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Constraint Handling Rules (CHR)

» CHR is both: logical and practical
» related to subset of first-order logic and linear

logic
\ » general-purpose programming like Prolog and
Haskell
CHR logo

» Rules are descriptive and executable
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Constraint Handling Rules (CHR)

» no distinction between data and operations
» constraints cover both
» CHR is a language extension

» Implementations available for Prolog, Haskell, C, Java, ...
» in host language CHR constraints can be posted/inspected
» in CHR rules host language statements can be used

» CHR is synthesis of

» propagation rules

» multiset transformation
» logical variables

> built-in constraints

with a formal foundation in logic and methods for powerful
program analysis
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CHR programming language

» for theorem proving and computational logic, integrating

» forward and backward chaining
» (integrity) constraints

» deduction and abduction

» tabulation

» as flexible production rule system with constraints

» as general-purpose concurrent constraint language
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Available Distributions

More than a dozen free libraries to
» Prolog: SICStus, Yap, Eclipse, XSB, hProlog, HAL, SWI,...
» Java, also C
» Haskell, also parallel

Most advanced implementations from K.U. Leuven
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Highlight Properties of CHR

Every algorithm can be implemented in CHR with best-known time
and space complexity.

Algorithmic properties
Any CHR program will automatically implement a concurrent anytime
(approximation) and online (incremental) algorithm.

Decidability
For terminating CHR programs confluence of rule applications and
operational equivalence are decidable.

| \




Syntax and semantics | Introduction

Overview

» Syntax: describes how constituents of a formal language are
combined to form valid expressions
» Semantics:
» Operational: Description of what it means to execute a statement
(as transition system)
» Declarative: Description of the meaning without referring to
execution (in logic)
» Goal: Corresponding operational and declarative semantics
» Soundness: Result of computation according to operational
semantics is correct regarding declarative semantics

» Completeness: Everything proven by declarative semantics can
be computed
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Preliminaries
Syntactic expressions (I)

v

Signature:
» Set of variables V
» Set of function symbols &
» Set of predicate symbols II

v

Function and predicate symbols have arity (number of arguments
they take)

Functor f/n: symbol f with arity n

v

v

Constants: function symbols with arity zero

v

Propositions: predicate symbols with arity zero
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Syntactic expressions (Il)

» Term: variable or function term f(z,...,%,) (f/n € %, t; terms)
» Atomic formula (atom): p(zy,...,1,) (p/n € 11, 1; terms)

» (Logical) expressions: Terms and atoms; sets, multisets, and
sequences (lists) of logical expressions
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Substitution, instance and matching

Definition (Substitution)

Substitution 6 : V — 7(X,V’): finite function from variables to terms
0={Xi/t,...,Xu/t,} Where each X; # t;

Identity substitution ¢ = (

Extension to terms, 6 : 7 (X, V) — 7(3,V)

defined by implicit homomorphic extension,

flt, .. )0 :=f(1,0,...,1,0)

Substitution ¢ obtained by replacing each X; in E with 7; at once.
Subsitutions written as postfix operators, applied from left to right.
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Example — Substitution

> 0={X/2,Y/5}: (Xx(Y+1)=2x(5+1)
> 0= {X/Y,Z/5}: (X+(Z+1)0=Y*(5+1)
> 0 ={X/Y,Y/Z}: p(X)0 =p(Y)# p(X)00 = p(Z)

» 0={X/Y},T={Y/2}:
> (Xx (V4 1)r = (Y (Y + D)7 =25 2+1))
> (Xx (P D))o = (X 2+ 1)0= (¥ (2+1)
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Instance, Renaming, Variants

Definition (Instance)

E@ is instance of E.

E6 matches E with matching substitution 6.
0 ={X/t,...,X,/t,}, E expression)

Definition (Variant, Variable Renaming)

If E and F are instances of each other then E and F are variants of
each other.
Substitution 6 is a variable renaming in E = F6.

N

Variable renaming 6 is bijective, maps variables to variables.
» Renamed apart: Variants with no variables in common

» Fresh variant: Variant containing only new variables
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Groundness

» Variables either free or bound (instantiated) to term

» Ground, fixed (determined) variable: bound or equivalent to
ground term (variable is indistinguishable from the term it is
bound to)

» Ground expression: Expression not containing (nonground)
variables
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Unification and syntactic equality

Unification: making expressions syntactically equivalent by
substituting variables with terms.

Definition (Unifier)

Substitution @ is unifier of E and F if E0 = F0.

E, F unifiable: unifier exists.

{p1,--,ont ={q1,...,qm} shorthand forpy =q1 A ... Ap, = q, if
n = m and for false otherwise
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Most General Unifier

Definition (Most General Unifier (MGU))
0 is MGU for E, F: every unifier 7 for E, F is instance of 6, i.e., 7 = 6p

for some p
(E, F expressions, 6, T, p, 6; substitutions)
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Example — Most General Unifier

fX,a) = f(gU),Y) = Z

MGU:
0 ={X/s(U),Y/a,Z/f(g(U),a)}
Proof: f(X,a)0 = f(g(U),Y)0 = Z0 = f(g(U), a) one element.

Unifier, but not MGU:

0" ={X/g(h(b)), U/h(b),Y/a,Z[f(g(h(D)),a)}

Proof: ' = 6{U/h(b)}.
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Computing Most General Unifier

» Start with empty substitution e

» scan terms simultaneously from left to right according to their
structure

» check the syntactic equivalence of the terms encountered
repeat

different function symbols: halt with failure

identical function symbols: continue

one is unbound variable and other term:
» variable occurs in other term: halt with failure
> apply the new substitution to the logical expressions

v

v

v

add corresponding substitution
variable is bound: replace it by applying substitution

\{
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Example — Most General Unifier (2)

Computing the MGU:
to unify current substitution, remarks
p(X.f(a) = pla.f(X)) e start
X=a {X/a}, substitution added
fla) =f(X) continue
a=X {X/a}, variable is not unbound
a=a continue

MGU is {X/a}

What about p(X,f (b)) = p(a,f(X))?
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Example — Most General Unifier (3)

s t 0

S g failure

X a {X/a}

X Y {X/Y}, but also {Y/X}
f(a,X) f(¥,b {Y/a,X/b}
f(g(a,X),Y) fle, X) failure

f(gla,X),h(c)) | f(gla,b),Y) | {X/b,Y/h(c)}
f(g(a,X),n(Y)) | f(g(a,b),Y) | failure
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Example — Most General Unifier (4)

Examples involving cyclicity:
X = X is unifiable but not:

> X =f(X)

> X =p(A,f(X,a))

> X=YAX=f(Y)
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Clark’s Equality Theory (CET)

Reflexivity (true — X =X)

Symmetry (X=Y — Y=X)

Transitivity (X=YANY=Z — X=2Z)

Compatibility (X1=Y1 A...ANX,=Y, — f(X1,..., X)=f(Y1,...,¥)))
Decomposition(f (X1, ..., X,)=f(Y1,...,Y,) = X1=Y1 A... ANX,=Y,)

Contradiction

Xty Xa)=g (Y, V) — i
(Clash) (X1, Xn)=g(Yy ) — false) if f£g o n#m
Acyclicity (X=t — false) if t is function term and X appears in ¢

(X signature with infinitely many functions, including at least one
constant)
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Theorems equality and matching

Theorem (Equality)
Expressions E and F are unifiable if and only if

CET = 3(E = F).

N

Theorem (Matching)
For expressions E, F and substitution § = {X,/t1, ..., X,/t,}

CETEV(E=F0— (Xy=t,A---AX, =1, —» E=F)).

E matches F with substitution 6.
(VF denotes universal closure of formula F)
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Constraint systems

» Constraints are distinguished predicates of first-order-logic

» Constraint systems take data types and operations and interpret
expressions as constraints

» Data types: typically numbers are used to represent scalars,
terms to represent structures
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Definition constraint system

» Set of constraint symbols
» Set of values called domain
» Logical theory C7T called constraint theory
» consists of universally closed formulas (axioms)
» must be nonempty and consistent
» must include axiomatization for syntactic equality = (CET) and the

propositions rrue (always holds) and false (never holds)
» Complete: for all constraints ¢ either CT = Vc or CT = V—c holds
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Terminology constraint system

» Atomic constraint: atomic formula whose predicate symbol is
constraint symbol

» Constraint: conjunction of atomic constraints
» Solution: substitution 6 s.t. C6 holds (CT = C6)

» Satisfiable (consistent) constraint: solution exists, otherwise
unsatisfiable (inconsistent)

» Equivalent constraints C,, C,: have the same solutions
(CT EVY(C) « )
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Reasoning problems

» Satisfaction problem: existence of a solution
» Solved by algorithm called decision procedure
» Solution problem: Finding a solution

» Algorithm for solution is called (constraint) solver
» Solver typically also simplifies constraints.
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Transition systems (*)

» Most abstract way to capture essence of computation
» Basically a binary relation over states

» Transition relation describes how one can proceed from one
state to another
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States and transitions

Definition (Transition system)

» Transition system T is pair T = (S, +—)
» S is set of states (configurations)
» Transition — is binary relation on states, —C S x S

» TS deterministic: at most one transition from every state,
otherwise nondeterministic

» Reachability relation — x: reflexive transitive closure of —
» Initial, final states: Nonempty subsets of S.
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Derivations and computations

Definition (Derivation)

Derivation: Sequence of states so—s;— ... where
Sor—=S81 A si—so A ...

» Finite (terminating) if sequence is finite.
» Length: number of transitions in derivation.

Computation: derivation that start with initial state sy and ends with
final state or is infinite.

Remarks

» S may be finite, countably infinite, or infinite

» Initial and final states not necessarily disjoint
If no initial states given, all states initial
Final states must include states which have no successor
Final states can include states which have successor
Transition (reduction) also called derivation/computation step

\ 4

v vyy
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Example

Example (Soccer)

S =A{(t,p,a,b) | 0 <t,a,b <90,p € {A,B}}

Initial states: {(0, A4, 0, 0), (0,B,0,0)}

Final states: (90,p,a,b) € S
(t,A,a,b) — (t+1,A,a+1,b) (t,B,a,b) — (t+ 1,B,a,b+1)
(t,A,a,b) — (t+ 1,A,a,b) (t,B,a,b) — (t+1,B,a,b)
(t,A,a,b) — (t+ 1,B,a,b) (t,B,a,b) — (t+ 1,A,a,b)

» Models progression of goal count
» . counter for minutes
Second component models possession
a and b: goal counters
Scoring, keeping ball, or loosing ball possible

v

v

v
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Induction

Definition (Induction Principle)
Property P defined over states is called invariant:

If base case P(sp) holds and induction hypothesis “P(s,) implies
P(s,+1)” holds for all s, — s,.; then P holds for all s in derivation

Example (Soccer Invariant)
Score in soccer game always less or equal 90:
> Let P((t,p,a,b)) be r <90
» P holds for initial states
» In all other states: 0 < ¢ < 90, final states r = 90

» All transition increment ¢ < 90 by one
= Induction hypothesis holds = claim holds
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Abstract syntax

Two kinds of constraints: CHR (user-defined) constraints and built-in
(predefined) constraints.

» Built-in constraints:

>

>

>

>

>

>

Arbitrary logical relations (solved and simplified effectively)
Constraint theory for built-ins is denoted by CT

Built-ins rrue, false, and syntactic equality =

Allow embedding and utilization of given constraint solvers
Allow for side-effect free host language statements
Considered as black boxes (correct, terminating confluent)

» User-defined constraints:

>

Defined by rules of a CHR program
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CHR program

Definition (CHR program)

Built-in Constraint.  C,D = c(ti,...,ts) | CAD, n>0
CHR Constraint: E.F = e(ti,...,t) | EANF, n>0
Goal: GH === C | E | GAH
Simplification Rule: SR = rQE&CIG

Propagation Rule: PR = rQE=CIG

Simpagation Rule:  SPR = rQE\E,< CIG

CHR Rule: R = SR | PR | SPR

CHR Program: P = {Ri...Ru},m>0

> r name, optional unique identifier
» E, E\, E; head, nonempty conjunction of CHR constraints

» C optional guard, conjunction of built-ins

» G body, conjunction of built-ins and CHR constraints
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Definition (I1)

Definition (Additional concepts)

»

Removed constraints: head constraints of simplification rule
and head constraints E, of simpagation rule

Kept constraints: other head constraints

Defined constraint: occurs in head of rule

Used constraint: occurs in body of rule

Local variable of rule: does not occur in rule head

Range-restricted rule: No local variables
(Program range-restricted if all rules range-restricted)
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Multiset and sequence notation

» Use of first-order logic conjunction emphasizes close ties of CHR
to logic

» Should be understood purely syntactically

» Conjunction interpreted as logical operator, multiset or sequence
forming operator

» Operator & used for multiset union
» When multisets treated as sequences, order chosen at random
» List notation ([H|T] or []) for sequences

» Operator + denotes sequence concatenation
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Generalized simpagation rule notation

v

Simplification, propagation and simpagation rules as special
case of Generalized simpagation rule

El\E2<:>C|G

v

E; kept, E, removed constraints, C guard, G body

v

If E; empty rule equivalent to simplification rule E; < C1G

v

If E; empty rule equivalent to propagation rule E; = C1G

v

At least on of E; and E, must be nonempty
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Operational semantics

» Describes how program is executed
» Defined by transitions system
» States are conjunctions of CHR and built-in constraints
» Transitions correspond to rule applications
» Starting from initial state rules are applied until exhaustion or
contradiction
» Simplification rule replaces CHR constraints matching its head by
its body if guard holds
» Propagation rule adds its body without removal
» Simpagation rule removes part of the matched constraints
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Very abstract semantics (*)
States

Definition (States)

» State: conjunction of built-in and CHR constraints
» Initial state: arbitrary state
» Final state: no transitions possible anymore
» Conjunction as multiset forming operator:
» Conjunction is associative and commutative, but not idempotent
» Multiplicity of conjuncts matters, permutation and grouping allowed
» Built-ins allow for computations with possibly infinitely many
ground instances
» States can be understood as set comprehension

» State E A D (E CHR constraints, D built-ins) stands for potentially
infinite set of ground instances E, {E|D}
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Transitions

Definition (Transition Apply)
(Hi NHy AG) —, (Hi ANCABAG)
if there is an instance of a rule in the program with new local variables
X
rQH\H, < CI|B
and C7 =V (G — 3xC)

» Rule r generalised simpagation rule in head normal form:
Arguments of the head constraints are distinct variables.

» H,, H,, C, B, G denote possibly empty conjunctions of constraints
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Ask and Tell
Built-in constraints
» tell: producer adds/places constraint to the constraint store

» ask: consumer checks entailment (implication) of constraints
from the store (but does not remove any constraint)

Example:
Operation Constraint Store
tell Y
tell
ask
ask
tell
ask
ask

XK N KX KX
AV VAN VAN VAN VAN VAN VAN
NOX X X N N K
XKoo X X X X X
I IN N IN N
KoK K KKK
> > > > > >
KoK KK KK

VAN VANIVAN

N N N N N N
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Applicability condition

» Instance of rule (with new local variables x) applicable if

» Head constraints appear in the state
» Applicability condition (AC) C7 =V (G — 3xC) holds

» Actually, AC only considers built-in constraints of G
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Rule application (1)

» When rule applied
» CHR head constraints H; kept, H, removed from state
» Guard C and body B is added (C may contain variables not
contained in body or head)
» When more than one rule applicable, one is chosen
nondeterministically
» Choice cannot be undone (committed-choice)
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Rule application (I1)

v

CHR constraints can be added and removed by rule application

v

CHR constraints behave nonmonotonically in general

v

Built-in constraints can only be added but not removed

v

Built-ins monotonically accumulate information
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Example GCD

Example (Greatest common divisor)

gedl @ \ gcd(I) & I=0 | true.
gcd2 @ ged(I) \ ged(J) & I>=I A I>0 | ged(J—1).

(true, =, >, >: built-in constraints)

Example computation

gcd(6) A gcd(9)
—eeal  gcd(6) A gcd(3)
—ga1 gcd(3) A ged(3)
—eeai  gcd(0) A gcd(3)
gz gcd(3) )
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Example — Partial Order Relation

Example (Program)

reflexivity @ X leq Y & X=Y | true (rl)
antisymmetry @ X leg Y A Y leq X & X=Y (r2)
transitivity @ X leq Y A Y leqg Z = X leq Z (r3)
idempotency @ X leg Y A X leq Y & X leq Y (rd)

(true and =: built-in constraints)
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Example — Partial Order Relation (2)

Example computation

A leg BAC leg AANB leg C
apply 13) A leg BAC leg AAB leq CAC leg B
apply (2) A leq B AC leg A A B=C
Fapply (2) A=B A B=C

Example (Program)

X leq Y & X=Y | true (rl)

X leq Y A Y leg X & X=Y (r2)

X leg Y A Y leq 2 = X leg Z (r3)
X leq Y A X leg Y & X leq Y (rd)
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Example — Min

Example (Program)

min (X,Y,2) & X<Y | z=x (rl)

min (X,Y,2) & Y<X | z=Y (r2)

min (X,Y,7) & z2<X | Y=2 (r3)

min(X,Y,2) © z<Y | Xx=2 (r4)
( )

min(X,Y,2) = 2<X A z<y (r5)

(=, < and < built-in constraint symbols)
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Example — Min (2)

Example computation

min(1,2,M)
apply (1) M=1
min(A,A,M)
—apply (1) M=A A A<A
min(A,B,M) A A<B
—apply (1) M=A A A<B

Example (Program)

min(X,Y,2) & X<y | z=X (rl)
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Example — Min (3)

Example computation

min(a,2,2)
apply (/) Min(A,2,2) A2 <AA2<L2
Fapply (2) 2=2 N 2<AAN2<2
= 2<n

Example (Program)
min(X,Y,2) < X<y | z=Xx (rl)
min (X,Y,2) & Y<X | z=Y (r2)

min(X,Y,2) = Z2<X A z<Y (r5)
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Example — Min (4)

Example computation

min(a,B,M) A A=M
Fapply (5) Min(A,B,M)AM<AAMIB A A=M
apply (1) A=M A A<XBAM<AAMSBAA=M
= M < BAA=M

Example (Program)

min (X,Y,2) & X<y | z=x (rl)

min(X,Y,2) = Z2<X A z<Y (r5)
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Example — Min (5)

Example computation

> min (A, 2,1) —apply (rayx A=1

> min (A, 2,3) Fapply (r5)—* false

Example (Program)

min (X,Y,2) & z2<Y | x=2 (r4)
min(X,Y,2) = Z2<X A zZ<Y (r5)
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CHR with disjunction (*)
Nondeterminisms

» Don’t-care nondeterminism
» Choice should not matter for result, it is enough to know one result
» In CHR, for choice of constraints from a state and for choice of rule
to apply
» Don’t-know nhondeterminism
» Trying out different choices
» In CHR, usually provided by host-language of CHR library

» E.g. disjunction of Prolog can be used in rule body
» Disjunction formalized in CHRY
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Syntax and states

Extension of syntax of CHR. Disjunction in goals and for states.

Definition (CHRY extended syntax)

Goal: G,H := C | E| GNH | GVH
Configuration: S, 7 =S | SVT

» Configuration s; Vs, V... Vs,: Disjunction of CHR states

v

Each state represents independent branch in search tree

\ 4

Initial configuration: initial state

v

Final configuration: consists of final states only

v

Failed configuration: all states have inconsistent built-ins
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Transitions (l)

Two additional transitions for configurations

Definition (Split transition in CHRY)

Split
(HHVH)ANG)V Sy (HHAG)V (H AG)V S

v

Can always be applied when state contains disjunction

v

Branching the derivation: splitting into disjunction of two states

v

Each state will be processed independently

v

Constructs tree of states rather than sequence (search tree)
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Transitions (l1)

Definition (Apply transition in CHRY)

Apply
(HiANH, NG)V S —, (HHACABAG) VS
if there is an instance of a rule in the program with fresh variables x,
rQH | \H, & C |B
and C7 £V (G — 3xC)

» Applies to disjunct, i.e. state, inside configuration
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Example — Maximum

Example (Maximum in CHRY)
max (X,Y,2) & (XY A Y=2) V (Y<X A X=2)

» max constraint in query (initial goal) will reduce to disjunct
» max (1, 2,M): first disjunct leads to M=2, second fails
» max (1,2, 3):both disjuncts fail = failed configuration

» max (1,1, M) : both disjuncts reduce to M=1
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Abstract semantics w,

» Abstract operational semantics of CHR
» Refinement of very abstract semantics
» Distinguishes between yet unprocessed constraints, CHR and
built-in constraints
» Avoids trivial nontermination
» Uses matching for rule heads
» Also called standard, theoretical, or high-level operational
semantics

» We adopt w, version of abstract operational semantics
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Trivial nontermination

Very abstract semantics does not care much about termination.
» Failed states do not terminate
» In failed state any rule is applicable
» Failed state can only lead to failed state (monotonic accumulation
of built-ins)
» Solution: declare failed states as final states
» Propagation rules do not terminate
» Can be applied again and again
» Solution 1: Fair rule selection strategy (not ignoring applicable rule
infinitely often)
» Solution 2: Do not apply propagation rule twice to same constraints
(need to keep a propagation history)
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Rules and constraints

» Head and body of rule become multisets of atomic constraints

» Guard remains a conjunction of built-in constraints
» CHR constraints with unique identifier to distinguish multiple
occurrences
» Numbered constraint ¢; consisting of constraint ¢ and identifier i
» Auxiliary notation (¢;) = ¢ and function id(c;) = i (with pointwise
extension to sequences and sets of constraints)
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States (I)

Definition (w; state)
A w, state is a tuple (G, S, B, T)Y

» Goal G: multiset of all constraints to be processed

» CHR store S: (multi)set of numbered CHR constraints that can
be matched with rules

» Built-in store B: conjunction of built-in constraint that has been
passed to the built-in solver

» Propagation history T: set of tuples (r, 1) (r rule name, 1
sequence of identifiers that matched head constraints of r)

» Counter n: next free integer to be used as identifier

» V variables of initial goal (query) (the global variables of a state)
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States (1)

Definition (Kinds of states)

» Initial state: (G, 0, true, )Y (G initial goal (query, problem, call),
V its variables)

» Failed state: (G, S, B, T)) with inconsistent built-ins (C7 = —3B)

» Successful state: Consistent built-ins and empty goal store
(G=0)

» Final state: Successful state with no transition possible or failed
state

» (Conditional or qualified) Answer (solution, result): 3y((S) A B)
from final state (G, S, B, T)) (v variables not in V)
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Transitions (l)

Definition (Solve transition)

Solve
<{C} ) G7 S7 Ba T>n > solve <G7 S7 Bla T>n
where c is a built-in constraint and CT |= VY((c A B) < B’)

» Built-in solver adds built-in from G to B

» C A B is simplified to B’ (how far is left unspecified)
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Transitions (l1)

Definition (Introduce transition)

Introduce
<{C} WG,S,B, T>n = introduce <G) {Cn} UsS, B, T>(n+1)
where c is a CHR constraint

» Adds a CHR constraint ¢ to S and numbers it with n

» Counter n is incremented
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Transitions (l11)

Definition (Apply transition)

Apply
<67 Hy UH U S7 B7 T>n —apply r
(CWG,H, US, (H\)=H] A (Hy)=Hj AN A B, T U {(r,id(Hy)+id(H3))})n
if there is a fresh variant of a rule in the program with variables x,

rQH|\H) < NIC

where CT |= 3(B) A V(B — 3x((Hy)=H| A (H,)=H} AN)) and (r, id(Hy)+id(H,)) & T.

4

Operator + denotes sequence concatenation.
» Choses rule r from P

» for which CHR constraints matching its head exist in S
» whose guard N is logically implied by B under this matching

» Applies that rule (rule fires, is executed)
» By replacing matched removed constraints with body
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Applicability condition

Definition (Applicability condition)

CT = 3(B) A Y(B— 3x((Hi)=H; A (H2)=H; AN))

for fresh variant r @ H{\H, < N|C of a rule with variables x

» Ensures that B is satisfiable
» Checks whether H, and H, match H| and H}
((H1)=H;| A (Hy)=H,)
> {p1,...,pn} ={q1,...,qn} shorthand for p1=qi A ... A p,=gu if
n = m and for false otherwise
» Checks if N together with matching is entailed by B under CT
» Checks that propagation history does not contain identifier of
CHR constraints matching head of chosen rule
((rid(H)+id(H,)) ¢ T)
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Example — Matching

Example (Head matching)

3(H=H’), H from state, H' from rule head
> X(p(a)=p(X))
> VY3X(p(Y)=p(X))

but not
» VY3X(p(Y)=p(a))

Example (Applicability condition)

> CT = 3Y=a AVY(Y=a — (p(Y)=p(a)))
» CT | I¥Y=a AVY(Y=a — IX(p(Y)=p(X)) A X=a)
> CT W IY=a AVY,Z(Y=a — (p(Z)=p(a)))
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Rule application

» When applicable rule is applied
» Head H, is kept, H is removed from CHR store
» (H))=H; A (Hy)=H} and N are added to the built-in store (N may
share variables with C)
» Body C is added to the goal store
» Propagation history is updated by adding (r, id(H:)+id(H>))
» Propagation history entries can be garbage-collected if involved
CHR constraints have been removed
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Computations

Definition (Computation)

» Finite computation is successful if final state is successful
» Finite computation is failed if final state is failed

» Computation is honterminating if it has no final state
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Example (GCD for abstract operational semantics)

gedl @ 0 \ {gcd(0)} < true | true.
ged2 @ {gcd(I)} \ {gcd(d)} & I>=1 | {K is J—1I, gcd(K)}.

| \

Example computation

({gcd(6), 9cd(9)}, )1

" introduce <{ng(9)}! {ng(6)1}>2

S introduce (0, {gcd(6)1,9cd(9)21)3

apply gedz (1K1 _is 9—6,gcd(K1)}, {gcd(6)1})3
Fsolve ({gcd(®)}, {gcd(6)i1})s

" introduce <®! {ng(G)lv ng(3)3}>4

Papply gedz ({K2_is 6-3,9cd(K2)}, {gcd(3)s})4
= solve ({gcd(3)}, {gcd(3)3})a

™ introduce <®! {gcd(3)s3, gcd(3)4})s

Sapply geaz ({Ks_is 3-3,gcd(K3)}, {gcd(3)3})s
= solve ({gcd(0)}, {gcd(3)3})s

™ introduce <®! {gcd(3)s,gcd(0)s})e

—apply gear (B, {gcd(3)3})s
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Refined operational semantics w,
Motivation

» Nondeterminism in abstract operational semantics
» Order of processing constraints in goal
» Order of rule applications

» Current sequential CHR implementations

» execute constraints in goals from left to right
» execute constraints like a procedure call
» apply rules in textual order of program
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Refined operational semantics w,

» Refined semantics

» formalizes behavior of current implementations

» is a refinement of the abstract operational semantics

» allows for more programming idioms and for maximizing
performance

» can cause loss of logical properties and declarative concurrency
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Rules and constraints

» CHR program is sequence of rules

» Head and body are sequences of atomic constraints

» Occurrence: number for every head constraint (top-down,
left-to-right, starting with 1)

» But removed head constraints in simpagation rule numbered before
kept ones

» Active constraint ¢/: numbered constraint only to match with
occurrence j of (constraint symbol of) ¢ in some rule head

» Auxiliary notation (.) and function id extended to remove
occurrence: (¢/) = ¢, id(c/) = i
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Example GCD

Example (GCD for refined operational semantics)

gedl @ [] \ [gcd(0):1] < true | true.
gcd2 @ [ged(I):3] \ [ged(d):2] < JI>=I | [K is J—I, gcd(K)].
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States

Definition (w, state)

A w, state is a tuple (4, S, B, T)Y

» A, S, B, T, nlike in abstract semantics
» But goal A redefined into stack
» Sequence of built-in and CHR constraints, numbered CHR
constraints, and active CHR constraints
» Numbered constraint may appear simultaneously in A and S
» Initial, final, successful, and failed states as well as computations
as for abstract semantics
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Transitions (l)

» Constraints in goal executed from left to right
» Atomic CHR constraints basically executed like procedure calls

» Constraint under execution is called active, tries all rules in
textual order of program
» Active constraint is matched against head constraint of rule with
same constraint symbol
» |f matching found, guard check succeeds, and propagation history
permits it then rule fires
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Transitions (l1)

» Rule firing like procedure call
» Constraints in body are executed left to right
» When they finish, execution returns to active constraint
» If active constraint still present after all rules tried or executed, it
will be removed from stack, kept in CHR store
» Constraints from store will be reconsidered (woken) when new
built-ins are added that affect it
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Transitions (l11)

» Wake-up policy is implementation of wakeup(S, ¢, B)

>

Defines which constraints from S are woken if ¢ is added to built-in
store B

Ground constraints are never woken

Only wake CHR constraints which potentially cause rule firing
(those whose variables are further constraint by newly added
constraint)

No second waking if constraint added a second time
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Solve+Wake

Definition (Solve+Wake transition)

Solve+Wake
<[C|A} ) S7 B, T>n — solve++wake <Wak€up(5, C, B)+A, S7 B/7 T>,,
where c is a built-in constraint and C7 = V((c A B) < B')

» Moves built-in ¢ into built-in store (Solve)

» Reconsiders CHR constraints according to wake-up policy by
adding them on top of goal stack (Wake)

» They will eventually become active again
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Activate

Definition (Activate transition)

Activate
<[C|A]7 S7 B, T>n —activate <[Cn1 |A]7 {C'l} u Sa B’ T>(n+1)
where ¢ is a CHR constraint

» CHR constraint becomes active for the first time and is added to
CHR constraint store

» Counter n is incremented

» Corresponds to Introduce from abstract semantics
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Reactivate

Definition (Reactivate transition)

Reactivate
<[Ci|A]5 S? Ba T>Vl > reactivate <[Ci1 |A], S, B, T>n
where c is a CHR constraint

» Numbered CHR constraint ¢: Woken and re-added by
Solve+Wake and now becomes active again

» Reconsider all rules in whose heads a potential match for ¢
occurs
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Apply

Definition (Apply transition)

. Apply
<[CG)1’]|A]7H1 u H2 u S7 B7 T>n —apply r
(C+H+A, Hy US, (Hy\)=H] A (Hy)=H} A B, T U {(r, id(H)+id(H2))})n
if there is a fresh variant of a rule in the program with variables x,
r@H\H} = NIlC

where the j* occurrence of a constraint c is in the rule head Hj \H} and
where C7 = 3(B) A V(B — 3x((Hi)=H| A (H2)=H, AN)) and (r,id(H;)+id(H,)) & T.
Let H:[c@)ij] if the occurrence for c is in H{ and H=[] if the occurrence is in H}

» Active constraint matches against head constraint of rule with
same occurrence number j

» Active constraint either kept or removed in H depending on
matched occurrence in rule head
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Default

Definition (Default transition)

Default
<[cij|A]7 S, B, T>n > default <[Cij+1 |A], S, B, T>,,
if no other transition is possible in the current state

» No matching of active constraint against rule with occurrence j

» Proceed to next, j+1-th occurrence in rules of program



Page 84 Syntax and semantics | Operational semantics | Refined operational semantics w,

Drop

Definition (Drop transition)

Drop
<[Cij|A]7 S7 Bv T)n —drop (A, S, B, T>n
where there is no occurrence j for c in P

» Removes active constraint from stack if no more occurrences

» Numbered constraint ¢; stays in CHR constraint store
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Example (GCD for refined operational semantics)

gedl @ []1 \ [gcd(0)°1] < true | true.
gcd2 @ [ged(I) 3] \ [gcd(Jd) 2] & J>=1 | [K is J-TI, gcd (K) ] .

y

Example computation

—activate

— default

— default

= default

= drop
—activate

" default
—apply gcd2
> solve+wake
—activate

— default

(lged(6), gcd(9)], O)1
(lgcd(6)1,gcd(9)], {gcd(6)1})2
([gcd(6)?, gcd(9)], {gcd(6)11})2
([gcd(6)3, gcd(9)], {gcd(6)1})2
(lgea(6)}, ged(9)] , {ged(6)1})2
([gcd(9)], {gecd(6)1})2
([gcd(9)3], {gcd(6)1, 9cd(9)2})3
([gcd(9)3], {gcd(6)1, 9cd(9)2})3
([K1 159—6,gcd(K})], {gcd(6)1})3
([gca(3)], {gcd(6)1})3
([gcd(3)i], {gcd(6)1,9cd(3)3})4
([gcd(3)3] . {gcd(6)1, 9cd(3)3})4
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Example GCD ()

Example computation (continued)
ged(3)3], {ged(6)1, 9ed(3)3})4

[

(K2 156 —3,gcd(K2), ged(3)3] , {gcd(3)3})4
[9ed(3), ged(3)3] , {gcd(3)3})a
[
[

— default <
= apply gcd2 <
> solve+wake <
—activate < ng(3)zlu ng(S)g] ’ {ng(3)3a ng(3)4}>5
= defuls (lged(3), 9cd(3)3]+ {9cd(3)s, ged(3)a})s
= apply gcd2 <[K3 igd =3, ng(K3)7 ng(3)§] ’ {ng(3)3})5
sovetwake  ([9d(0), ged(3)3], {ged(3)3})s

(lged(0)g, gcd(3)3] + {gcd(3)s, 9ed(0)s}e
(lgea3)3], {9cd(3)s})s
(
(

“activate

—apply gcdl
gcd(3)3], {gcd(3)3})s

1,{gcd(3)3})s

" default

—drop

u]
8]
|
ul
it
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Relating abstract and refined semantics (l)

» w, is an instance of w,

» Abstraction that maps states and derivations of w, to w,

Definition (Abstraction function)

For states:
a((A,S,B,T),) = (G,S,B,T)y,

where G contains all atomic constraints of A expect active and

numbered CHR constraints.
For derivations:

a(s)) — al...) if a(s1)=a(s2)

a(s)) — as2) — a(...) otherwise

a(sl»—>szn—>...):{
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Relating abstract and refined semantics (ll)

For all w, derivations D, (D) is a w, derivation.
If D is a terminating computation, then (D) is a terminating
computation.

Termination, confluence under abstract semantics preserved in
refined semantics (but not the other way round)
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Nondeterminism

Refined semantics is still nondeterministic
» In Solve+Wake transition, order of constraints added by
wake-up-policy function not defined
» Matching order in Apply transition: not known which partner
constraint from store is chosen
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Declarative semantics

» Declarative semantics associates program with logical theory

» This logical reading should coincide with intended meaning of
program

» Declarative semantics facilitates nontrivial program analysis (e.qg.
correctness for program transformation and composition)

» Logical reading of CHR program consists of logical reading of its
rules and built-ins
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First-order logic declarative semantics
Logical reading of rules

» Rule logically relates head and body provided the guard is true
» Simplification rule means head is true iff body is true

» Propagation rule means body is true if head is true

Definition (Logical reading)

Simplification rule: H < CIB vV (C— (H < 3y B))
Propagation rule: H = CI|B vV (C— (H— 3yB))
Simpagation rule: H,\H, < CI|B

V(C — ((Hi NHy) < (Hi A3y B)))

(v contains all variables only appearing in B)
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Example

Example (Partial order relation program)

duplicate @ leqg Y \ X leqg Y <=> true.

reflexivity @ leq X <=> true.
leg Y , Y leg X <=> X=Y.

leq Y , Y leq Z ==> X leq Z.

antisymmetry @

XX XX

transitivity @

Example (Logical reading of partial order program)

duplicate) vV X,Y
reflexivity) V X

X<y A XY & x<LY)
X<X <& true)

X<Y A Y<X & X=Y)
X<Y A Y<Z = x<7Z)

antisymmetry) V X,Y

(
(
(
(transitivity) V X,Y,Z

(
(
(
(
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Logical reading and equivalence of programs

Meaning of built-ins has to be considered, too

Definition (Logical reading)

Logical reading of program P is P,CT

(P conjunction of logical reading of rules in P, C7 constraint theory
defining built-ins)

N

Definition (Logical equivalence)

Programs P, and P, logically equivalent iff

CT'=P1<—>P2




Page 94 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Logical correctness

Specification can be used to formally verify correctness of program

Definition (Logical correctness)

Logical specification 7 of program P is a consistent theory for the
CHR constraints in P.

P is logically correct with respect to 7 iff

T,CTEP

P does not need to cover all consequences of 7
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Logical reading of states

Definition (Logical reading of states)

Logical reading of w, or w, state is the formula
3 (G A (S) AB)

(y local variables of the state, those not in V)

» Empty sequences, sets or multisets are interpreted as rrue
» Variables in V are not quantified

» Local variables in states come from variables of applied rules



Page 96 Syntax and semantics | Declarative semantics | First-order logic declarative semantics

Equivalence of states

» Declarative Semantics: Logical equivalence of states if their
logical reading is equivalent
» Operational Semantics: Operational equivalence of states if the
same rules can be applied to them
Operational equivalence is stricter than logical equivalence
» Take multiset character of CHR constraints into account

» Take propagation history into account
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Operational equivalence of states

Definition (Operational state equivalence)

Given two states s; (i=1,2), with
» B; built-in constraints of state s;
» In very abstract semantics, C; are CHR constraints of state
» In w;, w, operational semantics, C; is pair of
» CHR constraints of state with proper renaming of identifiers

» set of tuple entries in propagation history that only contain
(renamed) identifiers from the CHR constraints of the state

» Local variables y; of state renamed apart
51 = s iff CT ': V(Blﬁﬂyz(CH:Cz)/\Bz) A\ V(BQ—>E|)71(C1=C2)/\BI)

v

Note analogy to rule applicability conditition of operational semantics
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Examples — operational equivalence of states

Example (Operational equivalence of states)

» The two states with logical reading ¢(X) A X = a and
3Y g(a) NX =Y ANY = a are equivalent

» The state g(a) is not equivalent to those states

» If X is not a global variable then 3X ¢(X) A X = a,
3X,Y gla) NX =Y AY = a and g(a) are equivalent

» The state g(a) A g(a) is not equivalent to these states
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Soundness and completeness (I)

Operational and declarative semantics should coincide
» Soundness: Result of computation according to operational
semantics is correct regarding to declarative semantics

» Completeness: Everything proven by declarative semantics can
be computed

» But: logic of declarative semantics too powerful
» Additional conditions necessary to improve completeness

» Theorems show that for CHR, semantics are strongly related

» Because all states in a derivation are equivalent
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Soundness and completeness (Il)

Lemma (Equivalence of States in Derivation)
If C logical reading of state appearing in derivation of G then

P,CT =V (C = G)

For logical reading C,, C, of two states in computation of G

P,CT ': A (C1 g Cz)
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Soundness and completeness (ll1)

Theorem (Soundness)

If G has a computation with answer C then

P,CT =V (C < G)

Theorem (Completeness)

G a goal with at least one finite computation, C a goal.
IfP,CT =V (C < G) then G has finite computation with answer C’
such that

P,CT =V (C— C)

N




EGERIZ  Syntax and semantics | Declarative semantics |  First-order logic declarative semantics

Soundness and completeness (V)

Completeness theorem does not hold if G has no finite computations

LetPbep & pand Gbep
It holds that P,CT =p < p since Pis {p < p}
but G has only infinite computations
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Failed computations

Try to specialize theorems for failed computations

Theorem (Soundness of failed computations)

If G has a failed computation then

P,.CT E-3G

No analogous completeness result for failed computations

p < g.
p & false.

P,CT = —q holds, but g has no failed computation
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Soundness and completeness (VI)

Discrepancy between operational and declarative semantics comes
from additional reasoning power of first-order logic

a &< b a & c

» From P,C7T follows for example a < b, a < c,
but also b < a, b < ¢, a < b/\c

» In fact, logical equivalence between any nonempty conjunctions
of a, b, ¢ holds

» Only possible computations are a — b, a — c,
aswellas b —° b, and ¢ —° ¢

Rules are directional, logical equivalence is not.
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Soundness and completeness (VII)

Stronger completeness result for programs with consistent logical
reading and data-sufficient goals

Definition (Data-sufficiency)

Goal is data-sufficient if it has a computation ending in a final state
without CHR constraints.

Theorem (Stronger completeness of failed computations)

P with consistent logical reading, G data-sufficient.
IfP,CT = —3G then G has a failed computation.

Even stronger results for confluent programs
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Linear logic declarative semantics

» Classical logic declarative semantics not always sufficient if CHR
used as general purpose language
» Simplification rules remove and add CHR constraints
(nonmonotonic), can model dynamic updates
» But first-order logic cannot directly express change

» Alternative declarative semantics

» Based on linear logic
» Models resource consumption
» Stronger theorems for soundness and completeness
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Syntax (1)

Definition (Syntax of intuitionistic linear logic)

L:=p{#t)|L—-L|LQL|L&L|LBL|'L|3Ix.L|VYxL|T|1]0

» Atoms represent resources, may be consumed during reasoning
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Syntax (Il)

» Linear implication — (“lollipop”) different from classical logic
» A—o B (“consuming A yielding B”) means A can be replaced by B
» A and A— B yields B (implication also consumed)

» Conjunction ® (“times”) similar to classical logic

» A ® B available iff A and B available
» A ® A not equivalent to A
» Neutral element 1, corresponds to true
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Syntax (ll1)

» Modality ! (“bang”) marks stable facts and resources that are not
consumed
» Conjunction & (“with”) represents internal choice (don’t-care)
» A&B (“either A or B) implies A or BbutnotA ® B
> Neutral element T (“top”)
» Disjunction @ expresses external choice (don’'t-know, similar to
classical disjunction)

» A @ B neither implies A nor B alone
» Neutral element 0, expresses failure
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Linear logic declarative semantics (1)

First-order logic (FOL) vs. linear logic semantics
» CHR constraints as linear resources
» Built-ins still in FOL as embedded intuitionistic formulas

» CHR rules as linear implication instead of logical equivalence
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Linear logic declarative semantics (I1)

Definition (Semantics P* of CHRY program part 1)

Built-in Constraints:  true* =1

false* =0

c(®* i= le(?)
CHR Constraints:  e(7)" = e(7)
Goals: GAH)" = G-@H"

(
(GVH) := GteH*
(

Configuration: SV = St T

» Constraints mapped to ® conjunctions of their atomic
constraints

» Atomic built-ins banged (treated as unlimited resources)
» CT translated according to the Girard Translation
» Disjunctions mapped to @ disjunctions
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Linear logic declarative semantics (1)

Definition (Semantics P- of CHRY program part 2)

Simpagation Rule: (E\F < CG)" = |(V (C'— (E" ® F*—E" @ 3yG")))
CHR Program: {Ry..Ru}" = Rf®..®R,

» Rules mapped to linear implications

» Consuming part of head produces body
» Directional, not commutative (cannot be reversed)

» Formula for rule banged (to be used more than once)

» Program translated into ® conjunction of translated rules
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Example (1)

Example (Coin throw)

» Coin throw simulator program

throw (Coin) & Coin = head
throw (Coin) < Coin = tail

» Classical declarative FOL semantics

(throw(Coin) < (Coin=head)) N (throw(Coin) < (Coin=tail))

» Leads to (Coin=head) < (Coin=tail) and therefore head=tail
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Example (II)

Example (Coin throw continued)

throw (Coin) < Coin = head
throw (Coin) & Coin = tail

Linear logic reading

/(throw(Coin) —o | (Coin=head) )@V (throw(Coin) —o |( Coin=tail) )
This is logically equivalent to:

Y (throw(Coin) —o |(Coin=head)&(Coin=tail))

Reads as “Of course, consuming throw(Coin) produces: Choose from
Coin = head and Coin = tail” (committed choice)
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Another example (1)

Example (Destructive assignment)

assign (Var,New) A cell (Var,0ld) < cell (Var,New)

FOL reading:

V(assign(Var, New) Acell(Var, Old) < cell(Var, New))
which is logically equivalent to
V(assign(Var, New)Acell(Var, Old) < cell(Var, Old) \cell(Var, New))

Means that var holds old and new value simultaneously
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Another example (1)

Example (Destructive assignment continued)

assign (Var,New) A cell (Var,01ld) & cell (Var,New)
Linear logic reading
V(assign(Var, New) ® cell(Var, Old) —o cell(Var, New))

Reads as “Of course, consuming assign (Var, New) and
cell (Var,01d) produces cell (Var, New).”
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Yet another example

Example (Prime sieve)

prime (I) A prime(J) <& J mod I = 0 | prime(I)

FOL: V((M mod N = 0) — (prime(M) A prime(N) < prime(N)))

“A number is prime when it is multiple of another prime”.

LL: W({(M mod N = 0) — (prime(M) ® prime(N)—o prime(N)))

“Of course, consuming prime (M) and prime (N) where (M mod N = 0)

produces prime (N)
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And even more examples

Example (Birds and penguins)
bird < albatross V penguin.
penguin A flies & false.

FOL: (bird < albatross \V penguin) A (penguin A flies < false)
This is correct, but more than can be computed, e.g. albatros — bird.
LL : !(bird—albatross ® penguin) ® ! (penguin ® flies—0)
implies only computable implications

bird ® flies— albatross ® flies

“pirdand flies can be mappedto albatross and flies”
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Soundness and completeness (I)

» Approach for soundness analogous to classical framework
» In the following:
» P aCHRY program
» P"its logical reading and !CT* constraint theory for built-ins
» S initial configuration, S, S, configurations
» I denotes deducability

Any configuration in derivation is linearly implied by logical reading of
initial configuration

Lemma (Linear implication of states)

If S, appears in derivation of Sy then

PLICT" + V(SG—S%)
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Soundness and completeness (Il)

Theorem (Soundness)

If Sy has computation with final configuration St then

PHICT" Y (S5 — %)

N

Theorem (Completeness)
If

PYICT" -V (S —SE)

then there is S,, in a finite prefix of derivation of S, with

ICT" - St — St
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