

ulm university universität **UUU**

Constraint Handling Rules -Syntax and Semantics of CHR

(ロ) (部) (注) (注) (注)

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Table of Contents

Syntax and Semantics of CHR

Introduction Preliminaries Abstract syntax Operational semantics Declarative semantics Constraint Handling Rules (CHR)

CHR logo

- CHR is both: logical and practical
 - related to subset of first-order logic and linear logic
 - general-purpose programming like Prolog and Haskell

イロト 不得 トイヨト イヨト 二三

Rules are descriptive and executable

Constraint Handling Rules (CHR)

- no distinction between data and operations
 - constraints cover both
- CHR is a language extension
 - ▶ Implementations available for Prolog, Haskell, C, Java, ...
 - in host language CHR constraints can be posted/inspected
 - ▶ in CHR rules host language statements can be used
- CHR is synthesis of
 - propagation rules
 - multiset transformation
 - logical variables
 - built-in constraints

with a formal foundation in logic and methods for powerful program analysis

CHR programming language

- for theorem proving and computational logic, integrating
 - forward and backward chaining
 - (integrity) constraints
 - deduction and abduction
 - tabulation
- as flexible production rule system with constraints
- as general-purpose concurrent constraint language

Available Distributions

More than a dozen free libraries to

- Prolog: SICStus, Yap, Eclipse, XSB, hProlog, HAL, SWI,...
- Java, also C
- Haskell, also parallel

Most advanced implementations from K.U. Leuven

Highlight Properties of CHR

Complexity

Every algorithm can be implemented in CHR with best-known time and space complexity.

Algorithmic properties

Any CHR program will automatically implement a concurrent anytime (approximation) and online (incremental) algorithm.

Decidability

For terminating CHR programs confluence of rule applications and operational equivalence are decidable.

Overview

- Syntax: describes how constituents of a formal language are combined to form valid expressions
- Semantics:
 - Operational: Description of what it means to execute a statement (as transition system)
 - Declarative: Description of the meaning without referring to execution (in logic)
 - Goal: Corresponding operational and declarative semantics
- Soundness: Result of computation according to operational semantics is correct regarding declarative semantics
- Completeness: Everything proven by declarative semantics can be computed

Preliminaries

Syntactic expressions (I)

Signature:

- Set of variables V
- Set of function symbols Σ
- ► Set of predicate symbols Π
- Function and predicate symbols have arity (number of arguments they take)
- ▶ **Functor** *f*/*n*: symbol *f* with arity *n*
- Constants: function symbols with arity zero
- Propositions: predicate symbols with arity zero

Syntactic expressions (II)

- ▶ **Term**: variable or function term $f(t_1, ..., t_n)$ ($f/n \in \Sigma$, t_i terms)
- ▶ Atomic formula (atom): $p(t_1, ..., t_n)$ ($p/n \in \Pi$, t_i terms)
- (Logical) expressions: Terms and atoms; sets, multisets, and sequences (lists) of logical expressions

Substitution, instance and matching

Definition (Substitution)

Substitution $\theta : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V}')$: finite function from variables to terms

 $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$ where each $X_i \neq t_i$

Identity substitution $\epsilon = \emptyset$

Extension to terms, $\theta : \mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{T}(\Sigma, \mathcal{V}')$

defined by implicit homomorphic extension,

 $f(t_1,\ldots,t_n)\theta:=f(t_1\theta,\ldots,t_n\theta)$

Substitution θ obtained by replacing each X_i in E with t_i at once. Subsitutions written as postfix operators, applied from left to right.

Example - Substitution

Example

•
$$\theta = \{X/2, Y/5\}$$
: $(X * (Y + 1))\theta = 2 * (5 + 1)$

•
$$\theta = \{X/Y, Z/5\}$$
: $(X * (Z + 1))\theta = Y * (5 + 1)$

$$\bullet \ \theta = \{X/Y, Y/Z\}: \ p(X)\theta = p(Y) \neq p(X)\theta\theta = p(Z)$$

•
$$\theta = \{X/Y\}, \tau = \{Y/2\}$$
:

•
$$(X * (Y + 1))\theta\tau = (Y * (Y + 1))\tau = (2 * (2 + 1))$$

•
$$(X * (Y + 1))\tau\theta = (X * (2 + 1))\theta = (Y * (2 + 1))$$

Instance, Renaming, Variants

Definition (Instance)

 $E\theta$ is **instance** of E.

 $E\theta$ matches E with matching substitution θ .

 $(\theta = \{X_1/t_1, \ldots, X_n/t_n\}, E \text{ expression})$

Definition (Variant, Variable Renaming)

If *E* and *F* are instances of each other then *E* and *F* are **variants** of each other.

Substitution θ is a **variable renaming** in $E = F\theta$.

Variable renaming θ is bijective, maps variables to variables.

- Renamed apart: Variants with no variables in common
- Fresh variant: Variant containing only new variables

Groundness

- Variables either free or bound (instantiated) to term
- Ground, fixed (determined) variable: bound or equivalent to ground term (variable is indistinguishable from the term it is bound to)
- Ground expression: Expression not containing (nonground) variables

Unification and syntactic equality

Unification: making expressions *syntactically equivalent* by substituting variables with terms.

Definition (Unifier)

Substitution θ is **unifier** of *E* and *F* if $E\theta = F\theta$.

E, *F* **unifiable**: unifier exists.

 $\{p_1, \ldots, p_n\} = \{q_1, \ldots, q_m\}$ shorthand for $p_1 = q_1 \land \ldots \land p_n = q_n$ if n = m and for false otherwise

イロト (過) (ヨ) (ヨ) (ヨ) (つ)

Most General Unifier

Definition (Most General Unifier (MGU))

 θ is **MGU** for *E*, *F*: every unifier τ for *E*, *F* is instance of θ , i.e., $\tau = \theta \rho$ for some ρ (*E*, *F* expressions, θ , τ , ρ , θ_i substitutions)

Example – Most General Unifier

Example

$$f(X,a) \quad = \quad f(g(U),Y) \quad = \quad Z$$

MGU:

$$\theta = \{X/g(U), Y/a, Z/f(g(U), a)\}$$

Proof: $f(X, a)\theta = f(g(U), Y)\theta = Z\theta = f(g(U), a)$ one element.

Unifier, but not MGU:

 $\theta' = \{X/g(h(b)), U/h(b), Y/a, Z/f(g(h(b)), a)\}$

Proof: $\theta' = \theta\{U/h(b)\}.$

Computing Most General Unifier

- Start with empty substitution e
- scan terms simultaneously from left to right according to their structure
- check the syntactic equivalence of the terms encountered repeat
 - different function symbols: halt with failure
 - identical function symbols: continue
 - one is unbound variable and other term:
 - variable occurs in other term: halt with failure
 - apply the new substitution to the logical expressions

add corresponding substitution

variable is bound: replace it by applying substitution

Example – Most General Unifier (2)

Example				
Computing the MGU:				
to unify	current substitution, remarks			
p(X,f(a)) = p(a,f(X))	ϵ , start			
X = a	$\{X/a\}$, substitution added			
f(a) = f(X)	continue			
a = X	$\{X/a\}$, variable is not unbound			
a = a	continue			
MGU is $\{X/a\}$				
What about $p(X, f(b)) = p(a, f(X))$?				

ヘロン 人間 とくほど 人間と

-2

Example – Most General Unifier (3)

Example				
S	t	θ		
f	g	failure		
a	а	ϵ		
X	а	$\{X/a\}$		
X	Y	$\{X/Y\}$, but also $\{Y/X\}$		
f(a, X)	f(Y,b)	$\{Y/a, X/b\}$		
f(g(a,X),Y)	f(c, X)	failure		
f(g(a,X),h(c))	f(g(a,b),Y)	$\{X/b, Y/h(c)\}$		
f(g(a,X),h(Y))	f(g(a,b),Y)	failure		

Example – Most General Unifier (4)

Example

Examples involving cyclicity:

- X = X is unifiable but *not*:
 - $\blacktriangleright X = f(X)$
 - $\blacktriangleright X = p(A, f(X, a))$
 - $\blacktriangleright X = Y \land X = f(Y)$

Clark's Equality Theory (CET)

 $\begin{array}{ll} \textit{Reflexivity} & (true \to X = X) \\ \textit{Symmetry} & (X = Y \to Y = X) \\ \textit{Transitivity} & (X = Y \land Y = Z \to X = Z) \\ \textit{Compatibility} & (X_1 = Y_1 \land \ldots \land X_n = Y_n \to f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n)) \\ \textit{Decomposition}(f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n) \to X_1 = Y_1 \land \ldots \land X_n = Y_n) \\ \textit{Contradiction} & (f(X_1, \ldots, X_n) = g(Y_1, \ldots, Y_m) \to false) \quad \text{if } f \neq g \text{ or } n \neq m \\ \textit{Acyclicity} & (X = t \to false) \quad \text{if } t \text{ is function term and } X \text{ appears in } t \end{array}$

(Σ signature with infinitely many functions, including at least one constant)

Theorems equality and matching

Theorem (Equality)

Expressions E and F are unifiable if and only if

 $CET \models \exists (E = F).$

Theorem (Matching)

For expressions *E*, *F* and substitution $\theta = \{X_1/t_1, \dots, X_n/t_n\}$

$$CET \models \forall (E = F\theta \leftrightarrow (X_1 = t_1 \land \dots \land X_n = t_n \to E = F)).$$

E matches *F* with substitution θ .

 $(\forall F \text{ denotes universal closure of formula } F)$

Constraint systems

- Constraints are distinguished predicates of first-order-logic
- Constraint systems take data types and operations and interpret expressions as constraints
- Data types: typically numbers are used to represent scalars, terms to represent structures

Definition constraint system

- Set of constraint symbols
- Set of values called domain
- Logical theory CT called constraint theory
 - consists of universally closed formulas (axioms)
 - must be nonempty and consistent
 - must include axiomatization for syntactic equality = (CET) and the propositions *true* (always holds) and *false* (never holds)
 - **Complete**: for all constraints *c* either $CT \models \forall c$ or $CT \models \forall \neg c$ holds

Terminology constraint system

- Atomic constraint: atomic formula whose predicate symbol is constraint symbol
- Constraint: conjunction of atomic constraints
- **Solution**: substitution θ s.t. $C\theta$ holds ($CT \models C\theta$)
- Satisfiable (consistent) constraint: solution exists, otherwise unsatisfiable (inconsistent)
- ► **Equivalent constraints** C_1 , C_2 : have the same solutions $(CT \models \forall (C_1 \leftrightarrow C_2))$

Reasoning problems

- Satisfaction problem: existence of a solution
 - Solved by algorithm called decision procedure
- Solution problem: Finding a solution
 - Algorithm for solution is called (constraint) solver
 - Solver typically also simplifies constraints.

Transition systems (*)

- Most abstract way to capture essence of computation
- Basically a binary relation over states
- Transition relation describes how one can proceed from one state to another

States and transitions

Definition (Transition system)

- ▶ Transition system *T* is pair $T = (S, \mapsto)$
 - S is set of states (configurations)
 - ▶ Transition \mapsto is binary relation on states, $\mapsto \subseteq S \times S$
- TS deterministic: at most one transition from every state, otherwise nondeterministic
- ► Reachability relation → *: reflexive transitive closure of →
- Initial, final states: Nonempty subsets of S.

Derivations and computations

Definition (Derivation)

Derivation: Sequence of states $s_0 \mapsto s_1 \mapsto \ldots$ where

 $s_0 \mapsto s_1 \wedge s_1 \mapsto s_2 \wedge \ldots$

- Finite (terminating) if sequence is finite.
- Length: number of transitions in derivation.

Computation: derivation that start with initial state s_0 and ends with final state or is infinite.

Remarks

- $\blacktriangleright\ \mathcal{S}$ may be finite, countably infinite, or infinite
- Initial and final states not necessarily disjoint
- If no initial states given, all states initial
- Final states must include states which have no successor
- Final states can include states which have successor
- Transition (reduction) also called derivation/computation step

Example

Example (Soccer)

$$\begin{split} \mathcal{S} &= \{(t,p,a,b) \mid 0 \leq t, a, b \leq 90, p \in \{A,B\}\} \\ \text{Initial states: } \{(0,A,0,0), (0,B,0,0)\} \\ \text{Final states: } (90,p,a,b) \in \mathcal{S} \\ (t,A,a,b) \mapsto (t+1,A,a+1,b) \quad (t,B,a,b) \mapsto (t+1,B,a,b+1) \\ (t,A,a,b) \mapsto (t+1,A,a,b) \quad (t,B,a,b) \mapsto (t+1,B,a,b) \\ (t,A,a,b) \mapsto (t+1,B,a,b) \quad (t,B,a,b) \mapsto (t+1,A,a,b) \end{split}$$

- Models progression of goal count
 - t: counter for minutes
 - Second component models possession
 - a and b: goal counters
 - Scoring, keeping ball, or loosing ball possible

Induction

Definition (Induction Principle)

Property P defined over states is called **invariant**:

If **base case** $P(s_0)$ holds and **induction hypothesis** " $P(s_n)$ implies $P(s_{n+1})$ " holds for all $s_n \mapsto s_{n+1}$ then *P* holds for all *s* in derivation

Example (Soccer Invariant)

Score in soccer game always less or equal 90:

- Let P((t, p, a, b)) be $t \le 90$
- P holds for initial states
- ▶ In all other states: $0 < t \le 90$, final states t = 90
- All transition increment t < 90 by one
 - \Rightarrow Induction hypothesis holds \Rightarrow claim holds

Abstract syntax

Two kinds of constraints: CHR (user-defined) constraints and built-in (predefined) constraints.

Built-in constraints:

- Arbitrary logical relations (solved and simplified effectively)
- Constraint theory for built-ins is denoted by CT
- ▶ Built-ins *true*, *false*, and syntactic equality =
- Allow embedding and utilization of given constraint solvers
- Allow for side-effect free host language statements
- Considered as black boxes (correct, terminating confluent)

User-defined constraints:

Defined by rules of a CHR program

CHR program

Definition (CHR program)

Built-in Constraint:	C, D	∷=	$c(t_1,\ldots,t_n) \mid C \wedge D, n \geq 0$
CHR Constraint:	E,F	∷=	$e(t_1,\ldots,t_n) \mid E \wedge F, n \geq 0$
Goal:	G,H	::=	$C \mid E \mid G \wedge H$
Simplification Rule:	SR	::=	$r @ E \Leftrightarrow C G$
Propagation Rule:	PR	::=	$r @ E \Rightarrow C G$
Simpagation Rule:	SPR	::=	$r @ E_1 \backslash E_2 \Leftrightarrow C G$
CHR Rule:	R	::=	SR PR SPR
CHR Program:	Р	::=	$\{R_1\ldots R_m\}, m\geq 0$

- r name, optional unique identifier
- ▶ *E*, *E*₁, *E*₂ head, nonempty conjunction of CHR constraints
- C optional guard, conjunction of built-ins
- G body, conjunction of built-ins and CHR constraints

Definition (II)

Definition (Additional concepts)

- Removed constraints: head constraints of simplification rule and head constraints E₂ of simpagation rule
- Kept constraints: other head constraints
- Defined constraint: occurs in head of rule
- Used constraint: occurs in body of rule
- Local variable of rule: does not occur in rule head
- Range-restricted rule: No local variables (Program range-restricted if all rules range-restricted)

Multiset and sequence notation

- Use of first-order logic conjunction emphasizes close ties of CHR to logic
- Should be understood purely syntactically
- Conjunction interpreted as logical operator, multiset or sequence forming operator
- ► Operator ⊎ used for multiset union
- When multisets treated as sequences, order chosen at random
- ▶ List notation ([H|T] or []) for sequences
- Operator + denotes sequence concatenation
Generalized simpagation rule notation

Simplification, propagation and simpagation rules as special case of Generalized simpagation rule

 $E_1 \setminus E_2 \Leftrightarrow C \,|\, G$

- E_1 kept, E_2 removed constraints, C guard, G body
- ▶ If E_1 empty rule equivalent to simplification rule $E_2 \Leftrightarrow C \mid G$
- ▶ If E_2 empty rule equivalent to propagation rule $E_1 \Rightarrow C \mid G$
- ▶ At least on of *E*¹ and *E*² must be nonempty

Operational semantics

- Describes how program is executed
- Defined by transitions system
 - States are conjunctions of CHR and built-in constraints
 - Transitions correspond to rule applications
- Starting from initial state rules are applied until exhaustion or contradiction
 - Simplification rule replaces CHR constraints matching its head by its body if guard holds
 - Propagation rule adds its body without removal
 - Simpagation rule removes part of the matched constraints

Very abstract semantics (*) States

Definition (States)

- State: conjunction of built-in and CHR constraints
- Initial state: arbitrary state
- Final state: no transitions possible anymore
- Conjunction as multiset forming operator:
 - Conjunction is associative and commutative, but not idempotent
 - Multiplicity of conjuncts matters, permutation and grouping allowed
- Built-ins allow for computations with possibly infinitely many ground instances
- States can be understood as set comprehension
 - ► State $E \land D$ (*E* CHR constraints, *D* built-ins) stands for potentially infinite set of ground instances *E*, $\{E|D\}$

Transitions

Definition (Transition Apply)

$$(H_1 \wedge H_2 \wedge G) \mapsto_r (H_1 \wedge C \wedge B \wedge G)$$

if there is an instance of a rule in the program with new local variables

$$\bar{x}$$

$$r @ H_1 \setminus H_2 \Leftrightarrow C \mid B$$
and $\mathcal{CT} \models \forall (G \to \exists \bar{x}C)$

- Rule r generalised simpagation rule in head normal form: Arguments of the head constraints are distinct variables.
- ▶ *H*₁, *H*₂, *C*, *B*, *G* denote possibly empty conjunctions of constraints

Ask and Tell

Built-in constraints

- tell: producer adds/places constraint to the constraint store
- ask: consumer checks entailment (implication) of constraints from the store (but does not remove any constraint)

Example:

Operation		Constraint Store
tell	$X \leq Y$	$X \leq Y$
tell	$\rm Y~\leq~Z$	$X \leq Y \land Y \leq Z$
ask	$X \leq Z$	$X \leq Y \land Y \leq Z$
ask	Y < X	$X \leq Y \land Y \leq Z$
tell	$z \leq x$	$X = Y \land Y = Z$
ask	${\tt Y}~\leq~{\tt X}$	$X = Y \land Y = Z$
ask	X > Z	$X = Y \land Y = Z$

Applicability condition

- ▶ Instance of rule (with new local variables \bar{x}) **applicable** if
 - Head constraints appear in the state
 - ▶ Applicability condition (AC) $CT \models \forall (G \rightarrow \exists \bar{x}C)$ holds
- ► Actually, AC only considers built-in constraints of G

Rule application (I)

- When rule applied
 - ▶ CHR head constraints *H*¹ kept, *H*² removed from state
 - Guard C and body B is added (C may contain variables not contained in body or head)
- When more than one rule applicable, one is chosen nondeterministically
 - Choice cannot be undone (committed-choice)

Rule application (II)

- CHR constraints can be added and removed by rule application
- CHR constraints behave nonmonotonically in general
- Built-in constraints can only be added but not removed
- Built-ins monotonically accumulate information

Example GCD

gcd1 $@ \setminus gcd(I) \Leftrightarrow I=0 \mid true.$

 $gcd2 @ gcd(I) \setminus gcd(J) \Leftrightarrow J \ge I \land I \ge 0 | gcd(J-I).$

(*true*, =, \geq , >: built-in constraints)

Example computation		
	\mapsto_{gcd1} \mapsto_{gcd1} \mapsto_{gcd1}	$\frac{\gcd(6) \land \gcd(9)}{\gcd(6) \land \gcd(3)}$ $\frac{\gcd(3) \land \gcd(3)}{\gcd(0) \land \gcd(3)}$
	\mapsto_{gcd2}	gcd(3)

Example - Partial Order Relation

Example (Program)

reflexivity @ X leq Y \Leftrightarrow X=Y | true (r1) antisymmetry @ X leq Y \land Y leq X \Leftrightarrow X=Y (r2) transitivity @ X leq Y \land Y leq Z \Rightarrow X leq Z (r3) idempotency @ X leq Y \land X leq Y \Leftrightarrow X leq Y (r4)

(*true* and =: built-in constraints)

Example – Partial Order Relation (2)

Example computation

	$\underline{A \ leq \ B} \land \underline{C \ leq \ A} \land B \ leq \ C$
\mapsto apply (r3)	A leq B \land C leq A \land <u>B leq C</u> \land <u>C leq B</u>
\mapsto apply (r2)	<u>A leq B</u> \land <u>C leq A</u> \land B=C
→apply (r2)	A=B ∧ B=C

Example (Program)

X leq Y \Leftrightarrow X=Y | true (r1) X leq Y \land Y leq X \Leftrightarrow X=Y (r2) X leq Y \land Y leq Z \Rightarrow X leq Z (r3) X leq Y \land X leq Y \Leftrightarrow X leq Y (r4) Example – Min

Example (Program)

 $\begin{array}{l} \min\left(X, Y, Z\right) \Leftrightarrow X \leq Y \mid Z = X \quad (r1) \\ \min\left(X, Y, Z\right) \Leftrightarrow Y \leq X \mid Z = Y \quad (r2) \\ \min\left(X, Y, Z\right) \Leftrightarrow Z < X \mid Y = Z \quad (r3) \\ \min\left(X, Y, Z\right) \Leftrightarrow Z < Y \mid X = Z \quad (r4) \\ \min\left(X, Y, Z\right) \Rightarrow Z \leq X \quad \land Z \leq Y \quad (r5) \end{array}$

 $(=, \leq \text{and} < \text{built-in constraint symbols})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ つぬべ

Example – Min (2)

Example computation

 $\begin{array}{ll} \min(1,2,M) \\ \mapsto_{\mathbf{apply}} (r1) & M=1 \\ \min(A,A,M) \\ \mapsto_{\mathbf{apply}} (r1) & M=A \land A \leq A \\ \min(A,B,M) \land A \leq B \\ \mapsto_{\mathbf{apply}} (r1) & M=A \land A \leq B \end{array}$

Example (Program)

 $\min(X, Y, Z) \Leftrightarrow X \leq Y \mid Z = X (r1)$

. . .

Example – Min (3)

Example computation

 $\begin{array}{l} \min(\mathbb{A}, 2, 2) \\ \mapsto_{\mathbf{apply} \ (r5)} & \min(\mathbb{A}, 2, 2) \land 2 \leq \mathbb{A} \land 2 \leq 2 \\ \mapsto_{\mathbf{apply} \ (r2)} & 2 = 2 \land 2 \leq \mathbb{A} \land 2 \leq 2 \\ \equiv & 2 \leq \mathbb{A} \end{array}$

Example (Program)

$$\min(X, Y, Z) \Leftrightarrow X \leq Y \mid Z = X (r1)$$
$$\min(X, Y, Z) \Leftrightarrow Y \leq X \mid Z = Y (r2)$$
$$\dots$$

 $\min(X, Y, Z) \Rightarrow Z \leq X \land Z \leq Y (r5)$

Example – Min (4)

Example computation

 $\begin{array}{ll} \min(\mathbb{A},\mathbb{B},\mathbb{M}) \land \mathbb{A} = \mathbb{M} \\ \mapsto_{\mathbf{apply} \ (r5)} & \min(\mathbb{A},\mathbb{B},\mathbb{M}) \land \mathbb{M} \leq \mathbb{A} \land \mathbb{M} \leq \mathbb{B} \land \mathbb{A} = \mathbb{M} \\ \mapsto_{\mathbf{apply} \ (r1)} & \mathbb{A} = \mathbb{M} \land \mathbb{A} \leq \mathbb{B} \land \mathbb{M} \leq \mathbb{A} \land \mathbb{M} \leq \mathbb{B} \land \mathbb{A} = \mathbb{M} \\ \equiv & \mathbb{M} \leq \mathbb{B} \land \mathbb{A} = \mathbb{M} \end{array}$

Example (Program)

 $\min(X, Y, Z) \Leftrightarrow X \leq Y \mid Z = X (r1)$

. . .

 $\min(X, Y, Z) \Rightarrow Z \leq X \land Z \leq Y (r5)$

Example – Min (5)

Example computation

▶ min(A,2,1) $\mapsto_{apply(r4)\mapsto^*} A=1$

▶ min (A, 2, 3)
$$\mapsto_{apply (r5)\mapsto^*} false$$

Example (Program)

$$\min(X, Y, Z) \Leftrightarrow Z < Y \mid X = Z (r4)$$
$$\min(X, Y, Z) \Rightarrow Z \le X \land Z \le Y (r5)$$

・ロト ・回下 ・ 回下 ・ 回下 ・ 今々の

CHR with disjunction (*)

Nondeterminisms

Don't-care nondeterminism

- Choice should not matter for result, it is enough to know one result
- In CHR, for choice of constraints from a state and for choice of rule to apply

Don't-know nondeterminism

- Trying out different choices
- ► In CHR, usually provided by host-language of CHR library
- E.g. disjunction of Prolog can be used in rule body
- ▶ Disjunction formalized in CHR[∨]

Syntax and states

Extension of syntax of CHR. Disjunction in goals and for states.

Definition (CHR [∨]	extenc	led syntax)	
Goal:	G, H		$C \mid E \mid G \wedge H \mid G \vee H$
Configuration:	S, T	$::= S S \lor T$	

- **Configuration** $s_1 \lor s_2 \lor \ldots \lor s_n$: Disjunction of CHR states
- Each state represents independent branch in search tree
- Initial configuration: initial state
- Final configuration: consists of final states only
- Failed configuration: all states have inconsistent built-ins

Transitions (I)

Two additional transitions for configurations

- Can always be applied when state contains disjunction
- Branching the derivation: splitting into disjunction of two states
- Each state will be processed independently
- Constructs tree of states rather than sequence (search tree)

Transitions (II)

Definition (Apply transition in CHR^{\lor}) Apply $(H_1 \land H_2 \land G) \lor S \mapsto_r (H_1 \land C \land B \land G) \lor S$ if there is an instance of a rule in the program with fresh variables \bar{x} , $r @ H_1 \backslash H_2 \Leftrightarrow C | B$ and $CT \models \forall (G \to \exists \bar{x}C)$

イロト 不得 トイヨト イヨト ニヨー のくで

Applies to disjunct, i.e. state, inside configuration

Example - Maximum

Example (Maximum in CHR^V)

$\max(X, Y, Z) \Leftrightarrow (X \leq Y \land Y = Z) \lor (Y \leq X \land X = Z)$

- max constraint in query (initial goal) will reduce to disjunct
- ▶ max(1,2,M): first disjunct leads to M=2, second fails
- ▶ max(1, 2, 3): both disjuncts fail \Rightarrow failed configuration
- max(1,1,M): both disjuncts reduce to M=1

Abstract semantics ω_t

- Abstract operational semantics of CHR
 - Refinement of very abstract semantics
 - Distinguishes between yet unprocessed constraints, CHR and built-in constraints
 - Avoids trivial nontermination
 - Uses matching for rule heads
- Also called standard, theoretical, or high-level operational semantics
- We adopt ω_t version of abstract operational semantics

Trivial nontermination

Very abstract semantics does not care much about termination.

- Failed states do not terminate
 - In failed state any rule is applicable
 - Failed state can only lead to failed state (monotonic accumulation of built-ins)
 - Solution: declare failed states as final states
- Propagation rules do not terminate
 - Can be applied again and again
 - Solution 1: Fair rule selection strategy (not ignoring applicable rule infinitely often)
 - Solution 2: Do not apply propagation rule twice to same constraints (need to keep a propagation history)

Rules and constraints

- Head and body of rule become multisets of atomic constraints
- Guard remains a conjunction of built-in constraints
- CHR constraints with unique identifier to distinguish multiple occurrences
 - Numbered constraint c_i consisting of constraint c and identifier i
 - Auxiliary notation (c_i) = c and function id(c_i) = i (with pointwise extension to sequences and sets of constraints)

States (I)

Definition (ω_t state)

A ω_t state is a tuple $\langle G, S, B, T \rangle_n^{\mathcal{V}}$

- Goal G: multiset of all constraints to be processed
- CHR store S: (multi)set of numbered CHR constraints that can be matched with rules
- Built-in store B: conjunction of built-in constraint that has been passed to the built-in solver
- Propagation history T: set of tuples (r, I) (r rule name, I sequence of identifiers that matched head constraints of r)
- Counter n: next free integer to be used as identifier
- V variables of initial goal (query) (the global variables of a state)

States (II)

Definition (Kinds of states)

- ► Initial state: ⟨G, Ø, true, Ø⟩^V₁ (G initial goal (query, problem, call), V its variables)
- ▶ **Failed state**: $(G, S, B, T)_n^{\mathcal{V}}$ with inconsistent built-ins $(\mathcal{CT} \models \neg \exists B)$
- ► Successful state: Consistent built-ins and empty goal store (G = Ø)
- Final state: Successful state with no transition possible or failed state
- ► (Conditional or qualified) **Answer** (solution, result): $\exists \bar{y}(S) \land B$ from final state $\langle G, S, B, T \rangle_n^{\mathcal{V}}$ (\bar{y} variables *not in* \mathcal{V})

Transitions (I)

Definition (Solve transition) Solve $\langle \{c\} \uplus G, S, B, T \rangle_n \mapsto_{solve} \langle G, S, B', T \rangle_n$ where *c* is a built-in constraint and $CT \models \forall ((c \land B) \leftrightarrow B')$

イロト 不得 トイヨト イヨト ニヨー のくで

- ▶ Built-in solver adds built-in from G to B
- $C \wedge B$ is simplified to B' (how far is left unspecified)

Transitions (II)

Definition (Introduce transition)

Introduce

$$\langle \{c\} \uplus G, S, B, T \rangle_n \mapsto_{introduce} \langle G, \{c_n\} \cup S, B, T \rangle_{(n+1)}$$

where *c* is a CHR constraint

- ▶ Adds a CHR constraint *c* to *S* and numbers it with *n*
- Counter n is incremented

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transitions (III)

Definition (Apply transition)

Apply

 $\langle G, H_1 \cup H_2 \cup S, B, T \rangle_n \mapsto_{apply r}$

 $\langle C \uplus G, H_1 \cup S, (H_1) = H'_1 \land (H_2) = H'_2 \land N \land B, T \cup \{(r, id(H_1) + id(H_2))\} \rangle_n$

if there is a fresh variant of a rule in the program with variables \bar{x} ,

 $r @ H_1' \backslash H_2' \Leftrightarrow N \,|\, C$

where $CT \models \exists (B) \land \forall (B \rightarrow \exists \bar{x}((H_1) = H'_1 \land (H_2) = H'_2 \land N)) \text{ and } (r, id(H_1) + id(H_2)) \notin T.$

Operator + denotes sequence concatenation.

- ▶ Choses rule *r* from *P*
 - ▶ for which CHR constraints matching its head exist in S
 - ▶ whose guard N is logically implied by B under this matching
- Applies that rule (rule fires, is executed)
 - By replacing matched removed constraints with body

Applicability condition

Definition (Applicability condition)

$$\mathcal{CT} \models \exists (B) \land \forall (B \rightarrow \exists \bar{x}((H_1) = H'_1 \land (H_2) = H'_2 \land N))$$

for fresh variant $r @ H'_1 \setminus H'_2 \Leftrightarrow N \mid C$ of a rule with variables \bar{x}

- Ensures that B is satisfiable
- ▶ Checks whether H_1 and H_2 match H'_1 and H'_2 ($(H_1)=H'_1 \land (H_2)=H'_2$)
 - ▶ ${p_1, ..., p_n} = {q_1, ..., q_m}$ shorthand for $p_1 = q_1 \land ... \land p_n = q_n$ if n = m and for *false* otherwise
- Checks if N together with matching is entailed by B under CT
- ► Checks that propagation history does not contain identifier of CHR constraints matching head of chosen rule ((r, id(H₁)+id(H₂)) ∉ T)

Example - Matching

Example (Head matching)

 $\exists (H=H'), H \text{ from state}, H' \text{ from rule head}$

- $\blacktriangleright \exists X(p(a) = p(X))$
- $\blacktriangleright \forall Y \exists X (p(Y) = p(X))$

but not

 $\blacktriangleright \forall Y \exists X(p(Y) = p(a))$

Example (Applicability condition)

$$\blacktriangleright CT \models \exists Y = a \land \forall Y(Y = a \to (p(Y) = p(a)))$$

$$\blacktriangleright CT \models \exists Y = a \land \forall Y(Y = a \to \exists X(p(Y) = p(X)) \land X = a)$$

 $\blacktriangleright CT \not\models \exists Y = a \land \forall Y, Z(Y = a \to (p(Z) = p(a)))$

Rule application

- When applicable rule is applied
 - ▶ Head *H*₁ is kept, *H*₂ is removed from CHR store
 - ► $(H_1)=H'_1 \land (H_2)=H'_2$ and *N* are added to the built-in store (*N* may share variables with *C*)
 - Body C is added to the goal store
 - ▶ Propagation history is updated by adding $(r, id(H_1)+id(H_2))$
- Propagation history entries can be garbage-collected if involved CHR constraints have been removed

Computations

Definition (Computation)

- Finite computation is successful if final state is successful
- Finite computation is failed if final state is failed
- Computation is nonterminating if it has no final state

Example (GCD for abstract operational semantics)

 $\begin{array}{l} \gcd(0) \ \Leftrightarrow \ \textit{true} \ \mid \textit{true}. \\ \gcd(2) \ \& \ (\gcd(1)) \ & \ (\gcd(J)) \ \Leftrightarrow \ J > = I \ \mid \{K \ is \ J - I, \ \gcd(K)\}. \end{array}$

Example computation

	$\{\{\underline{gcd}(6), gcd(9)\}, \emptyset\}_1$
^{introduce}	$\langle \{ \gcd(9) \}, \{ \gcd(6)_1 \} \rangle_2$
^{introduce}	$\langle \emptyset, \{ \gcd(6)_1, \gcd(9)_2 \} \rangle_3$
<i>⇔apply</i> gcd2	$\langle \{ \underline{K_1} \text{ is } 9-6, \gcd(\overline{K_1}) \}, \{ \gcd(6)_1 \} \rangle_3$
\mapsto solve	$\langle \{ \underline{gcd}(3) \}, \{ gcd(6)_1 \} \rangle_3$
^{introduce}	$\langle \emptyset, \{ \gcd(6)_1, \gcd(3)_3 \} \rangle_4$
<i>⇔apply</i> gcd2	$\langle \{ \underline{K_2} \text{ is } 6-3, \gcd(K_2) \}, \{ \gcd(3)_3 \} \rangle_4$
\mapsto solve	$\langle \{ gcd(3) \}, \{ gcd(3)_3 \} \rangle_4$
^{introduce}	$\langle \emptyset, \{ \gcd(3)_3, \gcd(3)_4 \} \rangle_5$
<i>⇔apply</i> gcd2	$\langle \{ \underline{K_3} \text{ is } 3-3, \gcd(K_3) \}, \{ \gcd(3)_3 \} \rangle_5$
\mapsto_{solve}	$\langle \{ gcd(0) \}, \{ gcd(3)_3 \} \rangle_5$
⊢→introduce	$\langle \emptyset, \{ \gcd(3)_3, \gcd(0)_5 \} \rangle_6$
<i>⊢apply</i> gcd1	$\langle \emptyset, \{ \gcd(3)_3 \} \rangle_6$

Refined operational semantics ω_r Motivation

- Nondeterminism in abstract operational semantics
 - Order of processing constraints in goal
 - Order of rule applications
- Current sequential CHR implementations
 - execute constraints in goals from left to right
 - execute constraints like a procedure call
 - apply rules in textual order of program

Refined operational semantics ω_r

- Refined semantics
 - formalizes behavior of current implementations
 - is a refinement of the abstract operational semantics
 - allows for more programming idioms and for maximizing performance
 - can cause loss of logical properties and declarative concurrency
Rules and constraints

- CHR program is sequence of rules
- Head and body are sequences of atomic constraints
- Occurrence: number for every head constraint (top-down, left-to-right, starting with 1)
 - But removed head constraints in simpagation rule numbered before kept ones
- Active constraint c_i^j: numbered constraint only to match with occurrence j of (constraint symbol of) c in some rule head
- ► Auxiliary notation (.) and function *id* extended to remove occurrence: (c_i^j) = c, id(c_i^j) = i

Example GCD

Example (GCD for refined operational semantics)

 $\begin{array}{c} \gcd(0):1] \Leftrightarrow \textit{true} \mid \textit{true}. \\ \gcd(2):2] \Leftrightarrow J >= I \mid [K \text{ is } J-I, \gcd(K)]. \end{array}$

States

Definition (ω_r state)

A ω_r state is a tuple $\langle A, S, B, T \rangle_n^{\mathcal{V}}$

- ▶ A, S, B, T, n like in abstract semantics
- But goal A redefined into stack
 - Sequence of built-in and CHR constraints, numbered CHR constraints, and active CHR constraints
 - ▶ Numbered constraint may appear simultaneously in A and S
- Initial, final, successful, and failed states as well as computations as for abstract semantics

Transitions (I)

- Constraints in goal executed from left to right
- Atomic CHR constraints basically executed like procedure calls
- Constraint under execution is called **active**, tries all rules in textual order of program
 - Active constraint is matched against head constraint of rule with same constraint symbol
 - If matching found, guard check succeeds, and propagation history permits it then rule fires

Transitions (II)

- Rule firing like procedure call
 - Constraints in body are executed left to right
 - When they finish, execution returns to active constraint
- If active constraint still present after all rules tried or executed, it will be removed from stack, kept in CHR store
- Constraints from store will be reconsidered (woken) when new built-ins are added that affect it

Transitions (III)

- Wake-up policy is implementation of wakeup(S, c, B)
 - Defines which constraints from S are woken if c is added to built-in store B
 - Ground constraints are never woken
 - Only wake CHR constraints which potentially cause rule firing (those whose variables are further constraint by newly added constraint)
 - No second waking if constraint added a second time

Solve+Wake

Definition (Solve+Wake transition)

Solve+Wake

 $\langle [c|A], S, B, T \rangle_n \mapsto_{solve+wake} \langle wakeup(S, c, B) + A, S, B', T \rangle_n$

where c is a built-in constraint and $CT \models \forall ((c \land B) \leftrightarrow B')$

- Moves built-in c into built-in store (Solve)
- Reconsiders CHR constraints according to wake-up policy by adding them on top of goal stack (Wake)
 - They will eventually become active again

Activate

Definition (Activate transition)						
Activate						
$\langle [c A], S, B, T \rangle_n \mapsto_{activate} \langle [c_n^{-1} A], \{c_n\} \cup S, B, T \rangle_{(n+1)}$						
where c is a CHR constraint						

 CHR constraint becomes active for the first time and is added to CHR constraint store

<ロ> <四> <四> <四> <四> <四</p>

- Counter n is incremented
- Corresponds to Introduce from abstract semantics

Reactivate

Definition (Reactivate transition)

Reactivate

 $\langle [c_i|A], S, B, T \rangle_n \mapsto_{reactivate} \langle [c_i^{-1}|A], S, B, T \rangle_n$

where c is a CHR constraint

- Numbered CHR constraint c: Woken and re-added by Solve+Wake and now becomes active again
- Reconsider all rules in whose heads a potential match for c occurs

Apply

Definition (Apply transition)

Apply

 $\langle [c(\bar{t})_{i}^{j}|A], H_{1} \cup H_{2} \cup S, B, T \rangle_{n} \mapsto_{apply r} \\ \langle C+H+A, H_{1} \cup S, (H_{1})=H_{1}' \land (H_{2})=H_{2}' \land B, T \cup \{(r, id(H_{1})+id(H_{2}))\} \rangle_{n} \\ \text{if there is a fresh variant of a rule in the program with variables } \bar{x},$

 $r @ H'_1 \setminus H'_2 \Leftrightarrow N \mid C$

where the j^{ih} occurrence of a constraint c is in the rule head $H'_1 \setminus H'_2$ and where $CT \models \exists (B) \land \forall (B \rightarrow \exists \bar{x}((H_1)=H'_1 \land (H_2)=H'_2 \land N))$ and $(r, id(H_1)+id(H_2)) \notin T$. Let $H=[c(\bar{t})_i^j]$ if the occurrence for c is in H'_1 and H=[] if the occurrence is in H'_2

- Active constraint matches against head constraint of rule with same occurrence number j
- Active constraint either kept or removed in *H* depending on matched occurrence in rule head

Default

Definition (Default transition) Default $\langle [c_i^{\ j}|A], S, B, T \rangle_n \mapsto_{default} \langle [c_i^{\ j+1}|A], S, B, T \rangle_n$ if no other transition is possible in the current state

- ▶ No matching of active constraint against rule with occurrence *j*
- Proceed to next, *j*+1-th occurrence in rules of program

Drop

Definition (Drop transition) $\begin{array}{c} \textbf{Drop} \\ \langle [c_i^{\ j}|A], S, B, T \rangle_n \mapsto_{drop} \langle A, S, B, T \rangle_n \\ \text{where there is no occurrence } j \text{ for } c \text{ in } P \end{array}$

Removes active constraint from stack if no more occurrences

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Numbered constraint c_i stays in CHR constraint store

Example (GCD for refined operational semantics)

gcd1 @ [] \ [gcd(0)^1] \Leftrightarrow true | true.

gcd2 @ [gcd(I)^3] \ [gcd(J)^2] \Leftrightarrow J>=I | [K is J-I, gcd(K)].

Example computation

	$\langle [\gcd(6), \gcd(9)], \emptyset angle_1$
\mapsto activate	$\langle [ext{gcd}(6)^1_1, ext{gcd}(9)]$, $\{ ext{gcd}(6)_1 \} angle_2$
⊢→default	$\langle [ext{gcd}(6)_1^2, ext{gcd}(9)]$, $\{ ext{gcd}(6)_1 \} angle_2$
⊢→default	$\langle [ext{gcd}(6)^3_1, ext{gcd}(9)]$, $\{ ext{gcd}(6)_1 \} angle_2$
⊢→default	$\langle [ext{gcd}(6)^4_1, ext{gcd}(9)]$, $\{ ext{gcd}(6)_1 \} angle_2$
\mapsto_{drop}	$\langle [\texttt{gcd}(9)]$, $\{ \texttt{gcd}(6)_1 \} angle_2$
\mapsto activate	$\langle [ext{gcd}(9)^1_2]$, $\{ ext{gcd}(6)_1, ext{gcd}(9)_2 \} angle_3$
⊢→default	$\langle [ext{gcd}(9)_2^2]$, $\{ ext{gcd}(6)_1, ext{gcd}(9)_2 \} angle_3$
$\mapsto_{apply gcd2}$	$\langle [K_1 ext{ is } 9{-}6, ext{gcd}(K_1)] ext{, } \{ ext{gcd}(6)_1\} angle_3$
$\mapsto_{solve+wake}$	$\langle [\texttt{gcd}(3)]$, $\{ \texttt{gcd}(6)_1 \} angle_3$
$\mapsto_{activate}$	$\langle [ext{gcd}(3)^1_3]$, $\{ ext{gcd}(6)_1, ext{gcd}(3)_3 \} angle_4$
⊢→default	$\langle [ext{gcd}(3)_3^2]$, $\{ ext{gcd}(6)_1, ext{gcd}(3)_3 \} angle_4$

Example GCD (II)

Example computation (continued)

⊢→default	$\langle [\gcd(3)_3^3], \{\gcd(6)_1, \gcd(3)_3\} \rangle_4$
<i>⊨apply</i> gcd2	$\langle [K_2 ext{ is } 6-3, ext{gcd}(K_2), ext{gcd}(3)_3^3]$, $\{ ext{gcd}(3)_3\} angle_4$
\mapsto solve+wake	$\langle [\gcd(3),\gcd(3)_3^3], \{\gcd(3)_3\} \rangle_4$
$\mapsto_{activate}$	$\langle [\gcd(3)_4^1, \gcd(3)_3^3], \{\gcd(3)_3, \gcd(3)_4\} \rangle_5$
⊢→default	$\langle [\gcd(3)_4^2, \gcd(3)_3^3], \{\gcd(3)_3, \gcd(3)_4\} \rangle_5$
<i>⊨apply</i> gcd2	$\langle [K_3 ext{ is } 3-3, ext{gcd}(K_3), ext{gcd}(3)_3^3]$, $\{ ext{gcd}(3)_3\} angle_5$
\mapsto solve+wake	$\langle [\gcd(0), \gcd(3)_3^3], \{\gcd(3)_3\} \rangle_5$
$\mapsto_{activate}$	$\langle [ext{gcd}(0)^1_0, ext{gcd}(3)^3_3]$, $\{ ext{gcd}(3)_3, ext{gcd}(0)_5 \} angle_6$
<i>⊢→apply</i> gcd1	$\langle [\gcd(3)_3^3], \{\gcd(3)_3\} \rangle_6$
⊢→default	$\langle [\gcd(3)_3^4], \{\gcd(3)_3\} \rangle_6$
\mapsto_{drop}	$\langle [], \{ gcd(3)_3 \} \rangle_6$

Relating abstract and refined semantics (I)

- ω_r is an instance of ω_t
- Abstraction that maps states and derivations of ω_r to ω_t

Definition (Abstraction function)

For states:

$$\alpha(\langle A, S, B, T \rangle_n^{\mathcal{V}}) = \langle G, S, B, T \rangle_n^{\mathcal{V}},$$

where G contains all atomic constraints of A expect active and numbered CHR constraints.

For derivations:

$$\alpha(s_1 \mapsto s_2 \mapsto \ldots) = \begin{cases} \alpha(s_1) \mapsto \alpha(\ldots) & \text{if } \alpha(s_1) = \alpha(s_2) \\ \alpha(s_1) \mapsto \alpha(s_2) \mapsto \alpha(\ldots) & \text{otherwise} \end{cases}$$

Relating abstract and refined semantics (II)

Theorem

For all ω_r derivations D, $\alpha(D)$ is a ω_t derivation. If D is a terminating computation, then $\alpha(D)$ is a terminating computation.

Termination, confluence under abstract semantics preserved in refined semantics (but not the other way round)

Nondeterminism

Refined semantics is still nondeterministic

- In Solve+Wake transition, order of constraints added by wake-up-policy function not defined
- Matching order in Apply transition: not known which partner constraint from store is chosen

Declarative semantics

- Declarative semantics associates program with logical theory
- This logical reading should coincide with intended meaning of program
- Declarative semantics facilitates nontrivial program analysis (e.g. correctness for program transformation and composition)
- Logical reading of CHR program consists of logical reading of its rules and built-ins

First-order logic declarative semantics

Logical reading of rules

- Rule logically relates head and body provided the guard is true
- Simplification rule means head is true iff body is true
- Propagation rule means body is true if head is true

Definition (Logical reading)

Simplification rule: $H \Leftrightarrow C \mid B$ $\forall (C \rightarrow (H \leftrightarrow \exists \bar{y} B))$ Propagation rule: $H \Rightarrow C \mid B$ $\forall (C \rightarrow (H \rightarrow \exists \bar{y} B))$ Simpagation rule: $H_1 \setminus H_2 \Leftrightarrow C \mid B$ $\forall (C \rightarrow ((H_1 \land H_2) \leftrightarrow (H_1 \land \exists \bar{y} B)))$

 $(\bar{y} \text{ contains all variables only appearing in } B)$

Example

Example (Partial order relation program)

duplicate @ X leq Y \ X leq Y <=> true. reflexivity @ X leq X <=> true. antisymmetry @ X leq Y , Y leq X <=> X=Y. transitivity @ X leq Y , Y leq Z ==> X leq Z.

Example (Logical reading of partial order program)

(duplicate)	\forall	Х,Ү	$({\tt X}{\leq}{\tt Y}$	\wedge	X≤Y	\Leftrightarrow	X≤Y)
(reflexivity)	\forall	Х	$(X{\leq}X$	\Leftrightarrow	true)		
(antisymmetry)	\forall	Х,Ү	$(X{\leq}Y$	\wedge	Y≤X	\Leftrightarrow	X=Y)
(transitivity)	\forall	Х,Ү,Ζ	$(X{\leq}Y$	\wedge	$Y \leq Z$	\Rightarrow	X≤Z)

Logical reading and equivalence of programs

Meaning of built-ins has to be considered, too

Definition (Logical reading)

Logical reading of program *P* is $\mathcal{P}, \mathcal{CT}$ (\mathcal{P} conjunction of logical reading of rules in *P*, \mathcal{CT} constraint theory defining built-ins)

Definition (Logical equivalence)

Programs P₁ and P₂ logically equivalent iff

$$\mathcal{CT} \models \mathcal{P}_1 \leftrightarrow \mathcal{P}_2$$

Logical correctness

Specification can be used to formally verify correctness of program

Definition (Logical correctness)

Logical specification T of program P is a consistent theory for the CHR constraints in P.

P is logically correct with respect to \mathcal{T} iff

 $\mathcal{T}, \mathcal{CT} \models \mathcal{P}$

イロト 不得 トイヨト イヨト 二三

 ${\mathcal P}$ does not need to cover all consequences of ${\mathcal T}$

Logical reading of states

Definition (Logical reading of states)

Logical reading of ω_t or ω_r state is the formula

 $\exists \bar{\mathbf{y}} (G \land (S) \land B)$

 $(\bar{y} \text{ local variables of the state, those not in } \mathcal{V})$

- Empty sequences, sets or multisets are interpreted as true
- Variables in V are not quantified
- Local variables in states come from variables of applied rules

Equivalence of states

- Declarative Semantics: Logical equivalence of states if their logical reading is equivalent
- Operational Semantics: Operational equivalence of states if the same rules can be applied to them

Operational equivalence is stricter than logical equivalence

- Take multiset character of CHR constraints into account
- Take propagation history into account

Operational equivalence of states

Definition (Operational state equivalence)

Given two states s_i (i=1,2), with

- B_i built-in constraints of state s_i
- ▶ In very abstract semantics, C_i are CHR constraints of state
- In ω_t , ω_r operational semantics, C_i is pair of
 - CHR constraints of state with proper renaming of identifiers
 - set of tuple entries in propagation history that only contain (renamed) identifiers from the CHR constraints of the state
- Local variables \bar{y}_i of state renamed apart

 $s_1 \equiv s_2 \text{ iff } \mathcal{CT} \models \forall (B_1 \rightarrow \exists \bar{y}_2(C_1 = C_2) \land B_2) \land \forall (B_2 \rightarrow \exists \bar{y}_1(C_1 = C_2) \land B_1)$

Note analogy to rule applicability conditition of operational semantics

Examples – operational equivalence of states

Example (Operational equivalence of states)

- ► The two states with logical reading $q(X) \land X = a$ and $\exists Y \ q(a) \land X = Y \land Y = a$ are equivalent
- ▶ The state *q*(*a*) is not equivalent to those states
- ▶ If X is not a global variable then $\exists X \ q(X) \land X = a$, $\exists X, Y \ q(a) \land X = Y \land Y = a$ and q(a) are equivalent
- The state $q(a) \land q(a)$ is not equivalent to these states

Soundness and completeness (I)

Operational and declarative semantics should coincide

- Soundness: Result of computation according to operational semantics is correct regarding to declarative semantics
- Completeness: Everything proven by declarative semantics can be computed
 - But: logic of declarative semantics too powerful
 - Additional conditions necessary to improve completeness
- ▶ Theorems show that for CHR, semantics are strongly related
- Because all states in a derivation are equivalent

Soundness and completeness (II)

Lemma (Equivalence of States in Derivation)

If C logical reading of state appearing in derivation of G then

 $\mathcal{P},\mathcal{CT}\models\forall\;(C\leftrightarrow G)$

For logical reading C_1 , C_2 of two states in computation of G

 $\mathcal{P}, \mathcal{CT} \models \forall \ (C_1 \leftrightarrow C_2)$

Soundness and completeness (III)

Theorem (Soundness)

If G has a computation with answer C then

$$\mathcal{P}, \mathcal{CT} \models \forall \ (C \leftrightarrow G)$$

Theorem (Completeness)

G a goal with at least one finite computation, *C* a goal. If $\mathcal{P}, C\mathcal{T} \models \forall (C \leftrightarrow G)$ then *G* has finite computation with answer *C'* such that

$$\mathcal{P}, \mathcal{CT} \models \forall \ (C \leftrightarrow C')$$

```
Soundness and completeness (IV)
```

Completeness theorem does not hold if G has no finite computations

ExampleLet P be $p \Leftrightarrow p$ and G be pIt holds that $\mathcal{P}, C\mathcal{T} \models p \leftrightarrow p$ since \mathcal{P} is $\{p \leftrightarrow p\}$ but G has only infinite computations

Failed computations

Try to specialize theorems for failed computations

Theorem (Soundness of failed computations)

If G has a failed computation then

 $\mathcal{P}, \mathcal{CT} \models \neg \exists G$

No analogous completeness result for failed computations

Example $p \Leftrightarrow q.$ $p \Leftrightarrow false.$ $\mathcal{P}, C\mathcal{T} \models \neg q$ holds, but q has no failed computation

Soundness and completeness (VI)

Discrepancy between operational and declarative semantics comes from additional reasoning power of first-order logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○へ⊙

Rules are directional, logical equivalence is not.

Soundness and completeness (VII)

Stronger completeness result for programs with consistent logical reading and data-sufficient goals

Definition (Data-sufficiency)

Goal is data-sufficient if it has a computation ending in a final state without CHR constraints.

Theorem (Stronger completeness of failed computations)

P with consistent logical reading, G data-sufficient.

If $\mathcal{P}, \mathcal{CT} \models \neg \exists G$ then G has a failed computation.

Even stronger results for confluent programs

Linear logic declarative semantics

- Classical logic declarative semantics not always sufficient if CHR used as general purpose language
 - Simplification rules remove and add CHR constraints (nonmonotonic), can model dynamic updates
 - But first-order logic cannot directly express change
- Alternative declarative semantics
 - Based on linear logic
 - Models resource consumption
 - Stronger theorems for soundness and completeness

Syntax (I)

Definition (Syntax of intuitionistic linear logic)

 $L ::= p(\overline{t}) \mid L \multimap L \mid L \otimes L \mid L \& L \mid L \oplus L \mid !L \mid \exists x.L \mid \forall x.L \mid \top \mid 1 \mid 0$

Atoms represent resources, may be consumed during reasoning

Syntax (II)

- ► Linear implication ("lollipop") different from classical logic
 - ▶ $A \multimap B$ ("consuming A yielding B") means A can be replaced by B
 - A and $A \rightarrow B$ yields B (implication also consumed)
- \blacktriangleright Conjunction $\,\otimes\,$ ("times") similar to classical logic
 - $A \otimes B$ available iff A and B available
 - $A \otimes A$ not equivalent to A
 - Neutral element 1, corresponds to true
Syntax (III)

- Modality ! ("bang") marks stable facts and resources that are not consumed
- ► Conjunction & ("with") represents internal choice (don't-care)
 - A&B ("either A or B) implies A or B but not $A \otimes B$
 - Neutral element ⊤ ("top")
- ► **Disjunction** ⊕ expresses external choice (don't-know, similar to classical disjunction)

イロト 不得 トイヨト イヨト ヨー つくで

- $A \oplus B$ neither implies A nor B alone
- Neutral element 0, expresses failure

Linear logic declarative semantics (I)

First-order logic (FOL) vs. linear logic semantics

- CHR constraints as linear resources
- Built-ins still in FOL as embedded intuitionistic formulas
- CHR rules as linear implication instead of logical equivalence

Linear logic declarative semantics (II)

Definition	(Semantics	P^L of CHF	R [∨] program	part 1)
------------	------------	--------------	------------------------	--------	---

Built-in Constraints:	true ^L	::=	1
	$false^{L}$	∷=	0
	$c(\overline{t})^L$::=	$!c(\overline{t})$
CHR Constraints:	$e(\overline{t})^L$::=	$e(\overline{t})$
Goals:	$(G \wedge H)^L$::=	$G^L \otimes H^L$
	$(G \lor H)^L$::=	$G^L \oplus H^L$
Configuration:	$(S \vee T)^L$::=	$S^L \oplus T^L$

- Constraints mapped to
 conjunctions of their atomic constraints
- Atomic built-ins banged (treated as unlimited resources)

- CT translated according to the Girard Translation
- ► Disjunctions mapped to ⊕ disjunctions

Linear logic declarative semantics (III)

Definition (Semantics P^L of CHR^{\vee} program part 2)

- Rules mapped to linear implications
 - Consuming part of head produces body
 - Directional, not commutative (cannot be reversed)
- Formula for rule banged (to be used more than once)
- \blacktriangleright Program translated into $\,\otimes\,$ conjunction of translated rules

Example (I)

Example (Coin throw)

Coin throw simulator program

throw(Coin) \Leftrightarrow Coin = head throw(Coin) \Leftrightarrow Coin = tail

Classical declarative FOL semantics

 $(throw(Coin) \leftrightarrow (Coin=head)) \land (throw(Coin) \leftrightarrow (Coin=tail))$

• Leads to $(Coin=head) \leftrightarrow (Coin=tail)$ and therefore head=tail

Example (II)

Example (Coin throw continued)

```
throw(Coin) \Leftrightarrow Coin = head
throw(Coin) \Leftrightarrow Coin = tail
```

Linear logic reading

 $!\forall (throw(Coin) \multimap !(Coin=head)) \otimes !\forall (throw(Coin) \multimap !(Coin=tail))$

This is logically equivalent to:

 $!\forall (throw(Coin) \multimap !(Coin=head) \& !(Coin=tail))$

Reads as "Of course, consuming throw(Coin) produces: Choose from Coin = head and Coin = tail" (committed choice)

Another example (I)

Example (Destructive assignment)

assign(Var,New) ∧ cell(Var,Old) ⇔ cell(Var,New)

FOL reading:

 $\forall (assign(Var, New) \land cell(Var, Old) \Leftrightarrow cell(Var, New))$

which is logically equivalent to

 $\forall (assign(Var, New) \land cell(Var, Old) \Leftrightarrow cell(Var, Old) \land cell(Var, New))$

Means that Var holds old and new value simultaneously

Another example (II)

Example (Destructive assignment continued)

assign(Var,New) ∧ cell(Var,Old) ⇔ cell(Var,New)

Linear logic reading

 $!\forall (assign(Var, New) \otimes cell(Var, Old) \rightarrow cell(Var, New))$

Reads as "Of course, consuming assign(Var, New) and cell(Var, Old) produces cell(Var, New)."

Yet another example

Example (Prime sieve)

prime(I) \land prime(J) \Leftrightarrow J mod I = 0 | prime(I)

FOL: $\forall ((M \mod N = 0) \rightarrow (prime(M) \land prime(N) \leftrightarrow prime(N)))$

"A number is prime when it is multiple of another prime".

LL: $!\forall (!(M \mod N = 0) \multimap (prime(M) \otimes prime(N) \multimap prime(N)))$

"Of course, consuming prime (M) and prime (N) where (M mod N = 0) produces prime (N)"

And even more examples

Example (Birds and penguins)

bird \Leftrightarrow albatross \lor penguin. penguin \land flies \Leftrightarrow *false*.

 $\mathsf{FOL}: \quad (bird \leftrightarrow albatross \lor penguin) \land (penguin \land flies \leftrightarrow false)$

This is correct, but more than can be computed, e.g. *albatros* \rightarrow *bird*.

LL: $!(bird \multimap albatross \oplus penguin) \otimes !(penguin \otimes flies \multimap 0)$

implies only computable implications

bird \otimes *flies* \multimap *albatross* \otimes *flies*

"bird and flies can be mapped to albatross and flies"

Soundness and completeness (I)

- Approach for soundness analogous to classical framework
- In the following:
 - ▶ P a CHR[∨] program
 - ▶ P^L its logical reading and $!CT^L$ constraint theory for built-ins
 - S_0 initial configuration, S_m , S_n configurations
 - Henotes deducability

Any configuration in derivation is linearly implied by logical reading of initial configuration

Lemma (Linear implication of states)

If S_n appears in derivation of S_0 then

$$P^L, !CT^L \vdash \forall (S_0^L - S_n^L)$$

Soundness and completeness (II)

Theorem (Soundness)

If S_0 has computation with final configuration S_n^L then

$$P^{L}, !CT^{L} \vdash \forall \left(S_{0}^{L} \multimap S_{n}^{L}\right)$$

Theorem (Completeness)

lf

$$P^L, !CT^L \vdash \forall (S_0^L \multimap S_n^L)$$

then there is S_m in a finite prefix of derivation of S_0 with

$$!CT^L \vdash S_m^L \multimap S_n^L$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □