
Rule-based Programming

Assignment #1

Exercise 1 (SICStus Prolog). Make yourself familiar with SICStus Prolog
(which is installed in the Linux lab.)

• Information on SICStus Prolog can be found on
www.sics.se/sicstus/. Read the chapter “How to Run Pro-
log”.

• Install Emacs support for SICStus: Add the line
(load "/opt/sicstus4.0.1/lib/sicstus-

4.0.1/emacs/sicstus_emacs_init")
to the file ~/.emacs (where ~ is your home directory).

• Write a “Hello world!” program in SICStus Prolog:

:- use_module(library(chr)).
:- chr_constraint hello/0.

hello :- write(’Hello world!’).

Compile the program in Emacs and run it with the query: hello.

Exercise 2. Implement the following programs which consist of one rule
each. (Remember to insert an adequate program header!)

• p1 @ p <=> q.
• p2 @ p ==> q.
• p3 @ p,q <=> true.
• p4 @ p \ q <=> true.

For each program, pose the following queries:
(1) p
(2) q
(3) p,p
(4) q,q

Explain the different answers of the system.

Exercise 3. Implement the following programs which consist of one rule
each.

• p1 @ p(a) <=> true | true.
• p2 @ p(X) <=> X=a | true.
• p3 @ p(X) <=> true | X=a.
• p4 @ p(X) <=> true , X = a | true.
• p5 @ p(X) <=> X = a , X = b | true.

For each program, pose the following queries:
(1) p(a)
(2) p(b)
(3) p(X)

Explain the different answers of the system.



Exercise 4. Implement the following programs which consist of one rule
each.

• p1 @ p(X,Y), q(Z,Y) <=> q(X,Y).
• p2 @ q(Z,Y), p(X,Y) <=> q(X,Y).
• p3 @ p(X,Y), q(Z,Y) ==> q(X,Y).
• p4 @ p(X,Z)\ q(Z,Y) <=> q(X,Y).

For each program, pose the following queries:
(1) p(a,b), q(b,c)
(2) p(A,B), q(B,C)
(3) p(A,B), q(B,C), p(D,A)
(4) p(Y,C), q(C,A), q(C,A)

Explain the different answers of the system.


