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Abstract

There are many occasions where it is interesting to know if two programs are
equivalent. Based on the strict definition of operational equivalence, this work
presents a tool to check two CHR programs for equivalence. It uses the state
equivalence and confluence checker written by Johannes Langbein. This of-
fers a tool to analyze simple CHR programs for confluence and operational
equivalence. Furthermore support for more built-ins is added to the conflu-
ence and operational equivalence checker, to remove some of its limitations.
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1 Introduction

In programming language semantics determining when two programs should be considered

equivalent is a fundamental and difficult question. [2] In the following a strict notion of pro-

gram equivalence is used. If the computations of two given programs result in the same answer

for any given query, they are considered operational equivalent. For this there is a decidable,

sufficient and necessary syntactic condition of CHR programs, as long as they are terminating

and confluent.[4, p. 128]

1.1 Motivation

There are many cases where knowing if two programs can be considered equivalent is interest-

ing and important. For example to check the correctness of program transformations or to see

if different modules or libraries with similar functionality have program parts that are equivalent

[2], so a program that could check if two programs are equivalent would be useful.

1.2 Aim

The aim of this work is to create a program, that can check if simple CHR programs are equiv-

alent. This work will benefit from the rather unique property of having a decidable test for op-

erational equivalence that CHR offers [4, p. 128]. The main part of the operational equivalence

checker will be written in Prolog except for some cases where CHR is used. It is based on the

confluence checker written by Johannes Langbein [6]. The first step is a basic implementation of

the definition of operational equivalence. Then some limitations concerning Prolog built-ins are

removed by representing those built-ins with CHR constraints and constraint solvers. Support for

those built-ins then is added to the confluence checker [6] and finally the confluence checker and

the operational equivalence checker are united to a program that is able to check two programs

for confluence and subsequent for operational equivalence, given they passed the confluence

check.
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2 Constraint Handling Rules

Constraint Handling Rules (CHR) was invented in 1991 by Prof. Dr. Thom Frühwirth [5]. It is a

high-level programming language, that offers a theoretical formalism related to first-order logic

and linear logic, while being a practical programming language based on rules [4, p. xvii].

CHR always needs to be provided with data types and predefined constraints from its host

language H. The host language is denoted in round brackets and needs to provide at least

the constraints true and fail, and syntactic equality and inequality checks. CHR(H) denotes

CHR embedded in the host language H. There are several implementations like CHR(Java),

CHR(Haskell) and CHR(C) but CHR(Prolog) is the most common one. [8]

This chapter starts with a brief presentation of the syntax and the semantics of CHR. Based on

this State Equivalence will be defined what is fundamental for the rest of this chapter, where

Confluence in CHR and Operational Equivalence in CHR will be explained.

2.1 Syntax

As a first-order logic language, CHR consists of a set of variables V , a set of function symbols Σ,

and a set of predicate symbols Π. Function and predicate symbols have an associated arity like

the number of arguments they take. A functor is a symbol f with the arity n written in the notation

f/n. If a function symbol has the arity zero it is called a constant while a predicate symbol with

arity zero is called proposition. A constraint is a distinguished predicate of first-order logic. There

are two types of constraints, the pre-defined built-in constraints, which are provided by the host

language and the user-defined CHR constraints.[4, p. 53]

Definition 1. A CHR Program consists of a finite set of rules. There are three types of rules:

simplification-, propagation- and simpagation rules. The form of those rules can be seen in

Figure 2.1. A rule has an optional name r that is separated with an @ from the actual rule. The

rule-name is an optional, unique identifier. Each type of rule has a head that may not be empty

and consists of CHR constraints, a guard that may be empty and consists of built-in constraints

and a body that may not be empty and can have built-in constraints as well as CHR constraints.

The exact syntax can be seen in Figure 2.1.
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2 Constraint Handling Rules

Built− in constraint : C,D ::= c(t1, ..., tn) | C ∧D, n ≥ 0
CHR constraint : E,F ::= e(t1, ..., tn) | E ∧ F, n ≥ 0
Goal : G,H ::= C | E | G ∧H
Simplification rule : SR ::= r@E ⇔ C|G
Propagation rule : PR ::= r@E ⇒ C|G
Simpagation rule : SPR ::= r@E1\E2 ⇔ C|G
CHR rule : R ::= SR | PR | SPR
CHR program : P ::= R1...Rm, m ≥ 0

Figure 2.1: Abstract syntax of CHR programs and rules [4, p. 54]

2.2 Semantics

This section will describe the operational semantics of CHR. Only the very abstract and the

abstract semantics will be described here, because they are sufficient to explain confluence and

operational equivalence.

In the following P will be a CHR program and CT will be a constraint theory for the built-in con-

straints. A rule that fires will add the constraints of its body to the constraint store. A simplification

rule removes the head constraints from the constraint store while a propagation rule keeps the

head constraints. A simpagation rule has head constraints that are removed as well as head

constraints that are kept.

2.2.1 Very Abstract Semantics

The very abstract operational semantics of CHR is given by a nondeterministic state transition

system. [4, p. 55]

Definition 2 (State). A state is a conjunction of built-in and CHR constraints. An initial state

(initial goal) is an arbitrary state and a final state is one where no more transitions are possible.

[4, p. 56]

For the transitions we use rules in the head normal form (HNF). This means, that each argument

of a head constraint is a unique variable. A rule can be represented in HNF by replacing each

of its head arguments ti with a new variable Vi and adding the equation Vi = ti to the guard of

the rule. A transition represents a rule application. The formal definition of the transition relation

can be seen in Figure 2.2 The upper-case letters H1, H2, C,B and G represent conjunctions

of constraints that can be empty. What happens if an applicable rule is applied, is that the

CHR constraints H1 are kept while the CHR constraints H2 are removed. The resulting state

additionally consists of the the guard C and the body B. [4, p. 56]

This transition system is nondeterministic, because if several rules are applicable one is chosen

nondeterministically and this choice cannot be undone. [4, p. 56]
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2.2 Semantics

Apply
(H1 ∧H2 ∧G) 7→r (H1 ∧ C ∧B ∧G)

if there is an instance with new local variables x of a rule named r in P .
r@H1\H2 ⇔ C|B

and CT |= ∀(G→ ∃xC)

Figure 2.2: Transition of the very abstract operational semantics of CHR [4, p. 56]

2.2.2 Abstract Semantics ωt

The very abstract semantics do not pay much attention to termination. Especially propagation

rules can easily lead to nontermination, because the application of a propagation rule dose

not make the rule inapplicable and a failed state makes any rule applicable. These issues are

addressed by the abstract operational semantics of CHR, which add a distinction between pro-

cessed and unprocessed constraints. [4, p. 59]

Since any rule is applicable in a failed state and it can only lead to another failed state, all failed

states are declared final states, to prevent the trivial nontermination of failed states. To avoid the

repeated application of propagation rules it is made sure of that they are not applied more than

one time to the same constraints. The information of all CHR constraints to which propagation

rules have been applied is stored in the so-called propagation history. [4, p. 60]

Like in the very abstract semantics, the guard is a conjunction, but head and body are now

multisets of atomic constraints. Each constrain now has a unique identifier (which is a natural

number). For a CHR constraint c with the identifier i the notation c#i is used, such a constraint

is called a numbered constraint. In the following the functions chr(c#i) = c and id(c#i) = i are

used for numbered CHR constraints and extended to sequences and sets of numbered CHR

constraints in the obvious way. [4, p. 60]

The following definition for states in the abstract semantics is given in [4, p. 60]:

Definition 3. A ωt state is a tuple of the form 〈G,S,B, T 〉Vn .

• The goal (store) G is a multiset of constraints which contains all constraints to be pro-

cessed.

• The CHR (constraint) store S is a set of numbered CHR constraints that can be matched

with rules in a given program P .

• The built-in (constraint) store B is a conjunction of built-in constraints that has been passed

to the built-in constraint solver.

• The propagation history T is a set of tuples (r,I) where r is the name of a rule and I is the

sequence of the identifiers of the constraints that matched the head constraints of r.

• The counter n represents the next free integer that can be used as an identifier for a CHR

constraint.

5



2 Constraint Handling Rules

• The sequence V contains the variables of the initial goal.

The following definition for failed states and final states is taken from [4, p. 61]:

Definition 4. Given an initial goal (query, problem, call) G with variables V , the initial state is

〈G, ∅, true, ∅〉V1 .

A state 〈G,S,B, T 〉Vn with inconsistent built-in constraints (CT |= ¬∃B) is called failed. A state

with consistent built-in constraints and empty goal store (G = ∅) is called successful. The

remaining kinds of states have no special name.

A final state is either a successful state where no transition is possible anymore or a failed

state. Given a final state 〈G,S,B, T 〉Vn , its conditional or qualified) answer (solution, result) is the

conjunction ∃y(chr(S) ∧B), where y are the variables not in V .

Figure 2.3 shows the transition rules for the abstract operational semantics ωt. The solve tran-

sition uses the built-in solver to add a built-in constraint from the goal G to the built-in constraint

store B. The resulting built-in store is simplified by an unspecified amount, in the worst case it

is just the original conjunction of the new constraint with the old built-in store. In the introduce

transition a CHR constraint is added to the CHR store S, gets the next free integer n as identifier

and the next free integer is set to n + 1. The apply transition picks a rule r from the program

P and applies (fires, executes) it. The criterion for a picked rule is that constraints matching its

head exist in the CHR constraint store S and that its guard g is logically implied by the built-in

store B under the matching. [4, p. 61]

Solve
〈{c} ]G,S,B, T 〉n 7→solve 〈G,S,B′, T 〉n

where c is a built-in constraint and CT |= ∀(c ∧B)↔ B′).

Introduce
〈{c} ]G,S,B, T 〉n 7→introduce 〈G, {c#n} ∪ S,B, T 〉(n+1)

where c is a CHR constraint.

Apply
〈G,H1 ∪H2 ∪ S,B, T 〉n 7→apply r

〈C ]G,H1 ∪ S, chr(H1) = H ′1 ∧ chr(H2) = H ′2 ∧ g ∧B, T ∪ {(r, id(H1) + id(H2))}〉n
where there is a fresh variant of a rule named r in P with variables x of the form

r @ H ′1\H ′2 ⇔ g|C

where CT |= ∃(B) ∧ ∀(B → ∃x(chr(H1) = H ′1 ∧ chr(H2) = H ′2 ∧ g)) and
(r, id(H1) + id(H2)) /∈ T .

Figure 2.3: Transition of the abstract operational semantics ωt [4, p. 63]
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2.3 State Equivalence

2.3 State Equivalence

This section uses the following definition for states that can be found in [7]:

Definition 5 (State). A CHR state σ is a tuple 〈G;B;V〉 where the goal G is a multiset of CHR

constraints, the built-in constraint store B is a conjunction of built-in constraints and the variables

V are a set of global variables. A variable that is an element of (G ∪ B) and not an element of V

is called a local variable. If a variable is only an element of B and not an element of (G ∪ V) it is

called a strictly local variable.

With the definition of states it would be possible to use the logical equivalence when talking

about state equivalence, but when thinking of all failed states as equivalent and considering the

multiset character of CHR constraints, a slightly stricter notion of equivalence is preferable. The

basic idea is, that if states are equivalent, then the same rules should be applicable to those

states. [4, p. 71]

Definition 6 (State Equivalence). Equivalence between CHR states is the smallest equivalence

relation ≡ over CHR states that satisfies the following conditions [7] :

1. (Equality as Substitution)

〈G, x .
= t ∧ B,V〉 ≡ 〈G[x/t], x

.
= t ∧ B,V〉

2. (Transformation of the Constraint Store)

If CT |= ∃s.B↔ ∃s′.B′ where s, s′ are the strictly local variables of B,B′ respectively, then:

〈G,B,V〉 ≡ 〈G,B′,V〉

3. (Omission of Non-Occurring Global Variables)

If X is a variable that does not occur in G or B then:

〈G,B, {X} ∪ V〉 ≡ 〈G,B,V〉

4. (Equivalence of Failed States)

〈G,⊥,V〉 ≡ 〈G′,⊥,V〉

A necessary and sufficient criterion for deciding state equivalence is given by the following The-

orem 7 [7]:

Theorem 7 (Criterion for ≡). Let σ = 〈G,B,V〉, σ′ = 〈G′,B′,V〉 be CHR states with local

variables y, y′ that have been renamed apart.

σ ≡ σ′ iff CT |= ∀(B→ ∃y′.((G = G′) ∧ B′)) ∧ ∀(B′ → ∃y.((G = G′) ∧ B))

7



2 Constraint Handling Rules

Since Theorem 7 only applies if the set of global variables is unchanged and the local variables

are renamed apart, it actually decides a smaller relation than ≡. But due to the fact that we

can rename local variables apart and that Definition 6 3. allows us to adjust the set of global

variables, those restrictions do not pose a problem. [7]

2.4 Minimal States

During program analysis there is normally an infinite amount of possible states. For analysis, it

is necessary to limit the amount of states to a finite amount of so-called minimal states. Every

rule has a smallest, most general state that allows it to fire. [4, p. 101]

Definition 8 (Minimal State). The minimal state of a rule is the conjunction of the head and the

guard of the rule. [4, p. 101]

If any constraint from a minimal state is removed, the rule would no longer be able to fire, while

adding constraints cannot prevent the possibility of the rule to fire. Every state that allows a rule

to fire contains the minimal state of the rule. [4, p. 101]

2.5 Joinability

Another interesting property of two states is, if they can result in equal states. This property is

called joinability.

Definition 9 (Joinability). Two states S1 and S2 are joinable if there exist states S′1, S′2 such that

S1 7→∗ S′1 and S2 7→∗ S′2 and S′1 ≡ S′2. [4, p. 102]

2.6 Confluence

Confluence is a property of a program that guarantees the same final state for any computation of

a goal independent of which applicable rules are fired. This means that if a program is confluent,

the order of rules in the program and the order of constraints in a goal does not matter. [4, p. 101]

Definition 10 (Confluence). A CHR program is confluent if for all states S, S1, S2

If S 7→∗ S1, S 7→∗ S2 then S1 and S2 are joinable.

8



2.6 Confluence

Definition 10 is illustrated in Figure 2.1. [4, p. 102]

S

∗
zz

∗
$$

S1

∗ ##

S2

∗{{
S′1 ≡ S′2

Figure 2.1: Confluence diagram [4, p. 103]

2.6.1 Test for confluence

Since in general, there is an infinite amount of possible states, it is not possible to simply check

every of those states for joinability. For a terminating program it is possible to limit the states

for the joinability test to a finite number of most general states, the so-called overlaps. These

overlaps are states in which more than one rule is able to fire. Those two rules can actually be

the same rule with a different order of head constraints or at least one different head constraint.

By merging the minimal states of two rules and equating at least one head constraint from one

rule with one from the other rule the two rules are overlapped. The two states resulting from

applying both rules to an overlap are called critical pair. If any critical pair of a program is not

joinable, the program itself is not confluent. [4, p. 102]

Definition 11. Let R1 be a simplification or simpagation rule and R2 be a (not necessarily differ-

ent) rule, whose variables have been renamed apart. Let Hi ∧Ai be the conjunction of the head

constraints Ci be the guard and Bi be the body of rule Ri (i = 1, 2). Then a (nontrivial) overlap

(critical ancestor state) S of rules R1 and R2 is

S = (H1 ∧A1 ∧H2 ∧ (A1 = A2) ∧ C1 ∧ C2),

provided A1 and A2 are nonempty conjunctions and the built-in constraints are satisfiable,

CT |= ∃(A1 = A2) ∧ C1 ∧ C2).

Let S1 = (B1 ∧H2 ∧ (A1 = A2) ∧ C1 ∧ C2) and S2 = H1 ∧B2 ∧ (A1 = A2) ∧ C1 ∧ C2). Then the

tuple (S1, S2) is a critical pair (c.p.) of R1 and R2.

A critical pair (S1, S2) is joinable, if S1 and S2 are joinable. [4, p. 103]

For terminating CHR programs, a decidable, sufficient and necessary condition for confluence is

given by the following theorem 12 [4, p. 104]

Theorem 12. A terminating CHR program is confluent iff al its critical pairs are joinable. [4,

p. 104]

9



2 Constraint Handling Rules

Up to this point this section basically just covered the very abstract semantics (see 2.2.1). When

considering the abstract semantics (see 2.2.2) one has to take the propagation history into ac-

count. For each state of a critical pair, the propagation history needs to be set in a way, that no

propagation rule can fire if it would only use constraints that have been present in the overlap.

This means, that an overlap S ∧ B, where S are the CHR constraints and B are the built-in

constrains is associated with the ωt state 〈∅, S′, B, ∅〉Vn , where S′ are n consistently numbered

CHR constraints, so that S = chr(S′), and V contains all variables of the overlap. In such a ωt

state of a critical pair, the propagation histories are set to prop(S′), where prop(S′) is a function

that returns a propagation history with an entry for each propagation rule of the program for each

valid combination of constraints from S′. [4, p. 108]

2.6.2 Examples

This section will give some example CHR programs that are tested for confluence. Those exam-

ples are taken from [4]. A CHR program that consists either only of propagation rules or single

headed simplifcation rules that do not overlap are trivial cases that are obviously confluent. [4,

p. 105]

Example 13. Consider the following Coin-toss program:

throw(Coin) ⇔ Coin = head.

throw(Coin) ⇔ Coin = tail.

This only has the overlap:

throw(Coin)

what leads to the critical pair:

(Coin = head,Coin = tail)

Those are two final states that are different and thus not joinable. So the program is not confluent.

Example 14. Consider the following single rule program:

p(X) ∧ q(Y ) ⇔ true.

This rule has the overlaps:

p(X) ∧ q(Y1) ∧ q(Y2)

p(X1) ∧ p(X2) ∧ q(Y )

10



2.6 Confluence

which lead to the critical pairs:

(q(Y1), q(Y2))

(p(X1), p(X2))

Both critical pairs consist of two final states that are different and thus not joinable. So the

program is not confluent.

Example 15. Consider the following CHR program with a propagation rule:

r1 @ p ⇒ q.

r2 @ r ∧ q ⇔ true.

r3 @ r ∧ p ∧ q ⇔ s.

r4 @ s ⇔ p ∧ q.

It has the overlap:

r ∧ p ∧ q

Figure 2.2 shows that it is important to add the propagation histories, because without it would

always end in the final state p ∧ q (as seen in (1) ), while with the added propagation history for

rule r1 it results in the not joinable critical pair (p, p ∧ q) (as seen in (2) ).

r ∧ p

r1

��
r ∧ p ∧ q

r2
{{

r3
##

r ∧ p ∧ q

r2
{{

r3
%%

p

r1 ##

s

r3{{

p s

r4

��
p ∧ q p ∧ q

(1) (2)

Figure 2.2: Violated confluence in larger state [4, p. 109]

Example 16. Consider the following CHR program for less or equal:

duplicate @ (X ≤ Y ) ∧ (X ≤ Y ) ⇔ (X ≤ Y ) .

reflexivity @ (X ≤ X) ⇔ true.

antisymmetry @ (X ≤ Y ) ∧ (Y ≤ X) ⇔ X = Y .

transitivity @ (X ≤ Y ) ∧ (Y ≤ Z) ⇒ (X ≤ Z).
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Figure 2.3 shows the overlap for reflexivity and antisymmetry and shows that the resulting critical

pair is joinable.

(A ≤ A) ∧ (A ≤ A)

reflexivity

vv

antisymmetry

((
(A ≤ A)

reflexivity
((

A = A

≡
vv

true

Figure 2.3: Joinable overlap of reflexivity and antisymmetry rules [4, p. 107]

Another overlap can occur with the transitivity rule and the antisymmetry rule, e.g. :

(X ≤ Y ) ∧ (Y ≤ Z) ∧ (Y ≤ X)

This overlap leads to the following critical pair:

((X ≤ Y ) ∧ (Y ≤ X) ∧ (Y ≤ Z) ∧ (X ≤ Z), X = Y, (X ≤ Z))

By taking the first state of this critical pair and applying the antisymmetry rule and the duplicate

rule one gets a state that is equivalent to the second state.

(X ≤ Y ) ∧ (Y ≤ X) ∧ (Y ≤ Z) ∧ (X ≤ Z)

7→antisymmetry (Y ≤ Z) ∧ (X ≤ Z) ∧X = Y

7→duplicate (X ≤ Z) ∧X = Y

This shows that it is also a joinable critical pair.

2.7 Operational Equivalence

This section gives the definitions the operational equivalence checker (see section 4) is based

and shows some example CHR programs that are checked for operational equivalence with the

help of those definitions.

2.7.1 Definition

Operational equivalence of two programs is the fact that for any given (initial) state equivalent

states can be reached by the computation in each program. [4, p. 128] This leads to the following

definition that is taken from [4, p. 128] :
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Definition 17 (Operational Equivalence). Let the notation→p denote a transition using program

P.

Two CHR programs P1 and P2 are operationally equivalent if all states are P1, P2-joinable.

A state S is P1, P2-joinable iff there are computations S →+
P1
S1 and S →+

P2
S2 such that S1 ≡ S2

or S is a final state in both programs.

2.7.2 Test for Operational Equivalence

For CHR programs, that are confluent and terminating, so-called well behaved programs, there

is a straight forward test for operational equivalence that is given in the following theorem which

is taken from [4, p. 128]:

Theorem 18. Two well-behaved programs P1 and P2 are operationally equivalent iff all minimal

states of the rules in P1 and P2 are P1, P2-joinable.

2.7.3 Examples

Example 19. Consider the following two programs to determine the minimum:

P1 :

r1 @ min(X) ∧ min(Y ) ⇔ X < Y | min(X).

r2 @ min(X) ∧ min(Y ) ⇔ X = Y | min(X).

P2 :

r1 @ min(X) ∧ min(Y ) ⇔ X ≤ Y | min(X).

P1 has two minimal states and P2 has one minimal state, so the list of states that needs to be

checked is:

(min(X) ∧min(Y ) ∧X < Y , min(X) ∧min(Y ) ∧X = Y , min(X) ∧min(Y ) ∧X ≤ Y )

For the first two minimal states the computation of P1 and P2 results in equivalent final states.

min(X) ∧min(Y ) ∧X < Y 7→P1r1 min(X)

min(X) ∧min(Y ) ∧X < Y 7→P2r1 min(X)

min(X) ∧min(Y ) ∧X = Y 7→P1r2 min(X)

min(X) ∧min(Y ) ∧X = Y 7→P2r1 min(X)

13
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But the third minimal state already is a final state for P1 while P2 reaches a not equivalent final

state:

min(X) ∧min(Y ) ∧X ≤ Y 7→P2r1min(X)

This means that the two programs are not operational equivalent even so they are logically

equivalent.

Example 20. Consider the following two "hello world" programs:

P1 :

r1 @ a ⇔ helloworld.

r2 @ b ⇔ helloworld.

P2 :

r1 @ a ⇔ b.

r2 @ b ⇔ helloworld.

Both programs have equivalent minimal states, after removing the duplicates the list of minimal

states is:

(a, b)

For both minimal states the computation of P1 and P2 leads to equivalent final states.

a 7→P1r1 helloworld

a 7→P2r1 b 7→P2r2 helloworld

b 7→P1r2 helloworld

b 7→P2r2 helloworld

This means the two programs are operational equivalent.
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3 The State Equivalence and Confluence Checker

This section describes the state equivalence and confluence checker [1] the operational equiva-

lence checker is based on. It is written in SWI Prolog and organized in different modules.

3.1 CHR Parser

The CHR parser is located in the module chrparser.pl. It expects a syntactically correct file

and does not provide any error handling. Everything except for CHR simplification and symp-

agation rules and the chr\_constraint directive that defines the CHR constraints with their

arity, is ignored by the parser. [1]

The parser is used by calling the predicate read_rules/3 which reads the rules and the list of

CHR constraints from a file. It is called with

read_rules(+FileName,−Rules,−CHRC )

where FileName is a string with the path to the file that is parsed, Rules is a list with all simpa-

gation and simplification rules and CHRC is the list that contains all CHR constraints that appear

in the program. [1]

The Rules list represents rules with a rule(S,KH ,RH , G,B) term, where S is the rule as a string

as it is represented in the source file and KH , RH , G and B are lists that represent the kept head

constraints, the removed head constraints, the guard and the body of the rule. KH and G may

be empty.[1]

(Note: The + infront of an argument means that the predicate takes this argument as input while

a − says that this is returned by the predicat.)

3.2 State Equivalence

In the module stateequiv.pl Theorem 7 is implemented for the equivalence relation ≡ over

CHR states. States follow Definition 5 and are represented as Prolog terms. Those terms have

the form state(G,B, V ) where G is a list representing the goal store, B is a list representing

the built-in store and V is a list for the global variables of the state. The CHR constraints are

represented as Prolog terms. The built ins are represented as =/2, true and false and there are
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3 The State Equivalence and Confluence Checker

no other built-ins supported. The variables are represented as Prolog variables. An empty goal

or builtin store or an empty set of variables is represented by an empty list. [6]

A check for state equivalence is performed by a call of the predicate

equivalent_states(+S1,+S2)

where S1 and S2 are states represented by Prolog terms as described earlier and the predicate

succeeds if the two states are equivalent. [1]

3.3 Confluence

The module conflcheck.pl is an implementation of the criterion for confluence from Theorem

12. First all possible critical pairs of all rules in the program are created. They are checked for

joinability by calling the CHR program with both states separately as query and checking the two

resulting states for equivalence. The equivalence check is performed with stateequiv/2 from the

stateequiv.pl module that is described in section 3.2. [6]

A check for confluence is performed by a call of the predicate

check_confluence(+FileName)

where FileName is a String with the path to the file that is checked for confluence. The predicate

succeeds regardless if the CHR program is confluent or not. All non-joinable critical pairs will be

printed on the screen. [1]

3.4 Limitations

In Section 2.6.1 it is described that the propagation history for the constraints of the critical pair

needs to be added to prevent propagation rules from firing twice. Since the confluence checker

does not consider the propagation history it cannot support propagation rules.[1]

There is only support for the built-ins =/2 and true. The reason for this limitation is, that a most

general CHR state needs to be able to have unbound variables with the information that certain

entailment checks succeed, while Prolog in general requires the arguments of built-ins used in

an entailment check to be ground.[6]

Another minor limitation is that no syntax check is performed on the program that is tested. Thus

the confluence checker should only be called with valid CHR programs. [1]
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4 The Operational Equivalence Checker

This section describes how the operational equivalence checker is implemented. First a basic

implementation of Theorem 18 based on the state equivalence and confluence checker (see

section 3) is shown. Since this implementation has the same limitations (see section 3.4) as

the state equivalence and confluence checker, the rest of this section explains how support for

additional built-ins has been realized to remove some of those limitations.

4.1 Basic Implementation of the Theorem

Since the state equivalence and confluence checker (see section 3) already offers a predicate

to check for state equivalence (see section 3.2) and a CHR parser (see section 3.1) that ex-

tracts all rules and CHR constraints from a CHR program, it is used as basis for the operational

equivalence checker.

4.1.1 Implementation

To implement an operational equivalence checker the module opeq.pl is created and has the

predicate

opeq(File1, F ile2)

where File1 and File2 are Strings with the path to the two files that are checked for operational

equivalence.

The first step of this predicate is to call read_rules(+FileName,−Rules,−CHRC) from the

CHR parser (see 3.1) with both programs to get a list with all rules and a list with all constraints

for each program. Next a check on the defined constraints is done with a call of:

check_Chrc(+Chrc1,+Chrc2,−N)

where Chrc1 and Chrc2 are the lists of CHR constraints that are defined in program one and

two. The predicate always succeeds. If Chrc1 and Chrc2 consist of the same elements (not

necessarily in the same order) it returns N = 0 and if at least one element of one list does not

occur in the other list it returns N = 1. This is check is mandatory, because two programs can

obviously not be operationally equivalent if there exists a query that would cause one of them to

throw an error that does not occur in the other program.
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4 The Operational Equivalence Checker

Theorem 18 says that the minimal states of all rules from both programs need to be checked, so

the next step is to get a list with all minimal states. Therefor the following predicate is called:

list_of_min_states(+Prog1,+Prog2,−Min_States)

where Prog1 and Prog2 are the lists of rules for each program that the predicate read_rules/3

(see Section 3.1) has returned. Min_States is a list of minimal states represented as Prolog

terms with the form minState(G,B, V ) similar to the state(G,B, V ) term that the state equiv-

alence checker uses (see section 3.2). The goal store G for such a minimal state for a rule is

created by appending the list representing the removed heads to the list with the kept heads. The

built-in store B is equivalent to the list that is representing the guard of the rule. The set of vari-

ables V can be determined by appending G and B and using the predicate term_variables/2.

The next step is to call each program with each minimal state and check the resulting final

states for equivalence. This is done in a similar way like it is done in the states_joinable/3

conflcheck.pl [1]. But instead of one program that is consulted with two states, there need

to be two programs that are consulted with one equivalent state. Since consulting two CHR

programs that define constraints with the same name in the same module could be problematic,

the modules consult1.pl and consult2.pl are used. After both programs have been called

with a minimal state the resulting final states are checked for equivalence by calling:

eq_states(+Result1,+Result2,−N,+S)

where Result1 and Result2 are the resulting final states of both programs and S is the minimal

state that is currently tested. To check for state equivalence the predicate equivalent_states/2

(see section 3.2) is called with Result1 and Result2 and if it succeeds N = 0 is returned.

Otherwise N = 1 is returned and the minimal state is printed to the screen together with the

remark, that it leads to not equivalent final states.

The N from each call of eq_states/4 are added up. If all minimal states have been checked and

the sum is zero, the two programs are operationally equivalent.

4.1.2 Limitations

Since this implementation so far basically just uses what the state equivalence and confluence

checker offers, it has very similar limitations.

The parser does not parse propagation rules, so obviously programs with propagation rules

cannot be checked, even though propagation rules would not cause problems in the check for

operational equivalence, since in the check for operational equivalence the minimal states that

are called are always initial states with an empty propagation history. The modified version of

the parser that will be introduced later on has this limitation removed.
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Just like in the state equivalence and confluence checker the only supported the built-ins are

=/2 and true. The reason for this limitation is, that a most general CHR state needs to be able

to have unbound variables with the information that certain entailment checks succeed, while

Prolog in general requires the arguments of built-ins used in an entailment check to be ground.

The next section describes how support for additional built-ins can be added by representing

them with constraint solvers.

This implementation of an operational equivalence checker should only be called with valid and

well-behaved CHR programs.

4.2 Adding Built-ins

The support of only three built-ins is a big limitation. The reason for those limitations is that

Prolog cannot store information for unbound variables to let certain entailment tests with prolog

built-ins succeed.

The basic idea for adding support for more built-ins is to represent those built-ins with constraint

solvers so that the information for a succeeding entailment check can be stored in a CHR con-

straint where unbound variables pose no problem. First this section will take a look at CHRat

which is a modular version of CHR that allows CHR constraints to be used in the guard of a

rule and shows a way to represent entailment checks for CHR constraints. Then the way further

built-ins for the operational equivalence checker are implemented is explained and the constraint

solvers for the new built-ins are shown. Finally there are some examples shown as test cases

for the operational equivalence checker.

4.2.1 CHRat

CHRat is a paradigm for modular CHR called CHR with ask and tell. There is already the need

for solvers for asks and tells for the built-in constraint system implementation. CHR does not

provide entailment checks for CHR constraints, what is the reason why CHR constraints are not

allowed to be used in a guard. With CHRat it is tried to internalize the requirement for asks and

tells in the CHR solver itself. If the solved form of a constraint store containing ask(c), where

c is a constraint, contains the token entailed(c), the constraint c is operationally entailed in this

constraint store. [3]

A minimalist entailment solver can always be provided with the following simpagation rule:

c \ask(c)⇔ entailed(c)

And further rules of arbitarily complex entailment checks can be added to the entailment solver.

[3]
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Example 21. CHRat Components for leq/2 and min/3 (this Example is taken from [3])

The following CHR solver defines the constraint leq/2 :

component leq_solver

export leq/2

reflexive @ leq(X,X)⇔ true.

antisymmetric @ leq(X,Y ), leq(Y,X)⇔ X = Y.

transitive @ leq(X,Y ), leq(Y,Z)⇒ leq(X,Z).

redundant @ leq(X,Y ) \ leq(X,Y )⇔ true.

In order to use this constraint solver in CHRat, rules for an entailment solver are needed. The

rule:

leq(X,Y )\ask(leq(X,Y ))⇔ entailed(leq(X,Y )).

is always assumed and provides a minimalist entailment solver, but in this example one more

rule is needed:

ask(leq(X,X))⇔ entailed(leq(X,X)).

The following program uses the leq/2 constraints defined in the previously shown constraint

solver.

component min_solver

import leq/2 from leq_solver

export min/3

minLeft @ min(X,Y, Z)⇔ leq(X,Y ) | Z = X.

minRight @ min(X,Y, Z)⇔ leq(Y,X) | Z = Y.

minGen @ min(X,Y, Z)⇒ leq(Z,X), leq(Z, Y ).

minAskLeft @ ask(min(X,Y, Z))⇔ leq(X,Y ) | entailed(min(X,Y,X)).

minAskRight @ ask(min(X,Y, Z))⇔ leq(Y,X) | entailed(min(X,Y, Y )).

Example 21 shows a program that uses CHR constraints in the guard. The interesting point

now is, how one can transform such a CHRat program to a regular CHR program. For this the

following definition is given in [3]:
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Definition 22. Let [·] : CHRat→ CHR be defined for every CHRat rule by [·] as follows:

[rule @ Hk \ Hr ⇔ Cbuilt-in, CCHR | B.]

:=

rule-ask @ Hk, Hr ⇒ Cbuilt-in | ask∗(CCHR).

rule-fire @ Hk \ Hr, entailed
∗(CCHR) ⇔ Cbuilt-in | B.

where Hk and Hr are the kept and the removed head constraints, Cbuilt−in and CCHR are the

built-in and the CHR constraints that are used in the guard and B is the body of the rule.

From this transformation rule, the transformations for simplification and propagation rules follow

by immediate specialization. The image of a whole CHRat program (R,Σ) (where R is the set

of CHRat rules and Σ is the signature of the set of constraint tokens) by [·] is the concatenation

of images of the individual rules, with the propagation rules:

f(x1, ..., xk)⇒ entailed(f(x1, ..., xk)).

implicitly added for each constraint declaration (f/k) ∈ Σ, if such a rule was not already written

by the user in R.

Example 23. Transformation of CHRat to CHR

In this example the min/3 CHRat program shown in Example 21 is transformed to a regular

CHR program according to definition 22.

rule-ask minLeft @ min(X,Y, Z) ⇒ ask_leq(X,Y ).

rule-fire minLeft @ min(X,Y, Z) \ entailed_leq(X,Y ) ⇔ Z = X.

rule-ask minRight @ min(X,Y, Z) ⇒ ask_leq(Y,X).

rule-fire minRight @ min(X,Y, Z) \ entailed_leq(Y,X) ⇔ Z = Y.

minGen @ min(X,Y, Z)⇒ leq(Z,X), leq(Z, Y ).

rule-ask minAskLeft @ ask_min(X,Y, Z)⇒ ask_leq(X,Y ).

rule-fire minAskLeft @ ask_min(X,Y, Z) \ entailed_leq(X,Y ) ⇔ entailed_min(X,Y,X).

rule-ask minAskRight @ ask_min(X,Y, Z)⇒ ask_leq(Y,X).

rule-fire minAskRight @ ask_min(X,Y, Z) \ entailed_leq(Y,X) ⇔ entailed_min(X,Y, Y ).

4.2.2 Replacing Guards by ’ask’ and ’entailed’ Constraints

To replace a rule with a built-in in a guard with equivalent rules that use a constraint solver to

replace that built-in a constraint solver that has the constraint theory representing the built-in
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implemented is required. Additionally a transformation rule that can be applied to any CHR rule

with built-ins in its guard is needed. In the following it is assumed that appropriate constraint

solvers are present so that focus can be put on the actual transformation process.

Example 24. Rule identifiers

Program P :

rule-1 @ test(A,B) ⇒ A ≤ B|result(A).

rule-2 @ test(A,B) ⇒ A ≤ B|result(B).

Let a constraint solver for less or equal be present, then the following program would be the

transformed program of P with a similar transformation like used in Example 23

rule-ask-1 @ test(A,B) ⇒ ask_leq(A,B).

rule-fire-1 @ test(A,B) \ entailed_leq(A,B) ⇔ result(A).

rule-ask-2 @ test(A,B) ⇒ ask_leq(A,B).

rule-fire-2 @ test(A,B) \ entailed_leq(A,B) ⇔ result(B).

If program P and the transformed program are called with the query:

leq(A,B), test(A,B)

the final state of program P would always be leq(A,B), test(A,B), result(A), result(B), the

transformed program could also reach this final state, but it could also fire rule 1 or 2 twice

instead of each once. This shows that it is important to have an identifier for each rule that

needs to be added to the ask and entailed constraints, so that only the rule that asked for the

entailment check can fire with the resulting entailed constraint.

The transformed program with an added identifier for the rules would look like this:

rule-ask-1 @ test(A,B) ⇒ ask_leq(A,B, 1).

rule-fire-1 @ test(A,B) \ entailed_leq(A,B, 1) ⇔ result(A).

rule-ask-2 @ test(A,B) ⇒ ask_leq(A,B, 2).

rule-fire-2 @ test(A,B) \ entailed_leq(A,B, 2) ⇔ result(B).

Now the transformed program behaves like the original program P .

Example 25. Order of constraints and variables

Program P :

rule-1 @ test(A,B), c(X), c(Y ) ⇒ A ≤ B|result(X).
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After a similar transformation as in example 24 the transformed program looks like:

rule-ask−1 @ test(A,B), c(X), c(Y ) ⇒ ask_leq(A,B, 1).

rule-fire−1 @ test(A,B), c(X), c(Y ) \ entailed_leq(A,B, 1) ⇔ result(X).

If program P and the transformed program are called with the query:

leq(A,B), test(A,B), c(1), c(2)

the final state of program P would always be leq(A,B), test(A,B), result(1), result(2), but the

transformed program could use the same constellation of c(1), c(2) twice since it gets two differ-

ent entailed constraints.

To prevent this the order of the constraints with their variables needs to be stored in the ask and

entailed constraints.

The transformed program with an added store for the constraints with their variables would look

like this:

rule-ask 1 @

test(A,B), c(X), c(Y ) ⇒ ask_leq(A,B, 1, t(test(A,B), c(X), c(Y ))).

rule-fire 1 @

test(A,B), c(X), c(Y ) \ entailed_leq(A,B, 1, T ) ⇔ T == t(test(A,B), c(X), c(Y )) | result(X).

Now the transformed program behaves like the original program P .

Note: A query like leq(A,B), test(A,B), c(1), c(1) might still cause one constraint constellation to

fire twice while the other never fires but that has no effect on the result since it cannot fire more

often than it is supposed to and both constellations are equivalent.

The thoughts from example 24 and example 25 lead to the following definition:

Definition 26. Iff a constraint solver that can represent a built-in bx is present in a program P ,

then let [·] : CHRguardbuilt−in → CHRconstraint be defined for every CHR rule of the program P

by [·] as follows:

[rule i @ Hk \ Hr ⇔ Cbuilt-ins, b1(x1,1, ...x1,k), ..., bn(xn,1, ..., xn,l) | B.]

:=



rule i ask @

Hk, Hr ⇒ Cbuilt-ins | ask_b1(x1,1, ...x1,k, i, t(Hk, Hr)), ..., ask_bn(xn,1, ..., xn,l, i, t(Hk, Hr)).

rule i fire @

Hk \ Hr, entailed_b1(x1,1, ...x1,k, i, T ), ..., entailed_bn(xn,1, ..., xn,l, i, T ) ⇔ Cbuilt-ins, T == t(Hk, Hr) | B.
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where Hk and Hr are the kept and the removed head constraints, Cbuilt-in are the built-in con-

straints that are used in the guard and will remain in the guard, b1(x1,1, ...x1,k), ..., bn(xn,1, ..., xn,l)

are the built-in constraints from the guard that have appropriate constraint solvers and are sup-

posed to be replaced with CHR constraints, B is the body and i is an unique identifier of the

rule.

The entailment solver needs to carry the rule identifier i and the term t(Hk, Hr) over to the

entailed constraints, they are needed to identify which rule asked for the entailment check and

to ensure that the right variables are used.

4.2.3 Modified CHR Parser

To add support for more built-ins to the operational equivalence checker the transformation de-

scribed in definition 26 needs to be executed on the tested CHR program for every rule that

has those built-ins in its guard. It is convenient to modifie the chrparser.pl in a way that lets

it generate the transformed program, since all the necessary information is present during the

parsing process. This modified version of the chrparser.pl is called chrparserOPEQ.pl.

As mentioned in section 4.1.2 the operational equivalence checker is able to handle propagation

rules since it does not need to add a propagation history for its queries. So the first modifi-

cation to the parser is to add support for propagation rules. To do this a additional case for

parse_actrule/7 is added that tries to match a line from the program on (LHS ==> RHS) and

parses it in a similar way the original parser did for simpagation and simplification rules.

As new supported built-ins Bnew = {≤ , ≥ , < , > , ==} were chosen. For adding the transfor-

mation first the read_rules/3 needed to be modified and a parameter was added:

read_rules(File,NewFile,Rules, CHRC)

File and CHRC are unchanged. NewFile is a String with the path to the file where the trans-

formed program will be saved. Rules is almost unchanged, the only difference is, that the built-

ins from Bnew were removed from the guard and appropriate constraints were added to the kept

head. This is not the cleanest way to extract this information, but it makes checks for operational

equivalence easier since there is no need for big changes at the existing code. The predicate

itself calls some predicates that write header information to the NewFile (necessary code like

the constraint definitions and the constraint solvers for the built-ins from Bnew that will be shown

in the following sections). It also calls the predicate extract_rules/4 where the actual program

transformation is prepared.

extract_rules(Clauses, Stream,Rules, I)

Clauses is a list containing the clauses from the program that is parsed and transformed, Stream

is the stream to the file where the transformd program is written to and I is the identifier for each
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rule. Initially I is set to zero and with each added rule that is added to the transformed program

it is incremented.

The actual transformation is performed by the following predicate:

parse_actrule(I, Stream, Term,KH ,RH , G,B)

Term is a term of the from (LHS ==> RHS) or (LHS <=> RHS) where the rule name

has been removed. KH and RH are lists of CHR constraints represented as Prolog terms

and represent the kept and the removed head. As mentioned earlier KH also contains terms

representing the constraints of Bnew if any of those were present in the guard of the original

rule. Any ≥, > that were present have been replaced by ≤, < with flipped arguments, so that no

constraint solvers for ≥, > are needed. G is a list representing the guard, all built-ins that are in

Bnew have been removed. B is a list with the constraints of the body of the rule.

The predicate write_ask/4 writes the ’rule i ask’ propagation rule according to definition 26 if it

is needed and the predicate write_rule/5 writes the rule to the file for the transformed program.

If any built-ins from Bnew were present in this rule this looks like the ’rule i fire’ from definition 26,

otherwise it just writes the rule like it appears in the original program.

This gives leads to an executable CHR program, that should behave very similar to the original

program. A difference to the original program is, that some constraints containing information for

the constraint solvers will be present in the final states. The final states might also contain some

leftover ask and entailed constraints. For those a cleanup needs to be done (see section 4.2.5).

4.2.4 Adding Constraint Solvers

To make the rules that have been transformed according to definition 26 work, constraint solvers

for the replaced built-ins are needed. For those the information needs to be represented as CHR

constraints and they need to have an entailment solver. This section describes the constraint

solvers that the chrparserOPEQ.pl adds to the header of a transformed program.

Adding a failed state

As explained in section 2.2.2 failed built-ins should lead to a failed state and all failed states

should be considered equivalent. The buil-in fail that Prolog provides is not useful to represent

failed states, since this would cause the consult to fail what would cause the complete test to fail.

To check for failed states the CHR constraint builtin_fail/0 is defined. If a constraint solver finds

any conflicting constraints that represent information for the built-ins it will add a builtin_fail/0

to the constraint store. Additional rules of the form:

builtin_fail \ C ⇔ true.
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For easier understanding C can be considered a wildcard, if builtin_fail/0 shows up at any time

during the computation, it will remove all other constraints until only one builtin_fail/0 remains

as final state. Since there are no wild cards for constraints in CHR, a extra rule for each defined

constraint is be added to the transformed program right after the definition of the constraints.

Note: Failed states represented with the CHR constraint builtin_fail are not necessarily equiv-

alent states, since the global variables can be different. Since failed states should be considered

equivalent an additional check is needed when checking for state equivalence.

Adding a Constraint Solver for less or equal

To represent the built-in ≤ a CHR constraint leq/2 is chosen. The basic constraint solver is

similar to the one in example 21 that was taken from [4]:

redundant @ leq(X,Y ) \ leq(X,Y )⇔ true.

reflexive @ leq(X,X)⇔ true.

antisymmetric @ leq(X,Y ), leq(Y,X)⇔ X = Y.

transitive @ leq(X,Y ), leq(Y,Z)⇒ leq(X,Z).

Also rules for the entailment solver need to be added

leq(X,Y ) \ ask_leq(X,Y, I, T ) ⇔entailed_leq(X,Y, I, T ).

ask_leq(X,X, I, T ) ⇔entailed_leq(X,X, I, T ).

For the case that on or both arguments in an ask_leq/4 constraint are bound variables the

following entailment rules are added to let the behavior of the constraint solver be closer to that

of the built-in.

ask_leq(X,Y, I, T ) ⇔number(X), number(Y ), X ≤ Y | entailed_leq(X,Y, I, T ).

leq(X,Z) \ ask_leq(X,Y, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(X,Y, I, T ).

leq(Y,X) \ ask_leq(Z,X, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(Z,X, I, T ).

The first of those rules is for the case that the original built-in can actually be used. The other

two rules are for the case that a bound variable is compared with a unbound variable where

information on the unbound variable is present.
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Adding a Constraint Solver for less

To represent the built-in < a CHR constraint less/2 is chosen. The constraint solver is analogical

to the constraint solver for ≤.

redundant @ less(X,Y ) \ less(X,Y )⇔ true.

reflexive @ less(X,X)⇔ builtin_fail.

antisymmetric @ less(X,Y ), less(Y,X)⇔ builtin_fail.

transitive @ less(X,Y ), less(Y,Z)⇒ less(X,Z).

less(X,Y )\leq(X,Y )⇔ true.

leq(Y,X), less(X,Y )⇔ builtin_fail.

There is a rule that removes redundant leq/2 constraints to keep the stored information mini-

malistic. Since a < also gives information for ≤ the entailment solver needs to handle those as

well.

less(X,Y ) \ ask_leq(X,Y, I, T ) ⇔entailed_leq(X,Y, I, T ).

less(X,Y ) \ ask_less(X,Y, I, T ) ⇔entailed_less(X,Y, I, T ).

less(X,Z) \ ask_leq(X,Y, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(X,Y, I, T ).

less(Y,X) \ ask_leq(Z,X, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(Z,X, I, T ).

ask_less(X,Y, I, T ) ⇔number(X), number(Y ), X < Y | entailed_less(X,Y, I, T ).

less(X,Z) \ ask_less(X,Y, I, T ) ⇔number(Z), number(Y ), Z < Y | entailed_less(X,Y, I, T ).

less(Y,X) \ ask_less(Z,X, I, T ) ⇔number(Z), number(Y ), Z < Y | entailed_less(Z,X, I, T ).

Adding a Constraint Solver for equal

To represent the built-in == a CHR constraint eq/2 is chosen.

redundant @ eq(X,Y ) \ eq(X,Y )⇔ true.

reflexive @ eq(X,X)⇔ true.

symmetric @ eq(X,Y )⇒ eq(Y,X).

transitive @ eq(X,Y ), eq(Y,Z)⇒ eq(X,Z).
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eq(X,Y )\leq(X,Y )⇔ true.

eq(X,Y ), less(X,Y )⇔ builtin_fail.

eq(X,Y ), less(Y,X)⇔ builtin_fail.

eq(X,Y )⇔ nonvar(X), nonvar(Y ), X\ == Y | builtin_fail.

eq(X,Y ), less(X,Z)⇒ less(Y, Z).

eq(X,Y ), less(Z,X)⇒ less(Z, Y ).

eq(X,Y ), leq(X,Z)⇒ leq(Y, Z).

eq(X,Y ), leq(Z,X)⇒ leq(Z, Y ).

There is a rule that removes redundant leq/2 constraints to keep the stored information minimal-

istic. Since a == also gives information for ≤ the entailment solver needs to handle those as

well.

eq(X,Y )\ask_eq(X,Y, I, T ) ⇔entailed_eq(X,Y, I, T ).

eq(Y,X)\ask_eq(X,Y, I, T ) ⇔entailed_eq(X,Y, I, T ).

ask_eq(X,X, I, T ) ⇔entailed_eq(X,X, I, T ).

ask_eq(X,Y, I, T ) ⇔X == Y | entailed_eq(X,Y, I, T ).

eq(X,Z)\ask_eq(X,Y, I, T ) ⇔Z == Y | entailed_eq(X,Y, I, T ).

eq(Y,X)\ask_eq(Z,X, I, T ) ⇔Z == Y | entailed_eq(Z,X, I, T ).

eq(X,Z)\ask_leq(X,Y, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(X,Y, I, T ).

eq(Y,X)\ask_leq(Z,X, I, T ) ⇔number(Z), number(Y ), Z ≤ Y | entailed_leq(Z,X, I, T ).

4.2.5 Cleanup

As mentioned earlier, the resulting final states of the transformed code can have constraints in it

that the original would not have. These are the constraints storing information for the constraint

solver that represents the built-ins from Bnew and leftover ask and entailed constraints. The

constraints storing information for the constraint solvers need to be present in both states in order

for them to be equivalent. Ask and entailed constraints are only relevant during the computation

to check if a rule can fire with certain constraints (see Example 27). This means that during the

check for operational equivalence, those leftover constraints need to be removed from any final

states before those are checked for equivalence. For this purpose the module cleanup.pl

offers a predicate cleanup/2 that removes any leftover ask or entailed constraints.

Example 27. Consider the following rule:

c(A,B) ⇔ A < B,B < A | true.
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Since this rule can never fire, it can be added to any program that has the constraint c/2 de-

fined without changing its functionality. If the transformed version of a program with this rule is

consulted with the following query:

less(A,B), c(A,B).

the resulting final state would contain an ask_less(A,B, i) and an entailed_less(A,B, i, t(c(A,B))).

These constraints are leftovers from a check if this rule can fire and obviously need to be re-

moved from the final state, since otherwise a rule that did not fire would have influenced on the

final state.

4.2.6 Limitations

In comparison to the limitations mentioned in section 4.1.2 the operational equivalence checker

now supports the built-ins from Bnew and works with propagation rules. Constraints with the

names leq/2, ask_leq/4, entailed_leq/4, less/2, ask_less/4, entailed_less/4, eq/2, ask_eq/4,

entailed_eq/4, builtin_fail/0 are not allowed to be used in the tested programs, since they are

defined by the constraint solvers in the transformed code. As a workaround for this limitation

these constraints can easily be renamed in a tested program. The rest of the limitations have

not changed.

4.3 Test cases and examples

The examples in this section are all tested in the same way. The module opeq.pl is consulted

in SWI-Prolog and the predicate opeq/2 is called with the file-paths of both files.

Example 28. Test of Example 20

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint a/0,b/0,helloworld/0.

3

4 a <=> helloworld.

5 b <=> helloworld.

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint a/0,b/0,helloworld/0.

3

4 a <=> b.

5 b <=> helloworld.
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Result:

1 The programs are operationally equivalent.

Example 29. Test of Example 19

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint min/1.

3

4 min(X),min(Y) <=> X<Y | min(X).

5 min(X),min(Y) <=> X==Y | min(X).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint min/1.

3

4 min(X),min(Y) <=> X=<Y | min(X).

Result:

1 =====================================================================

2 For the minimal State:

3 minState([leq(A,B),min(A),min(B)],[],[A,B])

4

5 file 1 results in:

6 [leq(C,D),min(D),min(C),globs([C,D])]

7

8 while file 2 results in:

9 [leq(E,F),min(E),globs([E,F])]

10

11 these states are not joinable

12 =====================================================================

13

14

15 The programs are not operationally equivalent,

16 1 minimal state(s) are not joinable.

As expected, the minimal states containing the equal and the less constraint don’t cause any

problems, but the minimal state with less or equal can not fire any rules in program 1.

Example 30. Test of splitting a propagation rule in several propagation rules, switching the

position of constraints in the rules and replacing the built-in < with the built-in > and the built-in

≤ with the built-in ≥ by flipping the arguments.
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Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B),test2(C,D),test3(B,D) ==>

5 A=<B , C<D, B==D | test(A), test(C) , test(B).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B),test2(C,D),test3(B,D) ==> A=<B , C<D , B==D | test(A).

5 test3(B,D),test1(A,B),test2(C,D) ==> A=<B , B==D , C<D | test(C).

6 test2(C,D),test1(A,B),test3(B,D) ==> B>=A , D>C , B==D | test(B).

Result:

1 The programs are operationally equivalent.

Example 31. Test of two programs with similar looking final states, but with different variables.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B) \ test2(C,D) <=> A=<B | test(C).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B) \ test2(C,D) <=> A=<B | test(D).

Result:

1 =====================================================================

2 For the minimal State:

3 minState([test1(A,B),leq(A,B),test2(C,D)],[],[A,B,C,D])

4

5 file 1 results in:

6 [leq(E,F),test1(E,F),test(G),globs([E,F,G,H])]

7
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8 while file 2 results in:

9 [leq(I,J),test1(I,J),test(K),globs([I,J,L,K])]

10

11 these states are not joinable

12 =====================================================================

13 =====================================================================

14 For the minimal State:

15 minState([test1(A,B),leq(A,B),test2(C,D)],[],[A,B,C,D])

16

17 file 1 results in:

18 [leq(E,F),test1(E,F),test(G),globs([E,F,G,H])]

19

20 while file 2 results in:

21 [leq(I,J),test1(I,J),test(K),globs([I,J,L,K])]

22

23 these states are not joinable

24 =====================================================================

25

26

27 The programs are not operationally equivalent,

28 2 minimal state(s) are not joinable.

The state equivalence checker noticed, that the variables are different.

Example 32. Test of a modified version of Example 31, where the different variables are unified

in the guard.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B) \ test2(C,D) <=> A=<B, C=D | test(C).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test1/2, test2/2, test3/2, test/1.

3

4 test1(A,B) \ test2(C,D) <=> A=<B, C=D| test(D).

Result:

1 The programs are operationally equivalent.
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Since the previously different variables have now been unified with each other, this moddified

version is operational equivalent.

Example 33. Test where a rule that cannot fire is added to a program

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A<B | test(A).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A==B, A<B | test(B).

5 test(A,B) <=> A<B | test(A).

Result:

1 The programs are operationally equivalent.

Since the added rule cannot fire and its minimal state leads to a failed final state (as described

in section 4.2.4 ) the two programs are operational equivalent.

Example 34. Test where the user defined CHR constraints are different.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/3, test/1.

Result:

1 The two programs have different CHR constraints defined.

Since there are different constraints defined no further tests are done.

Example 35. Test with a redundant rule where the constraint solver needs to compare variables

and numbers.

Program 1:
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1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A<5 | test(B).

5 test(A,B) <=> A<6 | test(B).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A<6 | test(B).

Result:

1 The programs are operationally equivalent.

When the minimal state of the first rule of program 1 is checked, the constraint-solver for less in

program 2 is asked if A < 6 is true and it only has the information that A < 5 is true. Since the

constraint solvers that are used for the built-ins Bnew can to some degree work with numbers

this example is working.

Example 36. Test with two obviously not equivalent programs.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A<B | test(B).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(A,B) <=> A==B | test(B).

Result:

1 =====================================================================

2 For the minimal State:

3 minState([less(A,B),test(A,B)],[],[A,B])

4

5 file 1 results in:
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6 [less(C,D),test(D),globs([C,D])]

7

8 while file 2 results in:

9 [less(E,F),test(E,F),globs([E,F])]

10

11 these states are not joinable

12 =====================================================================

13 =====================================================================

14 For the minimal State:

15 minState([eq(A,B),test(A,B)],[],[A,B])

16

17 file 1 results in:

18 [eq(C,D),eq(D,C),test(D,C),globs([D,C])]

19

20 while file 2 results in:

21 [eq(E,F),eq(F,E),test(E),globs([F,E])]

22

23 these states are not joinable

24 =====================================================================

25

26

27 The programs are not operationally equivalent,

28 2 minimal state(s) are not joinable.

Example 37. Test with two logically equivalent programs to determine the maximum. (This

example is taken from [4, p. 129] )

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint max/3.

3

4 max(X,Y,Z) <=> X=<Y | Z=Y.

5 max(X,Y,Z) <=> Y<X | Z=X.

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint max/3.

3

4 max(X,Y,Z) <=> X<Y | Z=Y.

5 max(X,Y,Z) <=> Y=<X | Z=X.
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Result:

1 =====================================================================

2 For the minimal State:

3 minState([leq(A,B),max(A,B,C)],[],[A,B,C])

4

5 file 1 results in:

6 [leq(D,E),globs([D,E,E])]

7

8 while file 2 results in:

9 [leq(F,G),max(F,G,H),globs([F,G,H])]

10

11 these states are not joinable

12 =====================================================================

13 =====================================================================

14 For the minimal State:

15 minState([leq(A,B),max(B,A,C)],[],[A,B,C])

16

17 file 1 results in:

18 [leq(D,E),max(E,D,F),globs([D,E,F])]

19

20 while file 2 results in:

21 [leq(G,H),globs([G,H,H])]

22

23 these states are not joinable

24 =====================================================================

25

26

27 The programs are not operationally equivalent,

28 2 minimal state(s) are not joinable.

Since the minimal states with less or equal lead to different final states, those two programs are

not operationally equivalent.
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Confluence Checker

This section describes how the support for the built-ins from Bnew = {<,>,≤,≥,==} has been

added to the confluence checker. The same code transformations as described in section 4.2.2

are used to realize this.

5.1 Problem with the Transformed Code

The easiest way to add support to those built-ins would be if a program could be checked for

confluence by simply calling the confluence checker with the transformed code. Unfortunately

there are two points that prevent this from being this easy. The first problem is that the constraint

solvers for the added built-ins use built-ins that the confluence checker does not support. The

second problem is, that again there might be leftover ask or entailed constraints that need to be

removed before the final states can be checked for equivalence. (Just like in section 4.2.5 ) This

means that the confluence checker needs to check for critical pairs in the original code where

some handling for the unsupported built-ins needs to be added and that after a critical pair was

checked a cleanup needs to be done to remove ask and entailed constraints.

5.2 Necessary modifications

The modules that need to be modified are the confcheck.pl and the criticalpairs.pl.

The first step is to let the check_confluence/1 predicate from the confcheck.pl call the

read_rules/4 predicate from the chrparserOPEQ.pl to obtain a file with the transformed code

that is needed later to run the tests.

The critical pairs are created just like before, with one modification to the critical_pair/5 pred-

icate from the criticalpairs.pl module. The built-ins from Bnew are now filtered from the

guards of a potential critical pair and constraints representing their information are added to the

kept head.

The last modification is done to the statesjoinable/3 predicate from the confcheck.pl module.

This predicate is now called with the transformed program and therefore the cleanup/2 predicate

from the cleanup.pl module is called before the final states are checked for equivalence to
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get rid of any leftover ask or entailed constraints. Additionally to the normal state equivalence

check those final states are also checked for the builtinfail constraint, and if it is present in both

final states they are considered equivalent even if the state equivalence check failed.

5.3 Limitations

Two limitations have changed in comparison to section 3.4. One is that the built-ins from Bnew

are now supported. The other is that constraints with the names leq/2, ask_leq/4, entailed_leq/4,

less/2, ask_less/4, entailed_less/4, eq/2, ask_eq/4, entailed_eq/4, builtin_fail/0 are not allowed

to be used in the tested programs, since they are defined by the constraint solvers in the trans-

formed code. As a workaround for this limitation these constraints can easily be renamed in a

tested program. There is still no syntax check performed and no support for propagation rules.

Notre: When creating critical pairs built-ins from Bnew are ignored. This means that there are

some trivial critical pairs with failed built-ins checked for confluence. Those critical pairs have no

influence on the actual result, since due to the rules for failed states they will result in final states

with just one builtin_fail/0 constraint (see section 4.2.4.

5.4 Testcases and examples

The examples in this section are all tested in the same way. The module confcheck.pl is

consulted in SWI-Prolog and the predicate check_confluence/2 is called with the file-path of the

file. First some examples that came with the confluence checker [1] are tested and after that

some examples using built-ins from Bnew are tested.

Example 38. Very simple program with only trivial overlaps [1]

1 :- use_module(library(chr)).

2 :- chr_constraint p/0, q/0.

3

4 p <=> true.

5 q <=> true.

Result:

1 Checking confluence of CHR program in ~\simple1.pl...

2

3 The CHR program in ~\simple1.pl is confluent.

Example 39. Program with one not joinable overlap [1]
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1 :- use_module(library(chr)).

2 :- chr_constraint p/0, q/0.

3

4 p <=> q.

5 p <=> false.

Result:

1 Checking confluence of CHR program in ~\simple2.pl...

2

3 =====================================================================

4 The following critical pair is not joinable:

5 state([q],[],[])

6 state([],[false],[])

7

8 This critical pair stems from the critical ancestor state:

9 [p]

10

11 with the overlapping part:

12 [ (p,p)]

13

14 of the following two rules:

15 p<=>q

16 p<=>false

17 =====================================================================

18

19 The CHR program in ~\simple2.pl is NOT confluent!

20 1 non-joinable critical pair(s) found!

Example 40. Program with a non trivial critical pair and some trivial critical pairs [1]

1 :- use_module(library(chr)).

2 :- chr_constraint p/0, q/0, r/0.

3

4 p,q <=> true.

5 q,r <=> true.

Result:

1 Checking confluence of CHR program in ~\simple3.pl...

2

3 =====================================================================
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4 The following critical pair is not joinable:

5 state([r],[true],[])

6 state([p],[true],[])

7

8 This critical pair stems from the critical ancestor state:

9 [p,q,r]

10

11 with the overlapping part:

12 [ (q,q)]

13

14 of the following two rules:

15 p,q<=>true

16 q,r<=>true

17 =====================================================================

18

19 The CHR program in ~\simple3.pl is NOT confluent!

20 1 non-joinable critical pair(s) found!

Example 41. Program with guards that has some overlaps with an inconsistent built-in store

and some critical pairs [1]

1 :- use_module(library(chr)).

2 :- chr_constraint p/1.

3

4 p(X) <=> X = 1 | true.

5 p(X) <=> X = 2 | true.

6 p(2) <=> true.

Result:

1 Checking confluence of CHR program in ~\simple4.pl...

2

3 The CHR program in ~\simple4.pl is confluent.

Example 42. A constraint solver for xor [1]

1 :- use_module(library(chr)).

2 :- chr_constraint xor/1.

3

4 xor(X), xor(X) <=> xor(0).

5 xor(1) \ xor(0) <=> true.

Result:

40



5.4 Testcases and examples

1 Checking confluence of CHR program in ~\xor.pl...

2

3 The CHR program in ~\xor.pl is confluent.

Example 43. A program with built-ins fromBnew in the guards that has overlaps with inconsistent

built-ins that during the confluence check are represented by CHR constraints due to the program

transformation

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(X,Y) <=> X==Y | test(yay).

5 test(X,Y) <=> X<Y | test(doh).

6 test(X,Y) <=> X>Y | test(oh).

Result:

1 Checking confluence of CHR program in ~\example6c.pl...

2

3 The CHR program in ~\example6c.pl is confluent.

Example 44. A modified version of Example 43 where the overlaps now lead to non joinable

critical pairs

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(X,Y) <=> X==Y | test(yay).

5 test(X,Y) <=> X=<Y | test(doh).

6 test(X,Y) <=> X>=Y | test(oh).

Result:

1 Checking confluence of CHR program in ~\example7c.pl...

2

3 =====================================================================

4 The following critical pair is not joinable:

5 state([eq(A,B),leq(C,D),test(yay)],[A=C,B=D],[A,B,C,D])

6 state([eq(A,B),leq(C,D),test(doh)],[A=C,B=D],[A,B,C,D])

7

8 This critical pair stems from the critical ancestor state:

9 [test(A,B),A=C,B=D,A==B,C=<D]

10
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11 with the overlapping part:

12 [ (test(A,B),test(C,D))]

13

14 of the following two rules:

15 test(E,F)<=>E==F|test(yay)

16 test(K,L)<=>K=<L|test(doh)

17 =====================================================================

18

19 =====================================================================

20 The following critical pair is not joinable:

21 state([eq(A,B),leq(C,D),test(yay)],[A=D,B=C],[A,B,D,C])

22 state([eq(A,B),leq(C,D),test(oh)],[A=D,B=C],[A,B,D,C])

23

24 This critical pair stems from the critical ancestor state:

25 [test(A,B),A=D,B=C,A==B,D>=C]

26

27 with the overlapping part:

28 [ (test(A,B),test(D,C))]

29

30 of the following two rules:

31 test(E,F)<=>E==F|test(yay)

32 test(K,L)<=>K>=L|test(oh)

33 =====================================================================

34

35 =====================================================================

36 The following critical pair is not joinable:

37 state([leq(A,B),leq(C,D),test(doh)],[A=D,B=C],[A,B,D,C])

38 state([leq(A,B),leq(C,D),test(oh)],[A=D,B=C],[A,B,D,C])

39

40 This critical pair stems from the critical ancestor state:

41 [test(A,B),A=D,B=C,A=<B,D>=C]

42

43 with the overlapping part:

44 [ (test(A,B),test(D,C))]

45

46 of the following two rules:

47 test(E,F)<=>E=<F|test(doh)

48 test(K,L)<=>K>=L|test(oh)

49 =====================================================================

50
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5.4 Testcases and examples

51 The CHR program in ~\example7c.pl is NOT confluent!

52 3 non-joinable critical pair(s) found!
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6 Adding a Confluence Check to the Operational

Equivalence Checker

The goal is to create a program that first checks two programs for confluence and performs

an operational equivalence check. This means that the confluence checker should test both

programs in different modules (just like in section 4.1.1 ). The program should terminate when

at least one of the input programs is not confluent without starting the operational equivalence

test.

6.1 Necessary modifications

The module opeq.pl now has the predicate

confopeq(File1, F ile2)

which is very similar to the opeq/2 that was described in section 4. The major difference is, that

before it checks for operational equivalence, it calls the following predicate with both programs

that are tested

check_confluence1(File, F ileExe,C,N)

where File is the path to the original file, FileExe is the file-path to the transformed program,

C is either 1 or 2 to represent if it is the first or the second program and N is the number of

non joinable critical pairs. The predicate works like described in section 5.2 just that it now

returns the number of non joinable critical pairs and that the states_joinable/3 has been mod-

ified to a states_joinable/4 to accept the parameter C so that it either consults the file in the

consult1.pl or the consult2.pl module.

After the confluence checks both N are added up. If the result is greater than zero at least

one program is not confluent and the checker terminates, otherwise the operational equivalence

check is continued just like it is described in section 4.

6.2 Limitations

Since the confluence checker has not been modified in its essence since section 5.2, this pro-

gram has all the limitations described in section 5.3. Compared to the limitations mentioned
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in section 4.2.6 the tested programs no longer need to be well-behaved, they just need to be

terminating. But the support for propagation rules is lost.

Since this is the last modification, the limitations are summed up once more:

• no support for propagation rules

• only the built-ins true, =/2, ≤ /2, ≥ /2, <, > and == are supported

• the tested programs need to terminate

• only valid CHR programs should be checked

• Constraints with the names leq/2, ask_leq/4, entailed_leq/4, less/2, ask_less/4, entailed_less/4,

eq/2, ask_eq/4, entailed_eq/4, builtin_fail/0 are not allowed to be used in the tested pro-

grams

6.3 Testcases and examples

The examples in this section are all tested in the same way. The module opeq.pl is consulted in

SWI-Prolog and the predicate confopeq/2 is called with the file-paths of the files that are tested.

Example 45. Test of Example 43 and a slightly modified version that should be operational

equivalent.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(X,Y) <=> X==Y | test(yay).

5 test(X,Y) <=> X<Y | test(doh).

6 test(X,Y) <=> X>Y | test(oh).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(X,Y) <=> Y<X | test(oh).

5 test(X,Y) <=> X==Y | test(yay).

6 test(X,Y) <=> Y>X | test(doh).

Result:

1 Checking confluence of CHR program in ~\example6c.pl...

2
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6.3 Testcases and examples

3 The CHR program in E:\uni\bachelor\opeq-examples\example6c.pl is confluent.

4

5

6 Checking confluence of CHR program in ~\example6c-2.pl...

7

8 The CHR program in ~\example6c-2.pl is confluent.

9

10

11

12 The programs are operationally equivalent.

Example 46. Test of Example 44 and a slightly modified version that should be operational

equivalent, but does not matter since neither program is confluent.

Program 1:

1 :- use_module(library(chr)).

2 :- chr_constraint test/2, test/1.

3

4 test(X,Y) <=> X==Y | test(yay).

5 test(X,Y) <=> X=<Y | test(doh).

6 test(X,Y) <=> X>=Y | test(oh).

Program 2:

1 :- use_module(library(chr)).

2 :- chr_constraint test/1, test/2.

3

4 test(X,Y) <=> Y>=X | test(doh).

5 test(X,Y) <=> Y==X | test(yay).

6 test(X,Y) <=> Y==X | test(oh).

Result:

1 Checking confluence of CHR program in ~\example7c.pl...

2

3 =====================================================================

4 The following critical pair is not joinable:

5 state([eq(A,B),leq(C,D),test(yay)],[A=C,B=D],[A,B,C,D])

6 state([eq(A,B),leq(C,D),test(doh)],[A=C,B=D],[A,B,C,D])

7

8 This critical pair stems from the critical ancestor state:

9 [test(A,B),A=C,B=D,A==B,C=<D]
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10

11 with the overlapping part:

12 [ (test(A,B),test(C,D))]

13

14 of the following two rules:

15 test(E,F)<=>E==F|test(yay)

16 test(K,L)<=>K=<L|test(doh)

17 =====================================================================

18

19 =====================================================================

20 The following critical pair is not joinable:

21 state([eq(A,B),leq(C,D),test(yay)],[A=D,B=C],[A,B,D,C])

22 state([eq(A,B),leq(C,D),test(oh)],[A=D,B=C],[A,B,D,C])

23

24 This critical pair stems from the critical ancestor state:

25 [test(A,B),A=D,B=C,A==B,D>=C]

26

27 with the overlapping part:

28 [ (test(A,B),test(D,C))]

29

30 of the following two rules:

31 test(E,F)<=>E==F|test(yay)

32 test(K,L)<=>K>=L|test(oh)

33 =====================================================================

34

35 =====================================================================

36 The following critical pair is not joinable:

37 state([leq(A,B),leq(C,D),test(doh)],[A=D,B=C],[A,B,D,C])

38 state([leq(A,B),leq(C,D),test(oh)],[A=D,B=C],[A,B,D,C])

39

40 This critical pair stems from the critical ancestor state:

41 [test(A,B),A=D,B=C,A=<B,D>=C]

42

43 with the overlapping part:

44 [ (test(A,B),test(D,C))]

45

46 of the following two rules:

47 test(E,F)<=>E=<F|test(doh)

48 test(K,L)<=>K>=L|test(oh)

49 =====================================================================

48



6.3 Testcases and examples

50

51 The CHR program in ~\example7c.pl is NOT confluent!

52 3 non-joinable critical pair(s) found!

53

54 Checking confluence of CHR program in ~\example7c-2.pl...

55

56 =====================================================================

57 The following critical pair is not joinable:

58 state([leq(A,B),eq(C,D),test(doh)],[A=D,B=C],[A,B,D,C])

59 state([leq(A,B),eq(C,D),test(yay)],[A=D,B=C],[A,B,D,C])

60

61 This critical pair stems from the critical ancestor state:

62 [test(A,B),A=D,B=C,B>=A,C==D]

63

64 with the overlapping part:

65 [ (test(A,B),test(D,C))]

66

67 of the following two rules:

68 test(E,F)<=>F>=E|test(doh)

69 test(K,L)<=>L==K|test(yay)

70 =====================================================================

71

72 =====================================================================

73 The following critical pair is not joinable:

74 state([leq(A,B),eq(C,D),test(doh)],[A=D,B=C],[A,B,D,C])

75 state([leq(A,B),eq(C,D),test(oh)],[A=D,B=C],[A,B,D,C])

76

77 This critical pair stems from the critical ancestor state:

78 [test(A,B),A=D,B=C,B>=A,C==D]

79

80 with the overlapping part:

81 [ (test(A,B),test(D,C))]

82

83 of the following two rules:

84 test(E,F)<=>F>=E|test(doh)

85 test(K,L)<=>L==K|test(oh)

86 =====================================================================

87

88 =====================================================================

89 The following critical pair is not joinable:
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90 state([eq(A,B),eq(C,D),test(yay)],[B=D,A=C],[B,A,D,C])

91 state([eq(A,B),eq(C,D),test(oh)],[B=D,A=C],[B,A,D,C])

92

93 This critical pair stems from the critical ancestor state:

94 [test(B,A),B=D,A=C,A==B,C==D]

95

96 with the overlapping part:

97 [ (test(B,A),test(D,C))]

98

99 of the following two rules:

100 test(E,F)<=>F==E|test(yay)

101 test(K,L)<=>L==K|test(oh)

102 =====================================================================

103

104 The CHR program in ~\example7c-2.pl is NOT confluent!

105 3 non-joinable critical pair(s) found!

106 The input programs are not confluent.
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7 Conclusion and Future Work

The definition for an operational equivalence check has been implemented and support for more

built-ins has been added. This section will first give a short overview and conclusion for all that

was done and then talk about what could be done in the future.

7.1 Conclusion

The definition of operational equivalence is very strict and if two programs are operationally

equivalent they are usually very similar with only trivial changes. Normally even little changes to

a program result in it not being operational equivalent with the original program, but loosening

the requirements for equivalence easily leads to a problem that is no longer decidable. Since the

operational equivalence checker prints the minimal states that end in not equivalent final states

to the scree, the user can check if those special cases actually hurt his program or if they should

never actually occur if the program is uses as intended.

Another realization was that the occurring problems did not come from CHR but from Prolog.

The main problem was that most built-ins in Prolog cannot work with unbound variables during

entailment tests, what is a very important property when trying to check for operational equiv-

alence. The solution for this problem was to move away from the host language and try to

represent those built-ins in CHR using CHR constraints and a constraint solver.

The final ressult of this work now is a operational equivalence checker, that works according to

Theorem 18. It is limited due to how difficult it is to offer support for further built-ins. The main

difficulty when trying to add a built-in is to find a constraint solver that works like the desired

built-in, can handle unbound variables and store information for unbound variables.

7.2 Future Work

The limitation to the confluence checker that it cannot handle propagation rules is a big limitation,

but to add support for propagation rules the propagation history needs to be considered. To do

this one would most likely need to do a lot of code transformations to represent propagation rules

with simpagation rules and add an unique identifier to each constraint, as described in section

2.2.2.
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The existing constraint solvers that are shown in section 4.2.4 should not be considered perfect

representations for those built-ins. Further refinement and additional rules for more special cases

could get them closer to the behavior of the built-ins they represent.

Further built-ins could be added by modifying the parser and adding appropriate constraint

solvers. But the more built-ins are added the more the other constraint solvers need do be

modified since most built-ins have influence on other built-ins (e.g. after adding support for <

one needed to ensure that the information that A ≤ B and B < A leads to a failed state)

The given operational equivalence checker could be used to implement a operational c-equivalence

checker. For this a predicate to find the c-minimal states are needed, then those c-minimal states

could be checked for operational equivalence similar to how the minimal states are checked.
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A Disc Content

Folder ’./conf+opeq-checker’

This folder contains the operational equivalence checker and the modified confluence checker.

Folder ’./conf+opeq-checker/conf-examples’

This folder contains the example programs shown in section 5.4 and section 6.3 .

Folder ’./conf+opeq-checker/opeq-examples’

This folder contains the example programs shown in section 4.3 .

File ’./conf+opeq-checker/MANUAL’

This file describes how to use the operational equivalence and the confluence checker.

File ’./Bachelor-Thesis-Frank-Richter.pdf’

This file is the pdf version of this work.

53





Bibliography

[1] State Equivalence and Confluence Checker. http://www.uni-ulm.de/en/in/pm/

research/topics/chr/info/downloads.html, . – Accessed: 2014-05-18

[2] ABDENNADHER, Slim ; FRÜHWIRTH, Thom: Operational equivalence of CHR programs and

constraints. In: Principles and Practice of Constraint Programming–CP’99 Springer, 1999,

S. 43–57

[3] FAGES, François ; OLIVEIRA RODRIGUES, Cleyton M. ; MARTINEZ, Thierry: Modular CHR

with ask and tell. In: Proc. of Fifth Workshop on Constraint Handling Rules, 2008

[4] FRÜHWIRTH, Thom: Constraint Handling Rules by Thom Frühwirth, Cambridge University

Press, 2009. Hard cover: ISBN 978-0-521-87776-3. (2009), S. xvii 53–57 59–64 71 101–110

128–132

[5] FRÜHWIRTH, Thom: Introducing Simplification Rules. (1991)

[6] LANGBEIN, Johannes ; RAISER, Frank ; FRÜHWIRTH, Thom: A State Equivalence and Con-

fluence Checker for CHR. In: 7th International Workshop on Constraint Handling Rules,

2010

[7] RAISER, Frank ; BETZ, Hariolf ; FRÜHWIRTH, Thom: Equivalence of CHR states revisited.

In: 6th International Workshop on Constraint Handling Rules (CHR), 2009, S. 34–48

[8] SNEYERS, Jon ; VAN WEERT, Peter ; SCHRIJVERS, Tom ; DE KONINCK, Leslie: As time goes

by: Constraint Handling Rules. In: TPLP 10 (2010), Nr. 1, S. 1–47

55

http://www.uni-ulm.de/en/in/pm/research/topics/chr/info/downloads.html
http://www.uni-ulm.de/en/in/pm/research/topics/chr/info/downloads.html


Name: Frank Richter Matrikelnummer: 626272

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Ulm, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frank Richter


	Abstract
	Introduction
	Motivation
	Aim

	Constraint Handling Rules
	Syntax
	Semantics
	Very Abstract Semantics
	Abstract Semantics t

	State Equivalence
	Minimal States
	Joinability
	Confluence
	Test for confluence
	Examples

	Operational Equivalence
	Definition
	Test for Operational Equivalence
	Examples


	The State Equivalence and Confluence Checker
	CHR Parser
	State Equivalence
	Confluence
	Limitations

	The Operational Equivalence Checker
	Basic Implementation of the Theorem
	Implementation
	Limitations

	Adding Built-ins
	CHRat
	Replacing Guards by 'ask' and 'entailed' Constraints
	Modified CHR Parser
	Adding Constraint Solvers
	Adding a failed state
	Adding a Constraint Solver for less or equal
	Adding a Constraint Solver for less
	Adding a Constraint Solver for equal

	Cleanup
	Limitations

	Test cases and examples

	Adding support for more Built-ins to the Confluence Checker
	Problem with the Transformed Code
	Necessary modifications
	Limitations
	Testcases and examples

	Adding a Confluence Check to the Operational Equivalence Checker
	Necessary modifications
	Limitations
	Testcases and examples

	Conclusion and Future Work
	Conclusion
	Future Work

	Disc Content
	Bibliography

