
Constraint Handling Rules - What Else?

Thom Frühwirth

University of Ulm, Germany
www.constraint-handling-rules.org

Abstract. Constraint Handling Rules (CHR) is both an effective con-
current declarative constraint-based programming language and a versa-
tile computational formalism. While conceptually simple, CHR is distin-
guished by a remarkable combination of desirable features:
– a semantic foundation in classical and linear logic,
– an effective and efficient sequential and parallel execution model
– guaranteed properties like the anytime online algorithm properties
– powerful analysis methods for deciding essential program properties.

This overview of some CHR-related research and applications is by no
means meant to be complete. Essential introductory reading for CHR
provide the survey article [125] and the books [56, 63]. Up-to-date in-
formation on CHR can be found online at the CHR web-page www.

constraint-handling-rules.org, including the slides of the keynote
talk associated with this article. In addition, the CHR website dtai.

cs.kuleuven.be/CHR/ offers everything you want to know about CHR,
including online demo versions and free downloads of the language.

1 Executive Summary

Constraint Handling Rules (CHR) [56] tries to bridge the gap between theory and
practice, between logical specification and executable program by abstraction
through constraints and the concepts of computational logic. CHR has its roots
in constraint logic programming and concurrent constraint programming, but
also integrates ideas from multiset transformation and rewriting systems as well
as automated reasoning and theorem proving. It seamlessly blends multi-headed
rewriting and concurrent constraint logic programming into a compact user-
friendly rule-based programming language. CHR consists of guarded reactive
rules that transform multisets of relations called constraints until no more change
occurs. By the notion of constraint, CHR does not need to distinguish between
data and operations, and its rules are both descriptive and executable.

In CHR, one distinguishes two main kinds of rules: Simplification rules re-
place constraints by simpler constraints while preserving logical equivalence,
e.g., X≤Y∧Y≤X ⇔ X=Y. Propagation rules add new constraints that are logi-
cally redundant but may cause further simplification, e.g., X≤Y∧Y≤Z ⇒ X≤Z.
Together with X≤X ⇔ true, these rules encode the axioms of a partial or-
der relation. The rules compute its transitive closure and replace inequalities
≤ by equalities = whenever possible. For example, A≤B∧B≤C∧C≤A becomes
A=B∧B=C. More program examples can be found in Section 2. Semantics of
CHR are discussed in Section 3.

2

1.1 Powerful Program Analysis

One advantage of a declarative programming language is the ease of program
analysis. CHR programs have a number of desirable properties guaranteed and
can be analyzed for others. They will be discussed in Section 4.

Since CHR (and many of its fragments) are Turing-complete, termination is
undecidable, but often a ranking in the form a a well-founded termination order
can be found to prove termination. From the ranking, a crude upper bound for
the time complexity can automatically be derived. More precise bounds on the
complexity can also be found by inspecting the rules.

Confluence of a program guarantees that any computation starting from the
same initial state results in the same final state no matter which of the applicable
rules are applied. There is a decidable, sufficient and necessary condition for
confluence of terminating programs.

Any terminating and confluent CHR program has a consistent logical read-
ing. It will automatically implement a concurrent any-time (approximation) and
on-line (incremental) algorithm, where constraints can arrive during the compu-
tation that can be stopped and restarted at any time. It ensures that rules can
be applied in parallel to different parts of a state without any modification and
without harming correctness. This property is called declarative concurrency or
logical parallelism.

Surprisingly, there is also a decidable, sufficient and necessary syntactic con-
dition for operational equivalence of terminating and confluent programs (we do
not know of any other programming language in practical use with this prop-
erty). So one can check if two programs behave in the same way and if a program
has redundant parts.

1.2 Implementations and Applications

CHR is often used as a language extension to other programming languages, its
syntax can be easily adapted to that of the host language. In the host language,
CHR constraints can be posted and inspected; in the CHR rules, host language
statements can be included. CHR libraries are now available in almost all Prolog
implementations, but also in Haskell, Curry, Java and C as well as in hardware.

It has been proven that every algorithm can be implemented in CHR with best
known time and space complexity, something that is not known to be possible in
other pure declarative programming languages. The efficiency of the language is
empirically demonstrated by optimizing CHR compilers that compete well with
both academic and commercial rule-based systems and even classical program-
ming languages. The fastest implementations of CHR, e.g. in C, allow to apply
up to millions of rules per second.

Other rule- and logic-based approaches have been successfully and rather
straightforwardly embedded in CHR. For this reason, CHR is considered a
candidate for a lingua franca of such approaches with the potential for cross-
fertilization of research in computational systems and languages. Implementa-
tions and embeddings are discussed in Section 5.

3

CHR has been used for such diverse applications as type system design
for Haskell, time tabling, optimal sender placement, computational linguistics,
spatio-temporal reasoning, verification, semantic web reasoning, data mining
and computational linguistics. Successful commercial application include finan-
cial services, network design, mould design, robot vehicle control, enterprise ap-
plications and software verification. Applications of CHR and research using
CHR are discussed in Section 6.

CHR is also available online for demos and experimentation at chrjs.net

at an introductory level and as WebCHR at chr.informatik.uni-ulm.de/

~webchr/ with more than 50 example programs. More than 200 academic and in-
dustrial projects worldwide use CHR, and about 200 scientific books and 2000 re-
search papers reference it. The CHR community and other interested researchers
and practitioners gather at the yearly CHR workshops and the biannual CHR
summer schools.

2 A Taste of CHR Programs

The following programs can be run with little modification in the online versions
of CHR just mentioned. Note that all programs have the anytime online algo-
rithm properties. So they can be stopped at any time for intermediate results,
constraints can be added while they already run (incrementality), and they can
be directly executed in parallel. These program examples are explained more in
[55] and discussed in detail in [56].

Some examples use a third kind of rule, a hybrid rule called simpagation rule.
It has the form H1\H2 ⇔ C|B. Basically, if H1 and H2 match constraints and
the guard C holds, then the constraints matching H1 are kept, the constraints
matching H2 are removed and the body C is added. For logical conjunction ∧
we will simply write a comma between constraints.

Multiset Transformation - One-Rule Algorithms

Compute minimum of a set of min candidates
min(I) \ min(J) ⇔ J>I | true.

Compare two numbers, keep smaller one.

Compute greatest common divisor of a set of numbers
gcd(I) \ gcd(J) ⇔ J>=I | gcd(J mod I).

Replace I and J by I and (J mod I) until all numbers are the same.

Compute primes, given prime(2),...,prime(MaxN)

prime(I) \ prime(J) ⇔ J mod I = 0 | true.

Keep removing multiples until only primes are left.

Sort array with elements a(Index,Value)

a(I,V), a(J,W) ⇔ I>J, V<W | a(I,W), a(J,V).

Keep swapping numbers that are out of order until sorted.

4

Merge Sort, given values as next(start,Value)

next(A,B) \ next(A,C) ⇔ A<B,B<C | next(B,C).

Turn common successors into direct successors until sorted chain results.

Newton’s Method for Square Root Approximation for N>1

eps(E) \ sqrt(X,R) ⇔ R*R/X-1>E | sqrt(X,(R+X/R)/2).

Start with sqrt(N,N). E is the required precision factor.

Fibonacci Variations - M is the Nth Fibonacci number

Top-down Evaluation
fib(0,M) ⇔ M=1.

fib(1,M) ⇔ M=1.

fib(N,M) ⇔ N>=2 | fib(N-1,M1), fib(N-2,M2), M=M1+M2.

Matching is used on left hand sides of rules.

Top-down Evaluation with Memorization (in first rule)
fib(N,M1) \ fib(N,M2) ⇔ M1=M2.

fib(0,M) ⇒ M=1.

fib(1,M) ⇒ M=1.

fib(N,M) ⇒ N>=2 | fib(N-1,M1), fib(N-2,M2), M=M1+M2.

Turned simplification into propagation rules.

Bottom-up Evaluation without Termination
fibstart ⇔ fib(0,1), fib(1,1).

fib(N1,M1), fib(N2,M2) ⇒ N2=N1+1 | fib(N2+1,M1+M2).

Basically, original simplification rules have been reversed.

Bottom-up Evaluation with Termination at Max

fib(Max) ⇒ fib(0,1), fib(1,1).

fib(Max), fib(N1,M1), fib(N2,M2) ⇒ Max>N1, N1=N2+1 |

fib(N2+1,M1+M2).

The auxiliary constraint fib(Max) is added. Computation stops when Max=N1.

All-Pair Shortest Paths

The distance from X to Y is D

path(X,Y,D1) \ path(X,Y,D2) ⇔ D1=<D2 | true.

arc(X,Y,D) ⇒ path(X,Y,D).

arc(X,Y,D), path(Y,Z,Dn) ⇒ path(X,Z,D+Dn).

Compute all paths with propagation rules, keep smaller ones.

Dynamic Programming - Bottom-up Parsing with CYK Algorithm

Grammar rules are in Chomsky normal form A->T or A->B*C.
A sequence of terminal symbols is encoded as a chain of arcs.
parse(X,Y,A) \ parse(X,Y,A) ⇔ true.

5

terminal @ A->T, arc(X,Y,T) ⇒ parse(X,Y,A).

non-term @ A->B*C, parse(X,Y,B), parse(Y,Z,C) ⇒ parse(X,Z,A).

Note the similarity with All-Pair Shortest Paths.

Boolean Conjunction as Constraint

The result of X∧Y is Z

and(X,Y,Z) ⇔ X=0 | Z=0. and(X,Y,Z) ⇔ Y=0 | Z=0.

and(X,Y,Z) ⇔ X=1 | Z=Y. and(X,Y,Z) ⇔ Y=1 | Z=X.

and(X,Y,Z) ⇔ X=Y | Y=Z. and(X,Y,Z) ⇔ Z=1 | X=1,Y=1.

Also computes with unknown input values and backwards. Such rules can be au-
tomatically generated from specifications [9].

3 CHR Semantics

In this section we give an overview of the main semantics for CHR. More detailed
overviews can be found in [63, 20]. As a declarative programming language and
formalism, CHR features both operational semantics that describe the execution
of a program and declarative semantics that interpret a program as a logical
theory. These semantics exist at various levels of refinement. They are related
by soundness and completeness results, showing their correspondence.

3.1 CHR Rules and their Declarative Semantics

To simplify the presentation, we use a generic notation for all three kinds of CHR
rules. Built-in constraints are host language statements that can be used as tests
in the guard or auxiliary computations in the body of a rule. A generalized
simpagation rule is of the form

H1\H2 ⇔ C|B

where in the rule head (left-hand-side), H1 and H2 are conjunctions of user-
defined constraints, the optional guard C is a conjunction of built-in constraints
from the host language and the body (right-hand-side) B is a conjunction of
arbitrary constraints. If H1 and H2 are non-empty, the rule corresponds to a
simpagation rule. If H1 is empty, the rule corresponds to a simplification rule, if
H2 is empty, the rule corresponds to a propagation rule.

The declarative semantics is based on first-order predicate logic, where con-
straints are viewed as predicates and rules as logical implications and equiva-
lences. A generalized simpagation rule basically corresponds to a logical equiva-
lence

H1 ∧H2 ∧ C ↔ H1 ∧ C ∧B.

An interesting refinement is the linear-logic semantics [20, 21]. It is closer to the
operational semantics in that it captures the meaning of constraints as resources,
where multiplicities matter.

6

3.2 Operational Semantics for CHR

The execution of CHR can be described by structural operational semantics,
which are given as state transition systems. Basically, states are conjunctions of
constraints. These semantics exist in various formulations and at various levels
of refinement, going from the abstract (analytical) to the concrete (pragmatic):

– The very abstract semantics [56] is close to modus ponens of predicate logic.
– The abstract (or theoretical) semantics [6] is often used for program analysis.
– The refined semantics [44] describes the behavior of CHR implementations.

Several alternative operational semantics for CHR have also been proposed,
among them [67, 80, 108, 22].

The essential aspect of the operational semantics is the application of a rule:
Take a generalized simpagation rule from the program. If there are constraints
in the current state that match the head of the rule and if the guard holds under
this matching, then the constraints matching second part of the head H2 (if any)
are removed and the guard and body of the rule are added to the state.

There are alternative formulations for the above semantics. Chapter 8 in
the book [63] and [103, 20] develop an axiomatic notion of state equivalence.
The equivalence relation ≡ on states treats built-in constraints semantically
and user-defined constraints syntactically. Basically, two states are equivalent if
they are logically equivalent while taking into account that - forming multisets -
multiplicities of user-defined constraints matter. For example, X=<Y ∧Y =<X∧
c(X,Y) ≡ X=Y ∧ c(X,X) which is different to X=Y ∧ c(X,X) ∧ c(X,X).

Using state equivalence, the presentation of the abstract semantics can be
simplified. It basically boils down to

S ≡ (H1 ∧H2 ∧ C ∧G) (H1\H2 ⇔ C|B) (H1 ∧ C ∧B ∧G) ≡ T
S 7−→ T

where all upper-case letters stand for conjunctions of constraints. G is called
the context of the rule application, G is not affected by it. Note that the transi-
tion S 7−→ T is only allowed if the built-in constraints in state S are consistent
and if the rule has not been applied before to the same constraints under the
same matching.

3.3 Operational Semantics for Parallel CHR

One of the main features of CHR is its inherent concurrency. Intuitively, in a
parallel execution of CHR we can apply rules simultaneously to different parts
of a state. But we can do more than that: We can also apply rules to overlapping
parts of a state as long as the overlap is only removed by at most one rule. In
Chapter 4 of [56], this parallelism in CHR is defined by an interleaving semantics
as

A ∧G 7−→ C ∧G B ∧G 7−→ D ∧G
A ∧B ∧G 7−→ C ∧D ∧G

7

This inference rule is justified by the monotonicity property of CHR (ex-
plained below). If a program executed under the refined semantics makes use
of the order of constraints in a state and the order of rules in a program, this
kind of automatic parallelization may not work. Such programs are not conflu-
ent. On the other hand, confluent programs can be executed in parallel without
modification. As we will see, we can check CHR programs for confluence, and
we can even semi-automatically complete them to make them confluent. Thus,
using completion, we can turn non-confluent programs into parallel programs.
This method has been applied to the classical Union-Find algorithm which is
very hard to parallelize [52] (with [131] showing the effectiveness of the resulting
program) and to the Preflow-Push algorithm [94]. Alternative and more refined
semantics for parallel CHR are e.g. [87, 115, 88, 105, 63].

4 Properties of CHR and Their Analysis

We first introduce three essential types of monotonicity and the anytime online
algorithm properties that all come for free in CHR. We then discuss the analysis
of termination and time complexity as well as of confluence, completion and
operational equivalence of CHR programs.

4.1 CHR Monotonicity Properties

In the abstract operational semantics we can observe three essential types of
monotonicity.

First, adding rules to a program cannot inhibit the applicability of any rules
that were applicable. This aids incremental program development and rapid
prototyping. Already a program with a few first rules is executable, and we
can add rules to cover more and more cases, enabling more and more desired
computations. The confluence test (see next Section) can be used to discover
situations where old and new rules lead to different results.

Second, built-in constraints (that occur in the guard and body of a rule)
can only be added to a state, they are never removed. Hence they accumulate
monotonically. On the other hand, user-defined constraints are non-monotonic in
that they can be added and removed from a state. This means that an applicable
rule will remain applicable as long as the user-defined constraints it matches are
present in the state and as long as the state is consistent.

Third, during a rule application, the context G stays unchanged. We can
actually change it without influencing the rule application itself. So if a rule is
applicable in a state, it is also applicable in any larger state where constraints
have been added (as long as the state is consistent) [6]. This is an important
modularity property of CHR, it is usually called CHR’s monotonicity property.
Clearly such context-independence does not hold in traditional programming
languages, where the context may update as well, resulting in write conflicts.

On the other hand, if we have an empty context G, we get the minimal
transition for to the given rule:

(H1 ∧H2 ∧ C) 7−→ (H1 ∧ C ∧B).

8

The state (H1 ∧ H2 ∧ C) is called minimal state of the rule. Removing any
constraint from it would make its rule inapplicable. Adding constraints to it
cannot inhibit the applicability due to monotonicity. Since minimal states and
transitions capture the essence of a rule application, they will come handy later
when analyzing CHR programs for confluence and operational equivalence.

4.2 Anytime Online Algorithm Properties

Any algorithm expressed properly as a CHR program will enjoy several impor-
tant properties: It will be an anytime algorithm and it will be an online algorithm
and it can be run in parallel without modification.

The anytime (approximation) algorithm property means that we can inter-
rupt the execution of a program at any time, observe the current state as an
approximation to the result and restart from that intermediate result. This is
obvious from the operational semantics and the notion of states and transitions
used there.

The online (incremental) algorithm property means that we can add addi-
tional constraints while the program is running without the need to recompute
from scratch. This is an immediate consequence of the monotonicity property of
CHR. The program will behave as if the newly added constraints were present
from the beginning but had been ignored so far. Therefore only a minimal
amount of computation is performed to accommodate the new constraint. In-
crementality is useful for interactive, reactive and control systems, in particular
for agent and constraint programming.

In the refined semantics, the order of constraints in a state and the order
of rules in a program can be made to matter, and this may weaken the above
properties.

4.3 Termination and Time Complexity Analysis

One way to show termination is to prove that in each rule, if the guard holds,
the rule head is strictly larger than the rule body using some well-founded termi-
nation order called a ranking. For CHR programs that mainly use simplification
rules, simple rankings are often sufficient to prove termination [49, 50]. More so-
phisticated methods are needed in the presence of propagation rules [98, 99, 57].
An approximation of CHR programs by constraint logic programs (CLP) has
also been used to analyse the termination behavior of CHR [82].

The run-time of a CHR program not only depends on the number of rule
applications (derivation lengths), but also on the number of rule application
attempts. The meta-complexity theorem in [51] basically states that the com-
plexity is bounded by the derivation length taken to the power of the number of
heads in a rule. This only gives crude upper-bounds.

Actual CHR systems achieve much better complexity results since they im-
plement the refined semantics and feature compiler optimizations such as index-
ing. For CHR with and without priorities, there is a more realistic sophisticated
meta-complexity result derived from the Logical Algorithms (LA) formalism [34].

9

4.4 Confluence and Completion

Confluence means that it does not matter for the result which of the applicable
rules are applied in which order in a computation. The resulting states will
always be equivalent to each other. For terminating CHR programs, there is a
decidable, sufficient and necessary condition for confluence [6]. These papers also
have shown the many benefits of confluent programs:

– Confluent programs are always implement anytime online algorithms.
– Confluent programs can be run in parallel without modification.
– Confluence implies consistency of the logical reading of the program.
– Confluence improves the soundness and completeness results between the

operational and declarative semantics. These theorems are stronger than
those for other (concurrent) constraint programming languages.

– The least models of confluent CHR programs and its CLP approximation
coincide [82].

The idea of the confluence test is to construct a finite number of so-called
critical states by overlapping minimal states of rules in the program. An over-
lap equates some user-defined constraints and removes the resulting duplicate
occurrences. If these constraints are to be removed by more than one rule, we
have generated a conflict. One now checks if these conflicting rule applications
on its own can be continued with computations that lead to equivalent states.
If this holds for all critical states in the program, we have proven confluence.

In practice, this notion of confluence can be too strict. In [45] the notion
of observable confluence is introduced, where the states considered must satisfy
a user-defined invariant. Other related notions of confluence are considered in
[81, 32]. Confluence for non-terminating programs is in general undecidable, it is
discussed in [106].

Completion is the process of adding rules to a non-confluent program until it
becomes confluent [2]. These rules are generated between the successor states of
critical states. In contrast to completion for term rewriting, in CHR we generally
need more than one rule to make a critical pair joinable: a simplification rule and
a propagation rule. Unfortunately, completion may not terminate. Completion
can be also used for program specialisation [4, 2].

4.5 Operational equivalence

Operational equivalence means that given two programs, for any given state, its
computations in both programs lead to the same final state. There is a decidable,
sufficient and necessary condition for operational equivalence of terminating and
confluent CHR programs [3]. We do not know of any other programming lan-
guage in practical use that admits such a test.

The test is straightforward: The minimal states of the rules in both programs
are each executed in both programs, and for each minimal state, the computa-
tions must reach equivalent states in both programs. This test can also be used
to discover redundant rules in a program.

10

5 CHR Implementations and Embeddings in CHR

We discuss efficient implementations, variants and extensions of CHR and em-
beddings of other rule- and graph-based approaches in CHR.

5.1 CHR Implementations and Their Efficiency

The first wide-spread implementations of CHR were based on [84]. Most available
CHR implementations today - be it in Prolog, Java or C - are based on the
expertise of the CHR team at Katholieke Universiteit Leuven [139, 136, 132].

State-of-the-art CHR libraries with mode and type declarations in Prolog
and C allow to implement any algorithm in a natural and high-level way, with
time and space consumption that is typically within an order of magnitude
from the best-known implementations in any other language [123, 133]. Indeed,
[123] has proven that every algorithm can be implemented in CHR with the
best known time and space complexity. This has been exemplified by providing
elegant implementations with optimal time-complexity of the classical union-find
algorithm [113] and Fibonacci heaps [122]. CHR is the only known declarative
language where this results holds, it is unlikely to hold for other declarative
languages like Prolog or Haskell [123]. Actually, CHR cannot be embedded in
pure Prolog [65]. The fastest CHR implementations in CCHR [139] and hProlog
allow to up to apply millions of rules per second.

One reason for the effectiveness of CHR is that it uses a compiler and run-
time system that is a significant advancement over existing algorithms (such
as RETE, TREAT, LEAPS) for executing rule-based languages as has been
impressingly demonstrated in [133]. In addition to a superior rule-application
mechanism, CHR compilers use sophisticated optimizations (besides indexing
on constraint arguments taking into account mode and type information), such
as memory reuse, late storage, guard optimization and join ordering optimization
[85, 133, 63].

CLIPS (in C) and JESS (in Java)) are considered by many to be the most
efficient rule-based systems available. The benchmarks of [133] show that his
novel Java implementation of CHR as well as CHR in C (CCHR) [139] are
faster than CLIPS and JESS, sometimes by several orders of magnitude. In
benchmarks of [123], CHR with mode declarations achieves the optimal time
and space complexity (as do imperative languages). Prolog and strict Haskell
have a time complexity which is a polylogarithmic factor from optimal, and
their space complexity is not optimal. Lazy Haskell quickly gets into memory
problems.

As for concurrency, prototype parallel CHR implementations exist in software
using Haskell [87] and in hardware using Nvidia CUDA by transforming a subset
of CHR to C++ [140] and using FPGA’s [131]. These papers feature experiments
that show a potential for optimal linear speedup by parallelization of CHR pro-
grams (and super-linear speed-up e.g. in the case of the greatest-common-divisor
program).

11

5.2 CHR Language Variants and Extensions

We start with a remark on fragments of CHR, indicating the adequacy of the
overall language. We then discuss language extensions for CHR, program trans-
formation and new programming languages based on CHR.

While there are many Turing-complete language subsets of CHR [117, 66, 93]
(a single multi-headed simplification rule suffices), it has also been shown in [38,
65] that each of the following features of CHR can be considered essential, since
they increase the expressive power of CHR: constraints with arguments, built-
in constraints, function symbols to build complex terms, multi-headed rules,
introduction of new variables in the body of a rule.

Since CHR libraries in Prolog naturally allow to use backtracking search by
Prolog’s disjunction, most operational semantics can be extended to the resulting
language CHR∨ [11]. In [35] the authors extend the refined operational semantics
of CHR to support the implementation of different search strategies.

In adaptive CHR, constraints can be declaratively removed together with the
consequences they produced by getting involved in rule applications. This means
that any properly written algorithm becomes adaptive. An adaptive semantics is
defined in [138]. Adaptive CHR is used for realizing intelligent search strategies
in [137, 138].

In [36] the authors extend CHR with user-defined rule priorities that can be
static or dynamic. This language extension reduces the level of non-determinism
that is inherent to the abstract operational semantics of CHR, and gives a more
high-level form of execution control compared to the refined operational seman-
tics. Priorities make CHR more expressive.

Other notable extensions of CHR include non-monotonic negation-as-absence
[135], aggregates such as sum, count, findall, and min [124], rules with proba-
bilities [61, 30, 121], Except for search, all above CHR extensions have been im-
plemented by simple effective source-to-source program transformation in CHR
itself, also see Chapter 6 in [56] and the online transformation tool at http:

//pmx.informatik.uni-ulm.de/chr/stssemantics/. Program transformation
in itself has been studied in [62, 1]. Partial evaluation is covered by [53], discussing
specialisation of CHR rules, and by [68], which is concerned with unfolding of
CHR rules. Confluence completion can be used to great effect for program spe-
cialisation [4, 2].

Notable new programming languages that are based on CHR are:

– HYPROLOG [31] as an extension of Prolog with assumptions and abduction.
– DatalogLB adds features of CHR to Datalog [79].
– CHRISM is CHR with probabilistic reasoning and statistical learning [121].
– CADMIUM is an implementation of ACD Term Rewriting, a generalization

of CHR and Term Rewriting (TRS) [43].
– SMCHR is an implementation of Satisfiability Modulo Theories (SMT) [40],

where the theory part can be implemented in CHR.
– Linear Meld (LM) is a linear logic language closely related to CHR [33].
– CoMingle is CHR for distributed logic programming (on Android) [89].

12

5.3 Embedding Other Formalisms and Languages in CHR

The expressiveness, effectiveness and efficiency of CHR enables the embedding
of the characteristic features of other rule-based and graph-based formalisms,
systems and languages in CHR by simple source-to-source transformations:

– Prolog and Constraint Logic Programming (CLP) programs are translated
into CHR∨ in [11] using Clark’s completion.

– Logical Algorithms (LA) are mapped into CHR with and without rule prior-
ities in [86]. This are the only known implementations of LA. They achieve
the tight time complexity required for the LA meta-complexity theorem.

– Term Rewriting Systems (TRS) are translated to rules with equational con-
straints in CHR in [104].

– Graph Transformation Systems (GTS) are encoded in CHR in [101]. Sound-
ness and completeness of the encoding is proven. GTS joinability of critical
pairs can be mapped onto joinability of specific critical pairs in CHR.

– Petri Nets are translated to CHR in [19]. It is proven that there is a one-to-
one correspondence between Colored Petri Nets and positive ground range-
restricted CHR simplification rules over finite domains.

Chapter 6 and 9.3 of [56] and the CHR web-page also describe these embeddings:

– Production Rules and Business Rules,
– Event-Condition-Action (ECA) Rules,
– Functional Programming,
– General Abstract Model for Multiset Manipulation (GAMMA),
– Deductive databases languages like DATALOG,
– Description logic (DL) with OWL- and SWRL-style rules,
– Concurrent Constraint Programming (CC) language framework.

The online tool http://pmx.informatik.uni-ulm.de/chr/translator sup-
ports the basic translation for some of these embeddings: term rewriting sys-
tems, functional programming, multiset transformation, production rules with
negation-as-absence.

The embeddings are quite useful for comparing and for cross-fertilization be-
tween different approaches. For example, in the CHR embedding, the close rela-
tionship between colored Petri Nets and the GAMMA chemical abstract machine
(CHAM) can be immediately seen. On the other hand, it seems difficult to come
up with an embedding of full CHR in one of the afore-mentioned formalisms. Ba-
sically, other approaches either lack the notion of constraints and logical variables
or they lack multi-headed rules and propagation rules. Given these embeddings
and its power in general, CHR can be considered a candidate for a lingua franca
for computational systems with the potential for cross-fertilization of research.

6 CHR in Research and Applications

Typical research applications of CHR can be found in areas of computational lin-
guistics, constraint solving, cognitive systems, spatio-temporal reasoning, agent-
based systems, bio-informatics, semantic web, type systems, verification and
testing and many more.

13

Commercial applications include financial services in stockbroking (Secu-
ritEase, New Zealand), vehicle control by robotic brains (Cognitive Systems,
Spain), injection mould design (Cornerstone Intelligent Software Corp, Canada),
optical network design (Mitre, USA), enterprise applications (LogicBlox, USA),
and software verification (BSSE, Germany). See Section 7 in [125] for details.

6.1 Language Design and Algorithm Design

One of the most successful research applications of CHR is in the design, pro-
totyping and analysis of advanced type systems for the functional programming
language Haskell [128, 127, 41]. Type reconstruction with CHR is performed for
functional and logic programs in [111]. A flow-based approach for a variant of
parametric polymorphism in Java is based on CHR in [28].

The union-find algorithm can be seen as solving simple equations between
variables or constants. By choosing the appropriate equational relations, one
can derive fast incremental algorithms for solving certain propositional logic
(SAT) problems and polynomial equations in two variables [54]. Almost-linear
tree equation solving algorithms are reconstructed with CHR in [95]. Paralleliz-
ing classical algorithms is discussed for Union-Find using confluence analysis [52]
and for Preflow-Push [94].

6.2 Software Verification and Testing

The authors of [75, 76] present a new method for automatic test data genera-
tion (ATDG) applying to semantically annotated control-flow graphs (CFGs),
covering both ATDG based on source code and assembly or virtual machine
code. The method supports a generic set of test coverage criteria, including all
structural coverage criteria currently in use in industrial software test for safety
critical software. The work [12] gives test cases a denotational semantics by view-
ing them as specification predicates. The authors develop a testing theory and
implementation for fault-based mutation testing.

Other applications of CHR in testing include [100, 78, 109, 37]. An an effective
methodology for verifying properties of imperative programs is their transforma-
tion to constraint-based programs [42, 13, 97]. Somewhat related is lightweight
string reasoning for OCL [26].

6.3 Constraints Solving and Reasoning

CHR was originally designed to write or even automatically generate constraint
solvers [8, 9, 126, 102]. Solvers written in CHR and applications of CHR in con-
straint reasoning can be found in [59] and further references in [48, 125, 63]. For
example, CHR-based spatio-temporal reasoning is applied to robot path plan-
ning in [46, 91]. In the soft constraints framework [23, 25, 24], constraints and
partial assignments are given preference or importance levels, and constraints
are combined according to combinators which express the desired optimization
criteria.

14

The goal of argumentation-based legal reasoning [119] is to determine the
chance of winning a court case, given the probabilities of the judge accepting
certain claimed facts and legal rules. In computer linguistics, CHR Grammars
(CHRG) [29] execute as robust bottom-up parsers with an inherent treatment of
ambiguity. Computational Cognitive Modeling is a research field at the interface
of computer science and psychology. It enables researchers to build detailed
cognitive models using a cognitive architecture. A popular cognitive architecture,
ACT-R, has been implemented in CHR and given a proper formal semantics for
the first time [69, 70].

6.4 Multi-Agent Systems and Abduction

The agent-based system FLUX is implemented in CHR [129, 130]. Its application
FLUXPLAYER [110] won the General Game Playing competition at the AAAI
conference in 2006. SCIFF is a framework to specify and verify interaction in
open agent societies [14, 16]. The SCIFF language is equipped with a semantics
based on abductive logic programming. Other applications in multi-agent sys-
tems and abductive reasoning are for example [116, 15, 96, 73]. HYPROLOG [31]
extends Prolog with CHR rules for assumptions, abduction and integrity con-
straints. Probabilistic Abductive Logic Programs (PALPs) are introduced and
and implemented in CHR for solving abductive problems providing minimal
explanations together with their probabilities [30].

6.5 Semantic Web

In Chapter 9.3. of [56] a straightforward and effective implementation of descrip-
tion logic with OWL- and SWRL-style rules in CHR is given. For the Semantic
Web, the integration and combination of data from different information sources
is an important issue that can be handled with CHR [17, 141]. In [18] a com-
position and verification framework for Semantic Web Services specified using
WSSL is proposed, a novel service specification language based on the fluent cal-
culus, that addresses issues related to the frame, ramification and qualification
problems. An earlier paper on web service composition using fluent calculus is
[107]. The paper [27] proposes a service modeling approach consisting of service
contracts and a process model. Service contracts are used as service advertise-
ment and service request in this approach. The Cuypers Multimedia Transforma-
tion Engine [77] supports the automatic generation of Web-based presentations
adapted to the user’s needs.

6.6 The Diversity of CHR Applications

Scheduling and timetabling are popular constraint-based applications, and this
also holds for CHR implementation of course scheduling and room planning for
the University of Munich [7, 10], which has become an often-cited standard work
in the area.

15

The tool Popular [60] uses a path-loss model to describe radio-wave trans-
mission and constraint-based programming to optimize the placement of base
stations (transmitters) for local wireless communication at company sites.

The Munich Rent Advisor [58] allows the calculation of the estimated fair
rent for a flat based on statistical data using an online form. Simply by translat-
ing the calculation scheme into CHR-based arithmetic interval constraints, the
functionality is significantly extended: The user need not answer all questions,
and so an interval range for the possible rent is returned.

The papers [118, 74] present a new system for automatic music generation,
in which music is modeled using very high level probabilistic rules in CHRISM
[121]. The probabilistic parameters can be learned from examples, resulting in a
system for personalized music generation.

The authors of [90] present an algorithm for long-term routing of autonomous
sailboats. It is based on the A*-algorithm and incorporates changing weather
conditions by dynamically adapting the underlying routing graph. The software
also takes individual parameters of the sailboat into account, and proved to be
faster than commercial systems. The system was successfully put to test during
an attempt to break the world record in long-distance robot sailing with the
ASV RoBoat of INNOC (Vienna).

7 Conclusions

Constraint Handling Rules - what else?

References

1. S. Abdennadher, G. Fakhry, and N. Sharaf. Towards the implementation of
source-to-source transformation tool for CHR operational semantics. In G. Gupta,
editor, LOPSTR ’13, Pre-proceedings, 2013.

2. S. Abdennadher and T. Frühwirth. On completion of Constraint Handling Rules.
In M. J. Maher and J.-F. Puget, editors, CP ’98, volume 1520 of LNCS, pages
25–39. Springer, Oct. 1998.

3. S. Abdennadher and T. Frühwirth. Operational equivalence of CHR programs
and constraints. In J. Jaffar, editor, CP ’99, volume 1713 of LNCS, pages 43–57.
Springer, Oct. 1999.

4. S. Abdennadher and T. Frühwirth. Integration and optimization of rule-based
constraint solvers. In M. Bruynooghe, editor, LOPSTR ’03, volume 3018 of LNCS,
pages 198–213. Springer, 2004.

5. S. Abdennadher, T. Frühwirth, and C. Holzbaur, editors. Special Issue on Con-
straint Handling Rules, volume 5(4–5) of Theory and Practice of Logic Program-
ming. Cambridge University Press, July 2005.

6. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and Semantics of
Constraint Simplification Rules. Constraints, 4(2):133–165, 1999.

7. S. Abdennadher and M. Marte. University Course Timetabling Using Constraint
Handling Rules. In C. Holzbaur and T. Frühwirth, editors, Special Issue on Con-
straint Handling Rules, volume 14(4) of Journal of Applied Artificial Intelligence,
pages 311–325. Taylor & Francis, London, UK, 2000.

16

8. S. Abdennadher and C. Rigotti. Automatic generation of rule-based constraint
solvers over finite domains. ACM TOCL, 5(2):177–205, 2004.

9. S. Abdennadher and C. Rigotti. Automatic generation of chr constraint solvers.
Theory Pract. Log. Program., 5(4-5):403–418, 2005.

10. S. Abdennadher, M. Saft, and S. Will. Classroom assignment using constraint
logic programming. In PACLP ’00: Proc. 2nd Intl. Conf. and Exhibition on
Practical Application of Constraint Technologies and Logic Programming, Apr.
2000.

11. S. Abdennadher and H. Schütz. CHRv: A Flexible Query Language. In Third
International Conference on Flexible Query Answering Systems, volume 1495 of
LNCS, pages 1–14. Springer, 1998.

12. B. Aichernig. A systematic introduction to mutation testing in unifying theories
of programming. In P. Borba, A. Cavalcanti, A. Sampaio, and J. Woodcook,
editors, Testing Techniques in Software Engineering, volume 6153 of LNCS, pages
243–287. Springer, 2010.

13. E. Albert, M. J. Garćıa de la Banda, M. Gómez-Zamalloa, J. M. Rojas, and P. J.
Stuckey. A CLP heap solver for test case generation. volume 13(4–5) of TPLP,
pages 721–735. Cambridge University Press, Aug. 2013.

14. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Verifi-
able agent interaction in abductive logic programming: the sciff framework. ACM
Transactions on Computational Logic (TOCL), 9(4):29, 2008.

15. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and Verification of Agent Interaction Protocols in a Logic-Based System.
In 2004 ACM Symposium on Applied Computing, pages 72–78. ACM, 2004.

16. M. Alberti, M. Gavanelli, and E. Lamma. The CHR-based implementation of the
sciff abductive system. Fundamenta Informaticae, 124(4):365–381, 2013.

17. L. Badea, D. Tilivea, and A. Hotaran. Semantic Web Reasoning for Ontology-
Based Integration of Resources. In Second International Workshop on Principles
and Practice of Semantic Web Reasoning, volume 3208 of LNCS, pages 61–75.
Springer, 2004.

18. G. Baryannis and D. Plexousakis. Fluent calculus-based semantic web service
composition and verification using wssl. In Service-Oriented Computing–ICSOC
2013 Workshops, pages 256–270. Springer, 2014.

19. H. Betz. Relating Coloured Petri Nets to Constraint Handling Rules. In Fourth
Workshop on Constraint Handling Rules, pages 32–46, 2007.

20. H. Betz. A Unified Analytical Foundation for Constraint Handling Rules. BoD–
Books on Demand, 2014.

21. H. Betz and T. Frühwirth. Linear-logic based analysis of Constraint Handling
Rules with disjunction. ACM Transactions on Computational Logic (TOCL),
14(1):1, 2013.

22. H. Betz, F. Raiser, and T. Frühwirth. A complete and terminating execution
model for Constraint Handling Rules. In Hermenegildo and Schaub [83], pages
597–610.

23. S. Bistarelli, T. Frühwirth, M. Marte, and F. Rossi. Soft constraint propagation
and solving in Constraint Handling Rules. Computational Intelligence: Special
Issue on Preferences in AI and CP, 20(2):287–307, May 2004.

24. S. Bistarelli, F. Martinelli, and F. Santini. A formal framework for trust policy
negotiation in autonomic systems: abduction with soft constraints. Autonomic
and Trusted Computing, pages 268–282, 2010.

17

25. S. Bistarelli, F. Martinelli, and F. Santini. A semiring-based framework for the
deduction/abduction reasoning in access control with weighted credentials. Com-
puters & Mathematics with Applications, 64(4):447–462, 2012.

26. F. Büttner and J. Cabot. Lightweight string reasoning for OCL. In Modelling
Foundations and Applications, pages 244–258. Springer, 2012.

27. R. Chen, L. Liao, and Z. Fang. Contracting of web services with Constraint
Handling Rules. In Services (SERVICES), 2012 IEEE Eighth World Congress
on, pages 211–218, 2012.

28. W.-N. Chin, F. Craciun, S.-C. Khoo, and C. Popeea. A Flow-Based Approach
for Variant Parametric Types. In 21st annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 273–
290. ACM, 2006.

29. H. Christiansen. Chr grammars. Theory and Practice of Logic Programming,
5(4-5):467–501, 2005.

30. H. Christiansen. Implementing probabilistic abductive logic programming with
Constraint Handling Rules. In Constraint Handling Rules, pages 85–118. Springer,
2008.

31. H. Christiansen and V. Dahl. HYPROLOG: A new logic programming language
with assumptions and abduction. In Gabbrielli and Gupta [64], pages 159–173.

32. H. Christiansen and M. H. Kirkeby. Confluence modulo equivalence in Constraint
Handling Rules. [92].

33. F. Cruz and R. Rocha. On compiling linear logic programs with comprehensions,
aggregates and rule priorities. In Practical Aspects of Declarative Languages -
17th International Symposium, PADL 2015 Proceedings, 2015.

34. L. De Koninck. Logical Algorithms meets CHR: A meta-complexity result for
Constraint Handling Rules with rule priorities. TPLP, 9(2):165–212, Mar. 2009.

35. L. De Koninck, T. Schrijvers, and B. Demoen. Search strategies in CHR(Prolog).
In Schrijvers and Frühwirth [112], pages 109–124.

36. L. De Koninck, T. Schrijvers, and B. Demoen. Chrrp: Constraint Handling Rules
with rule priorties. Technical Report CW 479, K.U.Leuven, Dept. Comp. Sc.,
Leuven, Belgium, Mar. 2007.

37. F. Degrave, T. Schrijvers, and W. Vanhoof. Automatic generation of test inputs
for mercury. In M. Hanus, editor, LOPSTR ’08, Revised Selected Papers, volume
5438 of LNCS. Springer, 2009.

38. C. Di Giusto, M. Gabbrielli, and M. C. Meo. Expressiveness of multiple heads in
CHR. In SOFSEM ’09: Proc. 35th Conf. Current Trends in Theory and Practice
of Comp. Science, LNCS, pages 205–216. Springer, 2009.

39. K. Djelloul, G. J. Duck, and M. Sulzmann, editors. CHR ’07: Proc. 4th Workshop
on Constraint Handling Rules, Sept. 2007.

40. G. J. Duck. SMCHR: Satisfiability modulo Constraint Handling Rules. CoRR,
abs/1210.5307, 2012.

41. G. J. Duck, R. Haemmerlé, and M. Sulzmann. On termination, confluence and
consistent CHR-based type inference. TPLP, 14(4-5):619–632, 2014.

42. G. J. Duck, J. Jaffar, and N. C. H. Koh. Constraint-based program reasoning
with heaps and separation. In C. Schulte, editor, CP, volume 8124 of Lecture
Notes in Computer Science, pages 282–298. Springer, 2013.

43. G. J. Duck, L. D. Koninck, and P. J. Stuckey. Cadmium: An implementation of
ACD term rewriting. In Garćıa de la Banda and Pontelli [72], pages 531–545.

44. G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. The refined
operational semantics of Constraint Handling Rules. In B. Demoen and V. Lif-

18

schitz, editors, ICLP ’04, volume 3132 of LNCS, pages 90–104. Springer, Sept.
2004.

45. G. J. Duck, P. J. Stuckey, and M. Sulzmann. Observable confluence for Constraint
Handling Rules. In V. Dahl and I. Niemelä, editors, ICLP ’07, volume 4670 of
LNCS, pages 224–239. Springer, Sept. 2007.

46. M. Escrig and F. Toledo. Qualitative Spatial Reasoning: Theory and Practice.
IOS Press, 1998.

47. M. Fink, H. Tompits, and S. Woltran, editors. WLP ’06: Proc. 20th Workshop
on Logic Programming, T.U.Wien, Austria, INFSYS Research report 1843-06-02,
Feb. 2006.

48. T. Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998.

49. T. Frühwirth. Proving Termination of Constraint Solver Programs. In Selected
Papers from the Joint ERCIM/Compulog Net Workshop on New Trends in Con-
traints, volume 1865 of LNCS, pages 298–317. Springer, 2000.

50. T. Frühwirth. As Time Goes By: Automatic Complexity Analysis of Simplification
Rules. In Eighth International Conference on Principles of Knowledge Represen-
tation and Reasoning, San Francisco, CA, USA, 2002. Morgan Kaufmann.

51. T. Frühwirth. As Time Goes By II: More Automatic Complexity Analysis of
Concurrent Rule Programs. ENTCS, 59(3):185–206, 2002.

52. T. Frühwirth. Parallelizing union-find in Constraint Handling Rules using con-
fluence. In Gabbrielli and Gupta [64], pages 113–127.

53. T. Frühwirth. Specialization of concurrent guarded multi-set transformation rules.
In S. Etalle, editor, LOPSTR ’04, volume 3573 of LNCS, pages 133–148. Springer,
2005.

54. T. Frühwirth. Quasi-linear-time algorithms by generalisation of union-find in
CHR. In Recent Advances in Constraints — CSCLP ’07: 12th ERCIM Intl. Work-
shop on Constraint Solving and Constraint Logic Programming, Revised Selected
Papers, pages 91–118, Nov. 2008.

55. T. Frühwirth. Welcome to Constraint Handling Rules. In Schrijvers and Frühwirth
[114], pages 1–15.

56. T. Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.
57. T. Frühwirth. A devil’s advocate against termination of direct recursion. In 17th

International Symposium on Principles and Practice of Declarative Programming,
PPDP ’15, Siena, Italy, 2015. ACM, 2015.

58. T. Frühwirth and S. Abdennadher. The Munich rent advisor: A success for logic
programming on the internet. TPLP, 1(3):303–319, 2001.

59. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

60. T. Frühwirth and P. Brisset. Placing base stations in wireless indoor communi-
cation networks. IEEE Intelligent Systems and Their Applications, 15(1):49–53,
2000.

61. T. Frühwirth, A. di Pierro, and H. Wiklicky. Probabilistic Constraint Handling
Rules. In 11th International Workshop on Functional and (Constraint) Logic
Programming, volume 76 of ENTCS, pages 115–130, 2002.

62. T. Frühwirth and C. Holzbaur. Source-to-source transformation for a class of
expressive rules. In F. Buccafurri, editor, AGP ’03: Joint Conf. Declarative Pro-
gramming APPIA-GULP-PRODE, pages 386–397, Sept. 2003.

63. T. Frühwirth and F. Raiser, editors. Constraint Handling Rules: Compilation,
Execution, and Analysis. BOD, 2011.

19

64. M. Gabbrielli and G. Gupta, editors. ICLP ’05: Proc. 21st Intl. Conf. Logic
Programming, volume 3668 of LNCS. Springer, Oct. 2005.

65. M. Gabbrielli, J. Mauro, and M. C. Meo. The expressive power of CHR with
priorities. Inf. Comput., 228:62–82, 2013.

66. M. Gabbrielli, J. Mauro, M. C. Meo, and J. Sneyers. Decidability properties for
fragments of CHR. In Hermenegildo and Schaub [83], pages 611–626.

67. M. Gabbrielli and M. C. Meo. A compositional semantics for CHR. ACM TOCL,
10(2):1–36, Feb. 2009.

68. M. Gabbrielli, M. C. Meo, P. Tacchella, and H. Wiklicky. Unfolding for CHR
programs. Theory and Practice of Logic Programming, pages 1–48, 2013.

69. D. Gall and T. Frühwirth. A formal semantics for the cognitive architecture
ACT-R. [92].

70. D. Gall and T. Frühwirth. A refined operational semantics for ACT-R. In 17th
International Symposium on Principles and Practice of Declarative Programming,
PPDP ’15, Siena, Italy, 2015. ACM, 2015.

71. J. Gallagher and M. Gelfond, editors. ICLP ’11: Proc. 27th Intl. Conf. Logic
Programming, volume 11(4–5) of TPLP. Cambridge University Press, July 2011.

72. M. Garćıa de la Banda and E. Pontelli, editors. ICLP ’08: Proc. 24rd Intl. Conf.
Logic Programming, volume 5366 of LNCS. Springer, Dec. 2008.

73. M. Gavanelli, M. Alberti, and E. Lamma. Integrating abduction and constraint
optimization in Constraint Handling Rules. In ECAI 2008: 18th European Conf.
on Artif. Intell., pages 903–904. IOS press, July 2008.

74. F. Geiselhart, F. Raiser, J. Sneyers, and T. Frühwirth. MTSeq – multi-touch-
enabled music generation and manipulation based on CHR. In Van Weert and
De Koninck [134].

75. R. Gerlich. Generic and extensible Automatic Test Data Generation for safety
critical software with CHR. In Van Weert and De Koninck [134].

76. R. Gerlich. Automatic test data generation and model checking with CHR. arXiv
preprint arXiv:1406.2122, 2014.

77. J. Geurts, J. V. Ossenbruggen, and L. Hardman. Application-Specific Constraints
for Multimedia Presentation Generation. In 8th International Conference on Mul-
timedia Modeling, pages 247–266, 2001.

78. S.-D. Gouraud and A. Gotlieb. Using CHRs to generate functional test cases for
the Java card virtual machine. In P. Van Hentenryck, editor, PADL ’06: Proc.
8th Intl. Symp. Practical Aspects of Declarative Languages, volume 3819 of LNCS,
pages 1–15. Springer, Jan. 2006.

79. T. J. Green, M. Aref, and G. Karvounarakis. Logicblox, platform and language:
a tutorial. In Proceedings of the Second international conference on Datalog in
Academia and Industry, pages 1–8. Springer-Verlag, 2012.

80. R. Haemmerlé. (Co-)Inductive semantics for Constraint Handling Rules. In Gal-
lagher and Gelfond [71], pages 593–609.

81. R. Haemmerlé. Diagrammatic confluence for Constraint Handling Rules. Theory
Pract. Log. Program., 12(4-5):737–753, Sept. 2012.

82. R. Haemmerlé, P. Lopez-Garcia, and M. Hermenegildo. CLP projection for con-
straint handling rules. In M. Hanus, editor, PPDP ’11, pages 137–148. ACM
Press, July 2011.

83. M. Hermenegildo and T. Schaub, editors. ICLP ’10: Proc. 26th Intl. Conf. Logic
Programming, volume 10(4–6) of TPLP. Cambridge University Press, July 2010.

84. C. Holzbaur and T. Frühwirth. A Prolog Constraint Handling Rules compiler and
runtime system. volume 14(4) of Journal of Applied Artificial Intelligence, pages
369–388. Taylor & Francis, Apr. 2000.

20

85. C. Holzbaur, M. Garćıa de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing
compilation of Constraint Handling Rules in HAL. In Abdennadher et al. [5],
pages 503–531.

86. L. D. Koninck, T. Schrijvers, and B. Demoen. The Correspondence Between the
Logical Algorithms Language and CHR. In 23rd International Conference on
Logic Programming, volume 4670 of LNCS, pages 209–223. Springer, 2007.

87. E. Lam and M. Sulzmann. Parallel Execution of Multi-Set Constraint Rewrite
Rules. In Tenth International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming. ACM, 2008.

88. E. S. Lam and M. Sulzmann. Concurrent goal-based execution of Constraint
Handling Rules. TPLP, 11:841–879, 2009.

89. E. S. L. Lam, I. Cervesato, and N. Fatima. Comingle: Distributed logic program-
ming for decentralized mobile ensembles. In Coordination Models and Languages -
17th IFIP WG 6.1 International Conference, COORDINATION 2015, Grenoble,
France, 2015, pages 51–66, 2015.

90. J. Langbein, R. Stelzer, and T. Frühwirth. A rule-based approach to long-term
routing for autonomous sailboats. In Robotic Sailing 2011, Part V, pages 195–204,
2011.

91. E. Martınez-Martın, M. T. Escrig, and A. P. del Pobil. A general qualitative
spatio-temporal model based on intervals. Journal of Universal Computer Science,
18(10):1343–1378, 2012.

92. H. S. Maurizio Proietti, editor. Logic-Based Program Synthesis and Transfor-
mation, 24th International Symposium, LOPSTR 2014. Revised Selected Papers,
volume 8981 of LNCS. Springer, 2015.

93. J. Mauro. Constraints Meet Concurrency. Springer, 2014.

94. M. Meister. Fine-grained parallel implementation of the preflow-push algorithm
in CHR. In Fink et al. [47], pages 172–181.

95. M. Meister and T. Frühwirth. Reconstructing almost-linear tree equation solving
algorithms in CHR. In Proceedings of CSCLP 2007: Annual ERCIM Workshop
on Constraint Solving and Constraint Logic Programming, page 123, 2007.

96. M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, and E. Lamma. Ab-
ductive logic programming as an effective technology for the static verification of
declarative business processes. Fundamenta Informaticae, 102(3):325–361, 2010.

97. A. Pettorossi, F. Fioravanti, M. Proietti, and E. De Angelis. Program verifica-
tion using Constraint Handling Rules and array constraint generalizations. In
VPT 2014. Second International Workshop on Verification and Program Trans-
formation, July 17-18, 2014, Vienna, Austria, volume 28, pages 3–18. EasyChair,
2014.

98. P. Pilozzi. Automating termination proofs for CHR. In P. M. Hill and D. S.
Warren, editors, ICLP ’09, volume 5649 of LNCS, pages 504–508. Springer, July
2009.

99. P. Pilozzi and D. De Schreye. Improved termination analysis of CHR using self-
sustainability analysis. In G. Vidal, editor, LOPSTR ’11, Revised Selected Papers,
LNCS, 2011.

100. A. Pretschner, H. Lötzbeyer, and J. Philipps. Model based testing in incremental
system development. Journal of Systems and Software, 70(3):315–329, 2004.

101. F. Raiser. Graph Transformation Systems in CHR. In 23rd International Con-
ference on Logic Programming, volume 4670 of LNCS, pages 240–254. Springer,
2007.

21

102. F. Raiser. Semi-automatic generation of CHR solvers from global constraint
automata. In P. J. Stuckey, editor, CP’ 08: Proc. 14th Intl. Conf. Princ. Pract.
Constraint Programming, volume 5202 of LNCS, pages 588–592. Springer, Sept.
2008.

103. F. Raiser, H. Betz, and T. Frühwirth. Equivalence of CHR states revisited. In
F. Raiser and J. Sneyers, editors, CHR ’09, pages 33–48. K.U.Leuven, Dept.
Comp. Sc., Technical report CW 555, July 2009.

104. F. Raiser and T. Frühwirth. Towards term rewriting systems in Constraint Han-
dling Rules. In T. Schrijvers, F. Raiser, and T. Frühwirth, editors, CHR ’08,
pages 19–34. RISC Report Series 08-10, University of Linz, Austria, 2008.

105. F. Raiser and T. Frühwirth. Exhaustive parallel rewriting with multiple removals.
In S. Abdennadher, editor, WLP ’10, Sept. 2010.

106. F. Raiser and P. Tacchella. On confluence of non-terminating CHR programs. In
Djelloul et al. [39], pages 63–76.

107. I. Salomie, V. Chifu, I. Harsa, and M. Gherga. Web service composition using
fluent calculus. International Journal of Metadata, Semantics and Ontologies,
5(3):238–250, 2010.

108. B. Sarna-Starosta and C. Ramakrishnan. Compiling Constraint Handling Rules
for efficient tabled evaluation. In M. Hanus, editor, PADL ’07: Proc. 9th Intl.
Symp. Practical Aspects of Declarative Languages, volume 4354 of LNCS, pages
170–184. Springer, Jan. 2007.

109. B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon. A model-based design-
for-verification approach to checking for deadlock in multi-threaded applications.
Intl. Journal of Softw. Engin. and Knowl. Engin., 17(2):207–230, 2007.

110. S. Schiffel and M. Thielscher. Fluxplayer: A Successful General Game Player. In
22nd Conference on Artificial Intelligence, pages 1191–1196. AAAI Press, 2007.

111. T. Schrijvers and M. Bruynooghe. Polymorphic Algebraic Data Type Recon-
struction. In Eighth ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 85–96. ACM, 2006.

112. T. Schrijvers and T. Frühwirth, editors. CHR ’06: Proc. 3rd Workshop on Con-
straint Handling Rules. K.U.Leuven, Dept. Comp. Sc., Technical report CW 452,
July 2006.

113. T. Schrijvers and T. Frühwirth. Optimal union-find in Constraint Handling Rules.
TPLP, 6(1–2):213–224, 2006.

114. T. Schrijvers and T. Frühwirth, editors. Constraint Handling Rules — Current
Research Topics, volume 5388 of LNAI. Springer, Dec. 2008.

115. T. Schrijvers and M. Sulzmann. Transactions in Constraint Handling Rules. In
Garćıa de la Banda and Pontelli [72], pages 516–530.

116. C. Seitz, B. Bauer, and M. Berger. Multi Agent Systems Using Constraint Han-
dling Rules for Problem Solving. In International Conference on Artificial Intel-
ligence, pages 295–301. CSREA Press, 2002.

117. J. Sneyers. Turing-complete subclasses of CHR. In Garćıa de la Banda and
Pontelli [72], pages 759–763.

118. J. Sneyers and D. De Schreye. APOPCALEAPS: Automatic music generation
with CHRiSM. In G. Danoy et al., editors, 22nd Benelux Conference on Artificial
Intelligence (BNAIC 2010), Luxembourg, October 2010.

119. J. Sneyers, D. De Schreye, and T. Frühwirth. Probabilistic legal reasoning in
CHRiSM. Theory and Practice of Logic Programming, 13(4-5):769–781, 2013.

120. J. Sneyers and T. Frühwirth, editors. CHR ’12: Proc. 9th Workshop on Constraint
Handling Rules. K.U.Leuven, Dept. Comp. Sc., Technical report CW 624, Sept.
2012.

22

121. J. Sneyers, W. Meert, J. Vennekens, Y. Kameya, and T. Sato. Chr (PRISM)-
based probabilistic logic learning. Theory and Practice of Logic Programming,
10(4-6):433–447, 2010.

122. J. Sneyers, T. Schrijvers, and B. Demoen. Dijkstra’s algorithm with Fibonacci
heaps: An executable description in CHR. In Fink et al. [47], pages 182–191.

123. J. Sneyers, T. Schrijvers, and B. Demoen. The computational power and com-
plexity of Constraint Handling Rules. ACM TOPLAS, 31(2), Feb. 2009.

124. J. Sneyers, P. Van Weert, and T. Schrijvers. Aggregates for Constraint Handling
Rules. In Djelloul et al. [39], pages 91–105.

125. J. Sneyers, P. Van Weert, T. Schrijvers, and L. De Koninck. As time goes by:
Constraint Handling Rules – A survey of CHR research between 1998 and 2007.
TPLP, 10(1):1–47, 2010.

126. I. Sobhi, S. Abdennadher, and H. Betz. Constructing rule-based solvers for
intentionally-defined constraints. In Schrijvers and Frühwirth [114], pages 70–
84.

127. P. J. Stuckey and M. Sulzmann. A Theory of Overloading. ACM Transactions
on Programming Languages and Systems, 27(6):1216–1269, 2005.

128. M. Sulzmann, G. J. Duck, S. Peyton-Jones, and P. J. Stuckey. Understand-
ing functional dependencies via Constraint Handling Rules. J. Functional Prog.,
17(1):83–129, 2007.

129. M. Thielscher. FLUX: A Logic Programming Method for Reasoning Agents.
Theory and Practice of Logic Programming, 5:533–565, 2005.

130. M. Thielscher. Reasoning robots: the art and science of programming robotic
agents, volume 33. Springer Science & Business Media, 2006.

131. A. Triossi, S. Orlando, A. Raffaetà, and T. Frühwirth. Compiling chr to parallel
hardware. In Proceedings of the 14th symposium on Principles and practice of
declarative programming, pages 173–184. ACM, 2012.

132. P. Van Weert. Compiling Constraint Handling Rules to Java: A reconstruction.
Technical Report CW 521, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium, Aug.
2008.

133. P. Van Weert. Efficient lazy evaluation of rule-based programs. IEEE Transac-
tions on Knowledge and Data Engineering, 22(11):1521–1534, Nov. 2010.

134. P. Van Weert and L. De Koninck, editors. CHR ’10: Proc. 7th Workshop on
Constraint Handling Rules. K.U.Leuven, Dept. Comp. Sc., Technical report CW
588, July 2010.

135. P. Van Weert, J. Sneyers, T. Schrijvers, and B. Demoen. Extending CHR with
negation as absence. In Schrijvers and Frühwirth [112], pages 125–140.

136. P. Van Weert, P. Wuille, T. Schrijvers, and B. Demoen. CHR for imperative host
languages. In Schrijvers and Frühwirth [114], pages 161–212.

137. A. Wolf. Intelligent search strategies based on adaptive Constraint Handling
Rules. Theory and Practice of Logic Programming, 5(4-5):567–594, 2005.

138. A. Wolf, J. Robin, and J. Vitorino. Adaptive CHR meets CHR∨: An extended
refined operational semantics for CHR∨ based on justifications. In Schrijvers and
Frühwirth [114], pages 48–69.

139. P. Wuille, T. Schrijvers, and B. Demoen. CCHR: the fastest CHR implementation,
in C. In Djelloul et al. [39], pages 123–137.

140. A. Zaki, T. Frühwirth, and I. Geller. Parallel execution of Constraint Handling
Rules on a Graphical Processing Unit. In Sneyers and Frühwirth [120], pages
82–90.

141. H. Zhu, S. E. Madnick, and M. D. Siegel. Enabling global price comparison
through semantic integration of web data. IJEB, 6(4):319–341, 2008.

