constraint systems

Reasoning problems

I Satisfaction problem: existence of a solution
I Solved by algorithm called decision procedure

I Solution problem: Finding a solution
I Algorithm for solution is called (constraint) solver
I Solver typically also simplifies constraints.

Page 28 Syntax and semantics | Preliminaries | Transition systems

Transition systems (*)

I Most abstract way to capture essence of computation

I Basically a binary relation over states

I Transition relation describes how one can proceed from one
state to another

Page 29 Syntax and semantics | Preliminaries | Transition systems

States and transitions

Definition (Transition system)
I Transition system T is pair T = (S, 7→)

I S is set of states (configurations)
I Transition 7→ is binary relation on states, 7→⊆ S × S

I TS deterministic: at most one transition from every state,
otherwise nondeterministic

I Reachability relation 7→ ∗: reflexive transitive closure of 7→
I Initial, final states: Nonempty subsets of S.

Page 30 Syntax and semantics | Preliminaries | Transition systems

Derivations and computations

Definition (Derivation)

Derivation: Sequence of states s0 7→s1 7→ . . . where
s0 7→s1 ∧ s1 7→s2 ∧

I Finite (terminating) if sequence is finite.

I Length: number of transitions in derivation.

Computation: derivation that start with initial state s0 and ends with
final state or is infinite.

Remarks
I S may be finite, countably infinite, or infinite
I Initial and final states not necessarily disjoint
I If no initial states given, all states initial
I Final states must include states which have no successor
I Final states can include states which have successor
I Transition (reduction) also called derivation/computation step

Page 31 Syntax and semantics | Preliminaries | Transition systems

Example

Example (Soccer)
S = {(t, p, a, b) | 0 ≤ t, a, b ≤ 90, p ∈ {A, B}}
Initial states: {(0, A, 0, 0), (0, B, 0, 0)}
Final states: (90, p, a, b) ∈ S
(t, A, a, b) 7→ (t + 1, A, a+1, b) (t, B, a, b) 7→ (t + 1, B, a, b+1)

(t, A, a, b) 7→ (t + 1, A, a, b) (t, B, a, b) 7→ (t + 1, B, a, b)

(t, A, a, b) 7→ (t + 1, B, a, b) (t, B, a, b) 7→ (t + 1, A, a, b)

I Models progression of goal count
I t: counter for minutes
I Second component models possession
I a and b: goal counters
I Scoring, keeping ball, or loosing ball possible

Page 32 Syntax and semantics | Preliminaries | Transition systems

Induction

Definition (Induction Principle)

Property P defined over states is called invariant:

If base case P(s0) holds and induction hypothesis “P(sn) implies
P(sn+1)” holds for all sn 7→ sn+1 then P holds for all s in derivation

Example (Soccer Invariant)

Score in soccer game always less or equal 90:

I Let P((t, p, a, b)) be t ≤ 90

I P holds for initial states

I In all other states: 0 < t ≤ 90, final states t = 90

I All transition increment t < 90 by one
⇒ Induction hypothesis holds ⇒ claim holds

Page 33 Syntax and semantics | Abstract syntax

Abstract syntax

Two kinds of constraints: CHR (user-defined) constraints and built-in
(predefined) constraints.

I Built-in constraints:
I Arbitrary logical relations (solved and simplified effectively)
I Constraint theory for built-ins is denoted by CT
I Built-ins true, false, and syntactic equality =

I Allow embedding and utilization of given constraint solvers
I Allow for side-effect free host language statements
I Considered as black boxes (correct, terminating confluent)

I User-defined constraints:
I Defined by rules of a CHR program

Page 34 Syntax and semantics | Abstract syntax

CHR program

Definition (CHR program)

Built-in Constraint: C, D ::= c(t1, . . . , tn) | C ∧ D, n ≥ 0
CHR Constraint: E, F ::= e(t1, . . . , tn) | E ∧ F, n ≥ 0
Goal: G, H ::= C | E | G ∧ H
Simplification Rule: SR ::= r @ E ⇔ C G
Propagation Rule: PR ::= r @ E ⇒ C G
Simpagation Rule: SPR ::= r @ E1\E2 ⇔ C G
CHR Rule: R ::= SR | PR | SPR
CHR Program: P ::= {R1 . . . Rm}, m ≥ 0

I r name, optional unique identifier

I E, E1, E2 head, nonempty conjunction of CHR constraints

I C optional guard, conjunction of built-ins

I G body, conjunction of built-ins and CHR constraints

Page 35 Syntax and semantics | Abstract syntax

Definition (II)

Definition (Additional concepts)
I Removed constraints: head constraints of simplification rule

and head constraints E2 of simpagation rule

I Kept constraints: other head constraints

I Defined constraint: occurs in head of rule

I Used constraint: occurs in body of rule

I Local variable of rule: does not occur in rule head

I Range-restricted rule: No local variables
(Program range-restricted if all rules range-restricted)

Page 36 Syntax and semantics | Abstract syntax

Multiset and sequence notation

I Use of first-order logic conjunction emphasizes close ties of CHR
to logic

I Should be understood purely syntactically

I Conjunction interpreted as logical operator, multiset or sequence
forming operator

I Operator] used for multiset union

I When multisets treated as sequences, order chosen at random

I List notation ([H|T] or []) for sequences

I Operator + denotes sequence concatenation

Page 37 Syntax and semantics | Abstract syntax

Generalized simpagation rule notation

I Simplification, propagation and simpagation rules as special
case of Generalized simpagation rule

E1 \ E2 ⇔ C G

I E1 kept, E2 removed constraints, C guard, G body

I If E1 empty rule equivalent to simplification rule E2 ⇔ C G

I If E2 empty rule equivalent to propagation rule E1 ⇒ C G

I At least on of E1 and E2 must be nonempty

Page 38 Syntax and semantics | Operational semantics

Operational semantics

I Describes how program is executed
I Defined by transitions system

I States are conjunctions of CHR and built-in constraints
I Transitions correspond to rule applications

I Starting from initial state rules are applied until exhaustion or
contradiction

I Simplification rule replaces CHR constraints matching its head by
its body if guard holds

I Propagation rule adds its body without removal
I Simpagation rule removes part of the matched constraints

Page 39 Syntax and semantics | Operational semantics | Very abstract semantics

Very abstract semantics (*)
States

Definition (States)
I State: conjunction of built-in and CHR constraints

I Initial state: arbitrary state

I Final state: no transitions possible anymore

I Conjunction as multiset forming operator:
I Conjunction is associative and commutative, but not idempotent
I Multiplicity of conjuncts matters, permutation and grouping allowed

I Built-ins allow for computations with possibly infinitely many
ground instances

I States can be understood as set comprehension
I State E ∧ D (E CHR constraints, D built-ins) stands for potentially

infinite set of ground instances E, {E|D}

Page 40 Syntax and semantics | Operational semantics | Very abstract semantics

Transitions

Definition (Transition Apply)

(H1 ∧ H2 ∧ G) 7→r (H1 ∧ C ∧ B ∧ G)
if there is an instance of a rule in the program with new local variables

x̄
r @ H1\H2 ⇔ C B

and CT |= ∀ (G → ∃x̄C)

I Rule r generalised simpagation rule in head normal form:
Arguments of the head constraints are distinct variables.

I H1, H2, C, B, G denote possibly empty conjunctions of constraints

Page 41 Syntax and semantics | Operational semantics | Very abstract semantics

Ask and Tell

Built-in constraints

I tell: producer adds/places constraint to the constraint store

I ask: consumer checks entailment (implication) of constraints
from the store (but does not remove any constraint)

Example:
Operation Constraint Store
tell X ≤ Y X ≤ Y

tell Y ≤ Z X ≤ Y ∧ Y ≤ Z

ask X ≤ Z X ≤ Y ∧ Y ≤ Z

ask Y ≤ X X ≤ Y ∧ Y ≤ Z

tell Z ≤ X X = Y ∧ Y = Z

ask Y ≤ X X = Y ∧ Y = Z

ask X > Z X = Y ∧ Y = Z

Page 42 Syntax and semantics | Operational semantics | Very abstract semantics

Applicability condition

I Instance of rule (with new local variables x̄) applicable if
I Head constraints appear in the state
I Applicability condition (AC) CT |= ∀ (G → ∃x̄C) holds

I Actually, AC only considers built-in constraints of G

Page 43 Syntax and semantics | Operational semantics | Very abstract semantics

Rule application (I)

I When rule applied
I CHR head constraints H1 kept, H2 removed from state
I Guard C and body B is added (C may contain variables not

contained in body or head)

I When more than one rule applicable, one is chosen
nondeterministically

I Choice cannot be undone (committed-choice)

Page 44 Syntax and semantics | Operational semantics | Very abstract semantics

Rule application (II)

I CHR constraints can be added and removed by rule application

I CHR constraints behave nonmonotonically in general

I Built-in constraints can only be added but not removed

I Built-ins monotonically accumulate information

Page 45 Syntax and semantics | Operational semantics | Very abstract semantics

Example GCD

Example (Greatest common divisor)

gcd1 @ \ gcd(I) ⇔ I=0 true.
gcd2 @ gcd(I) \ gcd(J) ⇔ J>=I ∧ I>0 gcd(J−I).

(true, =, ≥, >: built-in constraints)

Example computation

gcd(6) ∧ gcd(9)

7→gcd1 gcd(6) ∧ gcd(3)

7→gcd1 gcd(3) ∧ gcd(3)

7→gcd1 gcd(0) ∧ gcd(3)

7→gcd2 gcd(3)

Page 46 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Partial Order Relation

Example (Program)

reflexivity @ X leq Y ⇔ X=Y | true (r1)
antisymmetry @ X leq Y ∧ Y leq X ⇔ X=Y (r2)
transitivity @ X leq Y ∧ Y leq Z ⇒ X leq Z (r3)
idempotency @ X leq Y ∧ X leq Y ⇔ X leq Y (r4)

(true and =: built-in constraints)

Page 47 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Partial Order Relation (2)

Example computation

A leq B ∧ C leq A ∧ B leq C

7→apply (r3) A leq B ∧ C leq A ∧ B leq C ∧ C leq B

7→apply (r2) A leq B ∧ C leq A ∧ B=C
7→apply (r2) A=B ∧ B=C

Example (Program)

X leq Y ⇔ X=Y | true (r1)
X leq Y ∧ Y leq X ⇔ X=Y (r2)
X leq Y ∧ Y leq Z ⇒ X leq Z (r3)
X leq Y ∧ X leq Y ⇔ X leq Y (r4)

Page 48 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Min

Example (Program)

min(X,Y,Z)⇔ X≤Y Z=X (r1)
min(X,Y,Z)⇔ Y≤X Z=Y (r2)
min(X,Y,Z)⇔ Z<X Y=Z (r3)
min(X,Y,Z)⇔ Z<Y X=Z (r4)
min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

(=, ≤ and < built-in constraint symbols)

Page 49 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Min (2)

Example computation

min(1,2,M)
7→apply (r1) M=1

min(A,A,M)
7→apply (r1) M=A ∧ A ≤ A

min(A,B,M) ∧ A ≤ B

7→apply (r1) M=A ∧ A ≤ B

Example (Program)

min(X,Y,Z)⇔ X≤Y Z=X (r1)
. . .

Page 50 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Min (3)

Example computation

min(A,2,2)
7→apply (r5) min(A,2,2) ∧ 2 ≤ A ∧ 2 ≤ 2

7→apply (r2) 2=2 ∧ 2 ≤ A ∧ 2 ≤ 2

≡ 2 ≤ A

Example (Program)

min(X,Y,Z)⇔ X≤Y Z=X (r1)
min(X,Y,Z)⇔ Y≤X Z=Y (r2)
. . .

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

Page 51 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Min (4)

Example computation

min(A,B,M) ∧ A=M
7→apply (r5) min(A,B,M) ∧ M ≤ A ∧ M ≤ B ∧ A=M
7→apply (r1) A=M ∧ A ≤ B ∧ M ≤ A ∧ M ≤ B ∧ A=M
≡ M ≤ B ∧ A=M

Example (Program)

min(X,Y,Z)⇔ X≤Y Z=X (r1)
. . .

min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

Page 52 Syntax and semantics | Operational semantics | Very abstract semantics

Example – Min (5)

Example computation
I min(A,2,1) 7→apply (r4) 7→∗ A=1

I min(A,2,3) 7→apply (r5) 7→∗ false

Example (Program)
. . .

min(X,Y,Z)⇔ Z<Y X=Z (r4)
min(X,Y,Z)⇒ Z≤X ∧ Z≤Y (r5)

Page 53 Syntax and semantics | Operational semantics | CHR with disjunction

CHR with disjunction (*)
Nondeterminisms

I Don’t-care nondeterminism
I Choice should not matter for result, it is enough to know one result
I In CHR, for choice of constraints from a state and for choice of rule

to apply

I Don’t-know nondeterminism
I Trying out different choices
I In CHR, usually provided by host-language of CHR library
I E.g. disjunction of Prolog can be used in rule body
I Disjunction formalized in CHR∨

Page 54 Syntax and semantics | Operational semantics | CHR with disjunction

Syntax and states

Extension of syntax of CHR. Disjunction in goals and for states.

Definition (CHR∨ extended syntax)

Goal: G, H ::= C | E | G ∧ H | G ∨ H
Configuration: S, T ::= S | S ∨ T

I Configuration s1 ∨ s2 ∨ . . . ∨ sn: Disjunction of CHR states

I Each state represents independent branch in search tree

I Initial configuration: initial state

I Final configuration: consists of final states only

I Failed configuration: all states have inconsistent built-ins

Page 55 Syntax and semantics | Operational semantics | CHR with disjunction

Transitions (I)

Two additional transitions for configurations

Definition (Split transition in CHR∨)
Split

((H1 ∨ H2) ∧ G) ∨ S 7→∨ (H1 ∧ G) ∨ (H2 ∧ G) ∨ S

I Can always be applied when state contains disjunction

I Branching the derivation: splitting into disjunction of two states

I Each state will be processed independently

I Constructs tree of states rather than sequence (search tree)

Page 56 Syntax and semantics | Operational semantics | CHR with disjunction

Transitions (II)

Definition (Apply transition in CHR∨)
Apply

(H1 ∧ H2 ∧ G) ∨ S 7→r (H1 ∧ C ∧ B ∧ G) ∨ S
if there is an instance of a rule in the program with fresh variables x̄,

r @ H1\H2 ⇔ C B
and CT |= ∀ (G → ∃x̄C)

I Applies to disjunct, i.e. state, inside configuration

Page 57 Syntax and semantics | Operational semantics | CHR with disjunction

Example – Maximum

Example (Maximum in CHR∨)
max(X,Y,Z) ⇔ (X≤Y ∧ Y=Z) ∨ (Y≤X ∧ X=Z)

I max constraint in query (initial goal) will reduce to disjunct

I max(1,2,M): first disjunct leads to M=2, second fails

I max(1,2,3): both disjuncts fail ⇒ failed configuration

I max(1,1,M): both disjuncts reduce to M=1

Page 58 Syntax and semantics | Operational semantics | Abstract semantics ωt

Abstract semantics ωt

I Abstract operational semantics of CHR
I Refinement of very abstract semantics
I Distinguishes between yet unprocessed constraints, CHR and

built-in constraints
I Avoids trivial nontermination
I Uses matching for rule heads

I Also called standard, theoretical, or high-level operational
semantics

I We adopt ωt version of abstract operational semantics

Page 59 Syntax and semantics | Operational semantics | Abstract semantics ωt

Trivial nontermination

Very abstract semantics does not care much about termination.
I Failed states do not terminate

I In failed state any rule is applicable
I Failed state can only lead to failed state (monotonic accumulation

of built-ins)
I Solution: declare failed states as final states

I Propagation rules do not terminate
I Can be applied again and again
I Solution 1: Fair rule selection strategy (not ignoring applicable rule

infinitely often)
I Solution 2: Do not apply propagation rule twice to same constraints

(need to keep a propagation history)

Page 60 Syntax and semantics | Operational semantics | Abstract semantics ωt

Rules and constraints

I Head and body of rule become multisets of atomic constraints

I Guard remains a conjunction of built-in constraints
I CHR constraints with unique identifier to distinguish multiple

occurrences
I Numbered constraint ci consisting of constraint c and identifier i
I Auxiliary notation (ci) = c and function id(ci) = i (with pointwise

extension to sequences and sets of constraints)

Page 61 Syntax and semantics | Operational semantics | Abstract semantics ωt

States (I)

Definition (ωt state)

A ωt state is a tuple 〈G, S, B, T〉Vn

I Goal G: multiset of all constraints to be processed

I CHR store S: (multi)set of numbered CHR constraints that can
be matched with rules

I Built-in store B: conjunction of built-in constraint that has been
passed to the built-in solver

I Propagation history T: set of tuples (r, I) (r rule name, I
sequence of identifiers that matched head constraints of r)

I Counter n: next free integer to be used as identifier

I V variables of initial goal (query) (the global variables of a state)

Page 62 Syntax and semantics | Operational semantics | Abstract semantics ωt

States (II)

Definition (Kinds of states)

I Initial state: 〈G, ∅, true, ∅〉V1 (G initial goal (query, problem, call),
V its variables)

I Failed state: 〈G, S, B, T〉Vn with inconsistent built-ins (CT |= ¬∃B)

I Successful state: Consistent built-ins and empty goal store
(G = ∅)

I Final state: Successful state with no transition possible or failed
state

I (Conditional or qualified) Answer (solution, result): ∃ȳ((S) ∧ B)
from final state 〈G, S, B, T〉Vn (ȳ variables not in V)

Page 63 Syntax and semantics | Operational semantics | Abstract semantics ωt

Transitions (I)

Definition (Solve transition)

Solve
〈{c}] G, S, B, T〉n 7→solve 〈G, S, B′, T〉n

where c is a built-in constraint and CT |= ∀((c ∧ B) ↔ B′)

I Built-in solver adds built-in from G to B

I C ∧ B is simplified to B′ (how far is left unspecified)

Page 64 Syntax and semantics | Operational semantics | Abstract semantics ωt

Transitions (II)

Definition (Introduce transition)

Introduce
〈{c}] G, S, B, T〉n 7→introduce 〈G, {cn} ∪ S, B, T〉(n+1)

where c is a CHR constraint

I Adds a CHR constraint c to S and numbers it with n

I Counter n is incremented

Page 65 Syntax and semantics | Operational semantics | Abstract semantics ωt

Transitions (III)

Definition (Apply transition)
Apply

〈G, H1 ∪ H2 ∪ S, B, T〉n 7→apply r

〈C] G, H1 ∪ S, (H1)=H′
1 ∧ (H2)=H′

2 ∧ N ∧ B, T ∪ {(r, id(H1)+id(H2))}〉n

if there is a fresh variant of a rule in the program with variables x̄,

r @ H′
1\H′

2 ⇔ N C

where CT |= ∃(B) ∧ ∀(B → ∃x̄((H1)=H′
1 ∧ (H2)=H′

2 ∧N)) and (r, id(H1)+id(H2)) 6∈ T.

Operator + denotes sequence concatenation.

I Choses rule r from P
I for which CHR constraints matching its head exist in S
I whose guard N is logically implied by B under this matching

I Applies that rule (rule fires, is executed)
I By replacing matched removed constraints with body

Page 66 Syntax and semantics | Operational semantics | Abstract semantics ωt

Applicability condition

Definition (Applicability condition)

CT |= ∃(B) ∧ ∀(B → ∃x̄((H1)=H′
1 ∧ (H2)=H′

2 ∧ N))

for fresh variant r @ H′
1\H′

2 ⇔ N C of a rule with variables x̄

I Ensures that B is satisfiable
I Checks whether H1 and H2 match H′

1 and H′
2

((H1)=H′
1 ∧ (H2)=H′

2)
I {p1, . . . , pn} = {q1, . . . , qm} shorthand for p1=q1 ∧ . . . ∧ pn=qn if

n = m and for false otherwise

I Checks if N together with matching is entailed by B under CT
I Checks that propagation history does not contain identifier of

CHR constraints matching head of chosen rule
((r, id(H1)+id(H2)) 6∈ T)

Page 67 Syntax and semantics | Operational semantics | Abstract semantics ωt

Example – Matching

Example (Head matching)

∃(H=H′), H from state, H′ from rule head

I ∃X(p(a)=p(X))

I ∀Y∃X(p(Y)=p(X))

but not

I ∀Y∃X(p(Y)=p(a))

Example (Applicability condition)
I CT |= ∃Y=a ∧ ∀Y(Y=a → (p(Y)=p(a)))

I CT |= ∃Y=a ∧ ∀Y(Y=a → ∃X(p(Y)=p(X)) ∧ X=a)

I CT 6|= ∃Y=a ∧ ∀Y, Z(Y=a → (p(Z)=p(a)))

Page 68 Syntax and semantics | Operational semantics | Abstract semantics ωt

Rule application

I When applicable rule is applied
I Head H1 is kept, H2 is removed from CHR store
I (H1)=H′

1 ∧ (H2)=H′
2 and N are added to the built-in store (N may

share variables with C)
I Body C is added to the goal store
I Propagation history is updated by adding (r, id(H1)+id(H2))

I Propagation history entries can be garbage-collected if involved
CHR constraints have been removed

Page 69 Syntax and semantics | Operational semantics | Abstract semantics ωt

Computations

Definition (Computation)
I Finite computation is successful if final state is successful

I Finite computation is failed if final state is failed

I Computation is nonterminating if it has no final state

Page 70 Syntax and semantics | Operational semantics | Abstract semantics ωt

Example (GCD for abstract operational semantics)

gcd1 @ ∅ \ {gcd(0)} ⇔ true true.
gcd2 @ {gcd(I)} \ {gcd(J)} ⇔ J>=I {K is J−I, gcd(K)}.

Example computation

〈{gcd(6),gcd(9)}, ∅〉1

7→introduce 〈{gcd(9)}, {gcd(6)1}〉2

7→introduce 〈∅, {gcd(6)1,gcd(9)2}〉3

7→apply gcd2 〈{K1 is 9−6,gcd(K1)}, {gcd(6)1}〉3

7→solve 〈{gcd(3)}, {gcd(6)1}〉3

7→introduce 〈∅, {gcd(6)1,gcd(3)3}〉4

7→apply gcd2 〈{K2 is 6−3,gcd(K2)}, {gcd(3)3}〉4

7→solve 〈{gcd(3)}, {gcd(3)3}〉4

7→introduce 〈∅, {gcd(3)3,gcd(3)4}〉5

7→apply gcd2 〈{K3 is 3−3,gcd(K3)}, {gcd(3)3}〉5

7→solve 〈{gcd(0)}, {gcd(3)3}〉5

7→introduce 〈∅, {gcd(3)3,gcd(0)5}〉6

7→apply gcd1 〈∅, {gcd(3)3}〉6

Page 71 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Refined operational semantics ωr

Motivation

I Nondeterminism in abstract operational semantics
I Order of processing constraints in goal
I Order of rule applications

I Current sequential CHR implementations
I execute constraints in goals from left to right
I execute constraints like a procedure call
I apply rules in textual order of program

Page 72 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Refined operational semantics ωr

I Refined semantics
I formalizes behavior of current implementations
I is a refinement of the abstract operational semantics
I allows for more programming idioms and for maximizing

performance
I can cause loss of logical properties and declarative concurrency

Page 73 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Rules and constraints

I CHR program is sequence of rules

I Head and body are sequences of atomic constraints
I Occurrence: number for every head constraint (top-down,

left-to-right, starting with 1)
I But removed head constraints in simpagation rule numbered before

kept ones

I Active constraint c j
i : numbered constraint only to match with

occurrence j of (constraint symbol of) c in some rule head

I Auxiliary notation (.) and function id extended to remove
occurrence: (c j

i) = c, id(c j
i) = i

Page 74 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Example GCD

Example (GCD for refined operational semantics)

gcd1 @ [] \ [gcd(0): 1] ⇔ true true.
gcd2 @ [gcd(I): 3] \ [gcd(J): 2] ⇔ J>=I [K is J−I, gcd(K)].

Page 75 Syntax and semantics | Operational semantics | Refined operational semantics ωr

States

Definition (ωr state)

A ωr state is a tuple 〈A, S, B, T〉Vn

I A, S, B, T, n like in abstract semantics
I But goal A redefined into stack

I Sequence of built-in and CHR constraints, numbered CHR
constraints, and active CHR constraints

I Numbered constraint may appear simultaneously in A and S

I Initial, final, successful, and failed states as well as computations
as for abstract semantics

Page 76 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Transitions (I)

I Constraints in goal executed from left to right

I Atomic CHR constraints basically executed like procedure calls
I Constraint under execution is called active, tries all rules in

textual order of program
I Active constraint is matched against head constraint of rule with

same constraint symbol
I If matching found, guard check succeeds, and propagation history

permits it then rule fires

Page 77 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Transitions (II)

I Rule firing like procedure call
I Constraints in body are executed left to right
I When they finish, execution returns to active constraint

I If active constraint still present after all rules tried or executed, it
will be removed from stack, kept in CHR store

I Constraints from store will be reconsidered (woken) when new
built-ins are added that affect it

Page 78 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Transitions (III)

I Wake-up policy is implementation of wakeup(S, c, B)
I Defines which constraints from S are woken if c is added to built-in

store B
I Ground constraints are never woken
I Only wake CHR constraints which potentially cause rule firing

(those whose variables are further constraint by newly added
constraint)

I No second waking if constraint added a second time

Page 79 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Solve+Wake

Definition (Solve+Wake transition)
Solve+Wake

〈[c|A], S, B, T〉n 7→solve+wake 〈wakeup(S, c, B)+A, S, B′, T〉n

where c is a built-in constraint and CT |= ∀((c ∧ B) ↔ B′)

I Moves built-in c into built-in store (Solve)
I Reconsiders CHR constraints according to wake-up policy by

adding them on top of goal stack (Wake)
I They will eventually become active again

Page 80 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Activate

Definition (Activate transition)
Activate

〈[c|A], S, B, T〉n 7→activate 〈[c 1
n |A], {cn} ∪ S, B, T〉(n+1)

where c is a CHR constraint

I CHR constraint becomes active for the first time and is added to
CHR constraint store

I Counter n is incremented

I Corresponds to Introduce from abstract semantics

Page 81 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Reactivate

Definition (Reactivate transition)
Reactivate

〈[ci|A], S, B, T〉n 7→reactivate 〈[c 1
i |A], S, B, T〉n

where c is a CHR constraint

I Numbered CHR constraint c: Woken and re-added by
Solve+Wake and now becomes active again

I Reconsider all rules in whose heads a potential match for c
occurs

Page 82 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Apply

Definition (Apply transition)
Apply

〈[c(̄t) j
i |A], H1 ∪ H2 ∪ S, B, T〉n 7→apply r

〈C+H+A, H1 ∪ S, (H1)=H′
1 ∧ (H2)=H′

2 ∧ B, T ∪ {(r, id(H1)+id(H2))}〉n

if there is a fresh variant of a rule in the program with variables x̄,

r @ H′
1 \ H′

2 ⇔ N C

where the jth occurrence of a constraint c is in the rule head H′
1\H′

2 and
where CT |= ∃(B) ∧ ∀(B → ∃x̄((H1)=H′

1 ∧ (H2)=H′
2 ∧N)) and (r, id(H1)+id(H2)) 6∈ T.

Let H=[c(̄t) j
i] if the occurrence for c is in H′

1 and H=[] if the occurrence is in H′
2

I Active constraint matches against head constraint of rule with
same occurrence number j

I Active constraint either kept or removed in H depending on
matched occurrence in rule head

Page 83 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Default

Definition (Default transition)
Default

〈[c j
i |A], S, B, T〉n 7→default 〈[c j+1

i |A], S, B, T〉n

if no other transition is possible in the current state

I No matching of active constraint against rule with occurrence j

I Proceed to next, j+1-th occurrence in rules of program

Page 84 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Drop

Definition (Drop transition)
Drop

〈[c j
i |A], S, B, T〉n 7→drop 〈A, S, B, T〉n

where there is no occurrence j for c in P

I Removes active constraint from stack if no more occurrences

I Numbered constraint ci stays in CHR constraint store

Page 85 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Example (GCD for refined operational semantics)

gcd1 @ [] \ [gcd(0)ˆ1] ⇔ true true.
gcd2 @ [gcd(I)ˆ3] \ [gcd(J)ˆ2] ⇔ J>=I [K is J−I, gcd(K)].

Example computation

〈[gcd(6),gcd(9)] , ∅〉1

7→activate 〈[gcd(6)1
1,gcd(9)] , {gcd(6)1}〉2

7→default 〈[gcd(6)2
1,gcd(9)] , {gcd(6)1}〉2

7→default 〈[gcd(6)3
1,gcd(9)] , {gcd(6)1}〉2

7→default 〈[gcd(6)4
1,gcd(9)] , {gcd(6)1}〉2

7→drop 〈[gcd(9)] , {gcd(6)1}〉2

7→activate 〈[gcd(9)1
2] , {gcd(6)1,gcd(9)2}〉3

7→default 〈[gcd(9)2
2] , {gcd(6)1,gcd(9)2}〉3

7→apply gcd2 〈[K1 is 9−6,gcd(K1)] , {gcd(6)1}〉3

7→solve+wake 〈[gcd(3)] , {gcd(6)1}〉3

7→activate 〈[gcd(3)1
3] , {gcd(6)1,gcd(3)3}〉4

7→default 〈[gcd(3)2
3] , {gcd(6)1,gcd(3)3}〉4

Page 86 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Example GCD (II)

Example computation (continued)

7→default 〈[gcd(3)3
3] , {gcd(6)1,gcd(3)3}〉4

7→apply gcd2 〈[K2 is 6 − 3,gcd(K2),gcd(3)3
3] , {gcd(3)3}〉4

7→solve+wake 〈[gcd(3),gcd(3)3
3] , {gcd(3)3}〉4

7→activate 〈[gcd(3)1
4,gcd(3)3

3] , {gcd(3)3,gcd(3)4}〉5

7→default 〈[gcd(3)2
4,gcd(3)3

3] , {gcd(3)3,gcd(3)4}〉5

7→apply gcd2 〈[K3 is 3 − 3,gcd(K3),gcd(3)3
3] , {gcd(3)3}〉5

7→solve+wake 〈[gcd(0),gcd(3)3
3] , {gcd(3)3}〉5

7→activate 〈[gcd(0)1
0,gcd(3)3

3] , {gcd(3)3,gcd(0)5}〉6

7→apply gcd1 〈[gcd(3)3
3] , {gcd(3)3}〉6

7→default 〈[gcd(3)4
3] , {gcd(3)3}〉6

7→drop 〈[] , {gcd(3)3}〉6

Page 87 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Relating abstract and refined semantics (I)

I ωr is an instance of ωt

I Abstraction that maps states and derivations of ωr to ωt

Definition (Abstraction function)

For states:
α(〈A, S, B, T〉Vn) = 〈G, S, B, T〉Vn ,

where G contains all atomic constraints of A expect active and
numbered CHR constraints.
For derivations:

α(s1 7→ s2 7→ . . .) =

(
α(s1) 7→ α(. . .) if α(s1)=α(s2)

α(s1) 7→ α(s2) 7→ α(. . .) otherwise

Page 88 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Relating abstract and refined semantics (II)

Theorem

For all ωr derivations D, α(D) is a ωt derivation.
If D is a terminating computation, then α(D) is a terminating
computation.

Termination, confluence under abstract semantics preserved in
refined semantics (but not the other way round)

Page 89 Syntax and semantics | Operational semantics | Refined operational semantics ωr

Nondeterminism

Refined semantics is still nondeterministic

I In Solve+Wake transition, order of constraints added by
wake-up-policy function not defined

I Matching order in Apply transition: not known which partner
constraint from store is chosen

Page 90 Syntax and semantics | Declarative semantics

Declarative semantics

I Declarative semantics associates program with logical theory

I This logical reading should coincide with intended meaning of
program

I Declarative semantics facilitates nontrivial program analysis (e.g.
correctness for program transformation and composition)

I Logical reading of CHR program consists of logical reading of its
rules and built-ins

Page 91 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

First-order logic declarative semantics
Logical reading of rules

I Rule logically relates head and body provided the guard is true

I Simplification rule means head is true iff body is true

I Propagation rule means body is true if head is true

Definition (Logical reading)

Simplification rule: H ⇔ C B ∀ (C → (H ↔ ∃ȳ B))
Propagation rule: H ⇒ C B ∀ (C → (H → ∃ȳ B))
Simpagation rule: H1\H2 ⇔ C B

∀ (C → ((H1 ∧ H2) ↔ (H1 ∧ ∃ȳ B)))

(ȳ contains all variables only appearing in B)

Page 92 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Example

Example (Partial order relation program)
duplicate @ X leq Y \ X leq Y <=> true.

reflexivity @ X leq X <=> true.

antisymmetry @ X leq Y , Y leq X <=> X=Y.

transitivity @ X leq Y , Y leq Z ==> X leq Z.

Example (Logical reading of partial order program)
(duplicate) ∀ X,Y (X≤Y ∧ X≤Y ⇔ X≤Y)
(reflexivity) ∀ X (X≤X ⇔ true)
(antisymmetry) ∀ X,Y (X≤Y ∧ Y≤X ⇔ X=Y)

(transitivity) ∀ X,Y,Z (X≤Y ∧ Y≤Z ⇒ X≤Z)

Page 93 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Logical reading and equivalence of programs

Meaning of built-ins has to be considered, too

Definition (Logical reading)

Logical reading of program P is P, CT
(P conjunction of logical reading of rules in P, CT constraint theory
defining built-ins)

Definition (Logical equivalence)

Programs P1 and P2 logically equivalent iff

CT |= P1 ↔ P2

Page 94 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Logical correctness

Specification can be used to formally verify correctness of program

Definition (Logical correctness)

Logical specification T of program P is a consistent theory for the
CHR constraints in P.
P is logically correct with respect to T iff

T , CT |= P

P does not need to cover all consequences of T

Page 95 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Logical reading of states

Definition (Logical reading of states)

Logical reading of ωt or ωr state is the formula

∃ȳ (G ∧ (S) ∧ B)

(ȳ local variables of the state, those not in V)

I Empty sequences, sets or multisets are interpreted as true

I Variables in V are not quantified

I Local variables in states come from variables of applied rules

Page 96 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Equivalence of states

I Declarative Semantics: Logical equivalence of states if their
logical reading is equivalent

I Operational Semantics: Operational equivalence of states if the
same rules can be applied to them

Operational equivalence is stricter than logical equivalence

I Take multiset character of CHR constraints into account

I Take propagation history into account

Page 97 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Operational equivalence of states

Definition (Operational state equivalence)

Given two states si (i=1, 2), with

I Bi built-in constraints of state si

I In very abstract semantics, Ci are CHR constraints of state
I In ωt, ωr operational semantics, Ci is pair of

I CHR constraints of state with proper renaming of identifiers
I set of tuple entries in propagation history that only contain

(renamed) identifiers from the CHR constraints of the state

I Local variables ȳi of state renamed apart

s1 ≡ s2 iff CT |= ∀(B1→∃ȳ2(C1=C2)∧B2) ∧ ∀(B2→∃ȳ1(C1=C2)∧B1)

Note analogy to rule applicability conditition of operational semantics

Page 98 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Examples – operational equivalence of states

Example (Operational equivalence of states)
I The two states with logical reading q(X) ∧ X = a and
∃Y q(a) ∧ X = Y ∧ Y = a are equivalent

I The state q(a) is not equivalent to those states

I If X is not a global variable then ∃X q(X) ∧ X = a,
∃X, Y q(a) ∧ X = Y ∧ Y = a and q(a) are equivalent

I The state q(a) ∧ q(a) is not equivalent to these states

Page 99 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (I)

Operational and declarative semantics should coincide

I Soundness: Result of computation according to operational
semantics is correct regarding to declarative semantics

I Completeness: Everything proven by declarative semantics can
be computed

I But: logic of declarative semantics too powerful
I Additional conditions necessary to improve completeness

I Theorems show that for CHR, semantics are strongly related

I Because all states in a derivation are equivalent

Page 100 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (II)

Lemma (Equivalence of States in Derivation)

If C logical reading of state appearing in derivation of G then

P, CT |= ∀ (C ↔ G)

For logical reading C1, C2 of two states in computation of G

P, CT |= ∀ (C1 ↔ C2)

Page 101 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (III)

Theorem (Soundness)

If G has a computation with answer C then

P, CT |= ∀ (C ↔ G)

Theorem (Completeness)

G a goal with at least one finite computation, C a goal.
If P, CT |= ∀ (C ↔ G) then G has finite computation with answer C′

such that
P, CT |= ∀ (C ↔ C′)

Page 102 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (IV)

Completeness theorem does not hold if G has no finite computations

Example

Let P be p ⇔ p and G be p

It holds that P, CT |= p↔ p since P is {p↔ p}
but G has only infinite computations

Page 103 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Failed computations

Try to specialize theorems for failed computations

Theorem (Soundness of failed computations)

If G has a failed computation then

P, CT |= ¬∃ G

No analogous completeness result for failed computations

Example
p ⇔ q.

p ⇔ false.

P, CT |= ¬q holds, but q has no failed computation

Page 104 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (VI)

Discrepancy between operational and declarative semantics comes
from additional reasoning power of first-order logic

Example
a ⇔ b a ⇔ c

I From P, CT follows for example a ↔ b, a ↔ c,
but also b ↔ a, b ↔ c, a ↔ b∧c

I In fact, logical equivalence between any nonempty conjunctions
of a, b, c holds

I Only possible computations are a 7→ b, a 7→ c,
as well as b 7→0 b, and c 7→0 c

Rules are directional, logical equivalence is not.

Page 105 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Soundness and completeness (VII)

Stronger completeness result for programs with consistent logical
reading and data-sufficient goals

Definition (Data-sufficiency)

Goal is data-sufficient if it has a computation ending in a final state
without CHR constraints.

Theorem (Stronger completeness of failed computations)

P with consistent logical reading, G data-sufficient.
If P, CT |= ¬∃G then G has a failed computation.

Even stronger results for confluent programs

Page 106 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Linear logic declarative semantics

I Classical logic declarative semantics not always sufficient if CHR
used as general purpose language

I Simplification rules remove and add CHR constraints
(nonmonotonic), can model dynamic updates

I But first-order logic cannot directly express change

I Alternative declarative semantics
I Based on linear logic
I Models resource consumption
I Stronger theorems for soundness and completeness

Page 107 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Syntax (I)

Definition (Syntax of intuitionistic linear logic)

L ::= p(̄t) | L(L | L ⊗ L | L&L | L ⊕ L | !L | ∃x.L | ∀x.L | > | 1 | 0

I Atoms represent resources, may be consumed during reasoning

Page 108 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Syntax (II)

I Linear implication((“lollipop”) different from classical logic
I A(B (“consuming A yielding B”) means A can be replaced by B
I A and A(B yields B (implication also consumed)

I Conjunction ⊗ (“times”) similar to classical logic
I A ⊗ B available iff A and B available
I A ⊗ A not equivalent to A
I Neutral element 1, corresponds to true

Page 109 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Syntax (III)

I Modality ! (“bang”) marks stable facts and resources that are not
consumed

I Conjunction & (“with”) represents internal choice (don’t-care)
I A&B (“either A or B) implies A or B but not A ⊗ B
I Neutral element > (“top”)

I Disjunction ⊕ expresses external choice (don’t-know, similar to
classical disjunction)

I A⊕ B neither implies A nor B alone
I Neutral element 0, expresses failure

Page 110 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Linear logic declarative semantics (I)

First-order logic (FOL) vs. linear logic semantics

I CHR constraints as linear resources

I Built-ins still in FOL as embedded intuitionistic formulas

I CHR rules as linear implication instead of logical equivalence

Page 111 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Linear logic declarative semantics (II)

Definition (Semantics PL of CHR∨ program part 1)

Built-in Constraints: trueL ::= 1
falseL ::= 0
c(̄t)L ::= !c(̄t)

CHR Constraints: e(̄t)L ::= e(̄t)
Goals: (G ∧ H)L ::= GL ⊗ HL

(G ∨ H)L ::= GL ⊕ HL

Configuration: (S ∨ T)L ::= SL ⊕ TL

I Constraints mapped to ⊗ conjunctions of their atomic
constraints

I Atomic built-ins banged (treated as unlimited resources)
I CT translated according to the Girard Translation
I Disjunctions mapped to ⊕ disjunctions

Page 112 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Linear logic declarative semantics (III)

Definition (Semantics PL of CHR∨ program part 2)

Simpagation Rule: (E\F ⇔ CG)L ::= !(∀
`
CL ((EL ⊗ FL (EL ⊗ ∃ȳGL´

))

CHR Program: {R1...Rm}L ::= RL
1 ⊗ ...⊗ RL

m

I Rules mapped to linear implications
I Consuming part of head produces body
I Directional, not commutative (cannot be reversed)

I Formula for rule banged (to be used more than once)

I Program translated into ⊗ conjunction of translated rules

Page 113 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Example (I)

Example (Coin throw)
I Coin throw simulator program

throw(Coin) ⇔ Coin = head

throw(Coin) ⇔ Coin = tail

I Classical declarative FOL semantics

(throw(Coin) ↔ (Coin=head)) ∧ (throw(Coin) ↔ (Coin=tail))

I Leads to (Coin=head) ↔ (Coin=tail) and therefore head=tail

Page 114 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Example (II)

Example (Coin throw continued)

throw(Coin) ⇔ Coin = head

throw(Coin) ⇔ Coin = tail

Linear logic reading

!∀(throw(Coin)(!(Coin=head))⊗!∀(throw(Coin)(!(Coin=tail))

This is logically equivalent to:

!∀ (throw(Coin)(!(Coin=head)&!(Coin=tail))

Reads as “Of course, consuming throw(Coin) produces: Choose from
Coin = head and Coin = tail” (committed choice)

Page 115 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Another example (I)

Example (Destructive assignment)
assign(Var,New) ∧ cell(Var,Old) ⇔ cell(Var,New)

FOL reading:

∀(assign(Var, New)∧cell(Var, Old) ⇔ cell(Var, New))

which is logically equivalent to

∀(assign(Var, New)∧cell(Var, Old) ⇔ cell(Var, Old)∧cell(Var, New))

Means that Var holds old and new value simultaneously

Page 116 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Another example (II)

Example (Destructive assignment continued)
assign(Var,New) ∧ cell(Var,Old) ⇔ cell(Var,New)

Linear logic reading

!∀(assign(Var, New)⊗ cell(Var, Old)(cell(Var, New))

Reads as “Of course, consuming assign(Var,New) and
cell(Var,Old) produces cell(Var,New).”

Page 117 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Yet another example

Example (Prime sieve)
prime(I) ∧ prime(J) ⇔ J mod I = 0 | prime(I)

FOL: ∀((M mod N = 0) → (prime(M) ∧ prime(N) ↔ prime(N)))

“A number is prime when it is multiple of another prime”.

LL: !∀(!(M mod N = 0)((prime(M)⊗ prime(N)(prime(N)))

“Of course, consuming prime(M) and prime(N) where (M mod N = 0)

produces prime(N)”

Page 118 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

And even more examples

Example (Birds and penguins)
bird ⇔ albatross ∨ penguin.

penguin ∧ flies ⇔ false.

FOL : (bird ↔ albatross ∨ penguin) ∧ (penguin ∧ flies ↔ false)

This is correct, but more than can be computed, e.g. albatros → bird.

LL : ! (bird(albatross⊕ penguin) ⊗ ! (penguin⊗ flies(0)

implies only computable implications

bird ⊗ flies(albatross ⊗ flies

“bird and flies can be mapped to albatross and flies”

Page 119 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Soundness and completeness (I)

I Approach for soundness analogous to classical framework
I In the following:

I P a CHR∨ program
I PL its logical reading and !CT L constraint theory for built-ins
I S0 initial configuration, Sm, Sn configurations
I ` denotes deducability

Any configuration in derivation is linearly implied by logical reading of
initial configuration

Lemma (Linear implication of states)

If Sn appears in derivation of S0 then

PL, !CT L ` ∀(SL
0(SL

n)

Page 120 Syntax and semantics | Declarative semantics | Linear logic declarative semantics

Soundness and completeness (II)

Theorem (Soundness)

If S0 has computation with final configuration SL
n then

PL, !CT L ` ∀
(
SL

0 (SL
n

)
Theorem (Completeness)

If
PL, !CT L ` ∀

(
SL

0 (SL
n

)
then there is Sm in a finite prefix of derivation of S0 with

!CT L ` SL
m (SL

n

	Syntax and Semantics of CHR
	Introduction
	Preliminaries
	Abstract syntax
	Operational semantics
	Declarative semantics

