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Abstract

There are many occasions where it is interesting to know if a program is confluent. At the mo-

ment there is a tool to check the confluence of CHR-programs, written by Johannes Langbein.

However this checker can only check CHR-programs for confluence that only contain simplifi-

cation and simpagation rules. For this thesis a new confluence checker is built that supports

propagation rules. It is influenced by the program of Johannes Langbein. With a confluence

checker that supports this third type of rules the completion algorithm for non-confluent CHR-

programs can be implemented. This algorithm tries to add new rules to a program to fulfil the

confluence property. This is also done in this work. The algorithm uses the confluence checker

to realise two of its four inference rules.
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1 Introduction

The confluence property of a program, using a rule-based language, guarantees that any com-

putation for a goal, a rule in the given program, results in the same final state no matter which

of the applicable rules are applied. Confluence as a consequence also ensures that the order

of rules in a program and the order of constraints, objects that contain information, in a goal

does not matter for the result. There is a decidable, sufficient, and necessary test for confluence

for terminating programs that returns the conflicting rule applications [6, p.101]. A disk is in the

appendix of this thesis. The content of this disk is described at the end of this work.

1.1 Motivation

There are many cases where knowing if a program can be considered confluent is interesting

and important. It is important if you want to run a program on multiple processors parallel or

want to find errors in you calculation. When a program is not confluent knowing how to restore

the confluence property might be interesting to ensure the possibility of parallel processing or

reducing the possibility of errors. Checking if a given program is confluent can be done by

hand but is getting very complex with rising complexity of the program. An automatised tool

for confluence checks and completion saves time and is making complex programs checkable.

Such a tool was written by Johannes Langbein [1], but since this checker does not support all

types of CHR-Rules this new checker was implemented.

1.2 Aim

The aim of this work is create a new confluence checker for CHR-programs with influences of

the checker made by Johannes Langbein [8] that supports propagation rules. That are rules that

add information without removing the constraint that made the rule applicable. The problem with

propagation rules is that a list where every already propagated constraint is saved is needed,

the so called propagation history. Without it the propagation rules would be able to fire endlessly

so the program would not be terminating. The main goal of this work is writing a confluence

checker that has full support for the propagation rules.

With a confluence checker that supports propagation rules the completion algorithm mentioned

in [6, p. 113] can be implemented. The full aim of this work is to create a program that can

perform both - the confluence check and the completion if possible.
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1 Introduction

This work starts with a short overview over Constraint Handling Rules (CHR) and the principles

of confluence and completion in chapter 2. After the basics have been shown the theory and the

implementation of the new confluence checker is shown, together with testcases and examples

in chapter 3. Since the new checker uses the propagation history it is described in the chapter

4. A confluence checker that supports propagation rules can also try to complete a given non-

confluent program, the implementation of the completion algorithm together with all changes to

the checker is shown chapter 5. After both implementations have been shown and discussed

two chapters that focus on the built-in support, chapter 6 and the output, chapter 7 are given.

In chapter 8 the correctness of the new checker is evaluated and (dis-)advantages of the new

implementation is shown.

1.3 Related Work

The basis for this work is the book [6] written by Thom Fruewirth. In this book the confluence

check and the completion algorithm are described. Both are only described theoretically but with

proven algorithms.

One current implementation for this check are [1] by Johannes Langbein a basic confluence

checker that supports simplification and simpagation rules. The checker is based on the theory

in [6]. The implementation was done in fully in Prolog. The advantage of this checker is that it

can check the confluence for simple CHR-Programs. While the disadvantage is that it cannot

handle propagation rules and has a limited support for built-ins.

Another implementation is build on the first checker. Frank Richter extended the checker [1]

by adding support for more built-ins [10]. The implementation was done in Prolog and CHR. It

has all advantages of the first checker and the support for built-ins gives the user the option to

check more complex programs. A limitation is that the constraints in the input program cannot

have names that are used by the checker itself. Since the name are explicit shown in [10] this

limitation is no real problem. The disadvantage of the checker is that it also does not support

propagation rules.
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2 Constraint Handling Rules

Constraint Handling Rules (CHR) was invented in 1991 by Prof. Dr. Thom Frühwirth [7]. CHR is

a high-level programming language, that offers a theoretical formalism related to first-order logic

and linear logic, while being a practical programming language based on rules [6, p. xvii].

CHR always needs a host language H that provides the data types and predefined constraints.

While using CHR the host language is denoted in round brackets and needs to provide at

least the constraints true and false, and syntactic equality and inequality checks. CHR(H) de-

notes CHR embedded in the host language H. There are several implementations like CHR(C),

CHR(Java) or CHR(Haskell) but CHR(Prolog) is the most common one [11].

2.1 Syntax

CHR is a first-order-logic language - so its signature consists of a set of variables V, a set of

function symbols Σ, and a set of predicate symbols Π. Functions and predicates got a number

of arguments they take, the so-called arity. The arity of a symbol f with the arity n is specified

by the notation f/n and we call this a functor. If a function symbol has arity zero it is called a

constant, predicate symbols with arity zero are called propositions [6, p. 49].

Built− in constraint : C,D ::= c(t1, ..., tn)|C ∧D,n ≥ 0

CHR constraint : E,F ::= e(t1, ..., tn)|E ∧ F, n ≥ 0

Goal : G,H ::= C|E|G ∧H
Simplification rule : SR ::= r@E ⇔ C|G
Propagation rule : PR ::= r@E ⇒ C|G
Simpagation rule : SPR ::= r@E1 \ E2⇔ C|G
CHR rule : R ::= SR|PR|SPR
CHR program : P ::= R1, ...Rm,m ≥ 0

Figure 2.1: Abstract syntax of CHR programs and rules [6, p. 54]

Definition 1. A CHR Program (P ) consists of a finite set of CHR rules (R). There are three types

of rules: simplification (SR), propagation (PR), and simpagation rules(SPR). The structure of

these rules can be seen in figure above. A rule can have a name r. Each type of rule has a

set of CHR constraints that must not be empty (E) and form the head of the rule, a rule symbol

3



2 Constraint Handling Rules

(⇒,⇔) that specifies the type of rule that is used, a guard that may be empty and consists of

built-in constraints (C), those constraints are part of the host language, and a goal that may not

be empty and can have built-in constraints as well as CHR constraints (G).

2.2 Semantics

This section describes the operational semantics of CHR. There are two definitions for these,

one for the analysis and one for the practical implementation. Only the very abstract and the

abstract semantics will be described here, because they are sufficient to explain confluence.

In the following a CHR Program P and a constraint theory CT for the built-in constraints is given.

A rule whose head is satisfied by the CHR constraints in the store gets applied and adds all

constraints of its goal to the constraint store. When the rule was a simplification rule the head

constraints of the rule will be removed from the store while a propagation rule will not remove

these . A simpagation rule has both – a head where with constraints that are removed and one

where they are kept.

2.2.1 Very Abstract Semantics

The very abstract operational semantics of CHR is given by a nondeterministic state transition

system [6, p. 55].

Definition 2 (State). A state is a conjunction of built-in and CHR constraints. An initial state

(initial goal) is an arbitrary state and a final state is one where no more transitions are possible

[6, p. 55]

For transitions the head normal form (HNF) is used. This means, that each argument of a head

constraint is a unique variable. A rule can be represented in HNF by replacing each of its head

arguments ti with a new variable Vi and adding the equation Vi = ti to the guard of the rule.

Each transition represents a rule application. In Figure 2.2 the formal definition of the transition

relation can be seen. H1, H2, C,B and G represent conjunctions of constraints that also can be

empty. If a applicable rule is applied the CHR constraints H1 are kept while the CHR constraints

H2 are removed. The state that results out of this transition also consists the guard C and the

body B [6, p. 56]

This transition system is nondeterministic, because there are cases where several rules are

applicable but only one can be chosen nondeterministically and this choice cannot be undone

(committed choice) [6, p. 56].

4



2.2 Semantics

Apply

(H1 ∧H2 ∧G)→r (H1 ∧ C ∧B ∧G)

if there is an instance with new local variables x̄ of a rule named r in P

r@H1 \H2 ⇔ C|B
and CT |= ∀(G→ ∃x̄C)

Figure 2.2: Transition of the very abstract operational semantics of CHR [6, p. 56]

2.2.2 Abstract Semantics ωt

The very abstract semantics (Section 2.2.1) got such a high grade of abstraction that they do not

care about termination. There are trivial cases for states that do not terminate like transitions with

propagation rules of inconsistent built-in constraints. Due to the structure of propagation rules the

same rule could be applied again and again since additional built-it constraints cannot invalidate

an applicability condition that holds. An example for such a rule would be: a ⇒ b. With no

further definition and an a constraint in the store this rule could fire endlessly. Additional a false

formula implies any formula so a inconsistent built-it constraint leads to a applicability condition

that holds every time. These issues are addressed by the abstract operational semantics of

CHR, that add a distinction between processed and unprocessed constraints this realises that

propagation rules cannot be applied more than one time with the same constraints [6, p. 59].

In a failed state any rule is applicable and it can only lead to another failed state. Due to this

all failed states are declared as final states to prevent nontermination of failed states. To avoid

the repeated application of propagation rules the same constraints can only be applied to a rule

once. This information is stored in the propagation history [6, p. 60].

Like in the very abstract semantics, the guard is a conjunction of built-in constraints, but the

head and the goal of the rule are now multisets of atomic constraints. Each constraint now has

a unique identifier. For a CHR constraint c with the identifier i the notation c#i is used, such

a constraint is called a numbered constraint. The functions chr(c#i) = c and id(c#i) = i are

used for numbered CHR constraints and extended to sequences and sets of numbered CHR

constraints in the obvious way [6, p. 60]. One new possibility that these identifiers offer is the

identification of constraints that were already used on a propagation rule.

Definition 3. [6, p. 60] A ωt state is a tuple of the form 〈G,S,B, T 〉Vn .
• The goal (store) G is a multiset of constraints to be processed.

• The CHR (constraint) store S is a set of numbered CHR constraints that can be matched with

rules in a given program P .

• The built-in (constraint) store B is a conjunction of built-in constraints that has been passed to

the built-in constraint solver.

• The propagation history T is a set of tuples (r, I) where r is the name of a rule and I is the

5



2 Constraint Handling Rules

sequence of the identifiers of the constraints that matched the head constraints of r.

• The counter n represents the next free integer that can be used as an identifier for a CHR

constraint.

• The sequence V contains the variables of the initial goal.

Definition 4 (Failed states and final states). [6, p. 61] Given an initial goal (query, problem, call)

G with variables V , the initial state is 〈G,S,B, T 〉V1 .

A state 〈G,S,B, T 〉Vn with inconsistent built-in constraints (CT |= ¬∃B) is called failed. A state

with consistent built-in constraints and empty goal store (G = ∅) is called successful. The

remaining kinds of states have no special name. A final state 〈G,S,B, T 〉Vn , its conditional or

qualified answer (solution, result) is the conjunction ∃ȳ(chr(S) ∧ B), where ȳ are the variables

not in V .

In Figure 2.3 the transition rules for the abstract operational semantics ωt are shown. With the

solve transition the built-in solver adds a built-in constraint from the goal G to the built-in con-

straint store B. This results in a simplification of the built-in store , but in the worst case it is just

the original conjunction of the new constraint with the old built-in store. The introduce transition

adds a new CHR constraint the the CHR store S and assigns an identifier to that constraint (the

next free integer n). In the apply transition a rule from the program P gets picked and applied

(fired, executed). The criterion for a picked rule is that there are constraints in the CHR constraint

store S that match the head of the rule and that the guard g of the rule is logically implied by the

built-in store B under the matching [6, p. 61].

Solve

〈{c} ]G,S,B, T 〉n 7→solve 〈G,S,B′, T 〉n
where c is a built-in constraint and CT |= ∀(c ∧B)↔ B′).

Introduce

〈{c} ]G,S,B, T 〉n 7→introduce 〈G, {c#n} ∪ S,B, T 〉(n+1)

where c is a CHR constraint.

Apply

〈G,H1 ∪H2 ∪ S,B, T 〉n 7→apply r

〈C ]G,H1 ∪ S, chr(H1) = H ′1 ∧ chr(H2) = H ′2 ∧ g ∧B, T ∪ {r, id(H1) + id(H2))}〉n
where there is a fresh variant of a rule named r in P with variables x̄ of the form

r@H ′1\H ′2 ⇔ g|C
where CT |= ∃(B) ∧ ∀(B → ∃x̄(chr(H1) = H ′1 ∧ chr(H2) = H ′2 ∧ g)) and

(r, id(H1) + id(H2) /∈ T.

Figure 2.3: Transition of the abstract operational semantics ωt [6, p. 63]
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2.3 State Equivalence

2.3 State Equivalence

This section uses the following definition for states that can be found in [9]:

Definition 5 (State). A CHR state σ is a tuple 〈G;B;V〉 where the goal G is a multiset of CHR

constraints, the built-in constraint store B is a conjunction of built-in constraints and the variables

V are a set of global variables. A variable that is an element of (G∪B) and not an element of V

is called a local variable. If a variable is only an element of B and not an element of (G ∪V) it is

called a strict local variable.

With these definitions it would be possible to use the logical equivalence when talking about state

equivalence, but since all failed states count as equivalent and CHR constraints got a multiset

character, a more strict notion of equivalence is needed. The basic idea of state equivalence in

CHR is, that the same rules should be applicable to those states [6, p. 71].

Definition 6 (State Equivalence). Equivalence between CHR states is the smallest equivalence

relation ≡ over CHR states that satisfies the following conditions [9]:

1. (Equality as Substitution)

〈G, x=̇t ∧B,V〉 ≡ 〈[x/t], x=̇t ∧B,V〉

2. (Transformation of the Constraint Store)

If CT |= ∃s̄.B↔ ∃s̄′.B′ where s̄,s̄′ are strict local variables of B,B′ respectively, then:

〈G,B,V〉 ≡ 〈G,B′,V〉

3. (Omission of Non-Occurring Global Variables)

If X is a variable that does not occur in G or B then:

〈G,B, {X} ∪V〉 ≡ 〈G,B,V〉

4. (Equivalence of Failed States)

〈G,⊥,V〉 ≡ 〈G′,⊥,V〉

A necessary and sufficient criterion for deciding state equivalence is given by the following

Thorem 1 [9]:

Theorem 1 (Criterion for ≡). Let σ = 〈G,B,V〉, σ′ = 〈G′,B′,V〉 be CHR states with the local

variables ȳ, ȳ′ that have been renamed apart.

σ ≡ σ′ iff CT |= ∀(B→ ∃ȳ′.((G = G′) ∧B′)) ∧ ∀(B′ → ∃(̄y).((G = G′) ∧B))

Since this theorem only applies if the set of global variables is unchanged and the local variables

are renamed apart, it actually decides a smaller relation than ≡. But due to the fact that we can

rename local variables apart and that Definition 6.3 allows us to adjust the set of global variables,

those restrictions do not result in a problem [9].

7



2 Constraint Handling Rules

2.4 Confluence

The confluence property of a program guarantees the same final state for any computation of a

goal independent of which applicable rules are fired. If a program is confluent the order of rules

and constraints in a goal do not matter - the result is the same [6, p. 101]. A CHR program is

well-behaved if it is terminating and confluent [6, p. 102]. Confluence was presented first in [4].

Definition 7 (Confluence). A CHR program is confluent if for all states S, S1, S2

If S 7→∗ S1, S 7→∗ S2 then S1 and S2 are joinable.

2.5 Minimal States

When a program is analysed, a big problem results in the fact, that there are an infinite amount of

possible states. So it is necessary to reduce the amount of states to a level that can be analysed,

the so-called minimal states. Every state has this minimal, most general, state that allows it to

fire [6, p. 101].

Definition 8 (Minimal State). The minimal state of a rule is the conjunction of the head and the

guard of a rule [6, p. 101].

If only one constraint from such a minimal state gets removed, the rule would be no longer able

to fire. Adding constraints cannot prevent the possibility of the rule to fire. The conclusion of this

is that every state that allows a rule to fire contain at least the minimal state of the rule [6, p.

101].

2.6 Joinability

The property joinability describes two states that result in equal states. This is an important

property for the confluence check.

Definition 9 (Joinability). Two states S1 and S2 are joinable if there exist states S′1,S′2 such that

S1 →∗ S′1 and S2 →∗ S′2 and S′1 ≡ S′2 [6, p. 102].

2.7 Test for confluence

In general there is an infinite amount of possible states, since it is possible to execute a program

with an infinite amount of different constraints. For a terminating program it is possible to limit

these states for the joinability test with the finite number of most general states, the so-called

overlaps of the rules. These overlaps are states where more than one rule is able to fire. By

8



2.7 Test for confluence

merging the minimal states of two rules where at least one constraint in each rule is the same

these two rules are overlapped. The two states resulting from the application of these both rules

are called a critical pair. If any critical pair is not joinable, the program itself is not confluent. The

most important property of a program to check this is that the program is terminating [6, p. 102].

Definition 10. Let R1 be a simplification or simpagation rule and R2 be a rule, whose variables

have been renamed apart. Let Hi ∧Ai be a conjunction of the head constraints Ci be the guard

and Bi be the body of rule Ri(i = 1, 2). Then a (nontrivial) overlap (critical ancestor state) S of

rules R1 and R2 is

S = (H1 ∧A1 ∧H2 ∧ (A1 = A2) ∧ C1 ∧ C2),

provided A1 and A2 are nonempty conjunctions and the built-in constraints are satisfiable,

CT |= ∃((A1 = A2) ∧ C1 ∧ C2).

Let S1 = (B1 ∧H2 ∧ (A1 = A2) ∧ C1 ∧ C2) and S2 = H1 ∧B2 ∧ (A1 = A2) ∧ C1 ∧ C2). Then the

tuple (S1, S2) is a critical pair (c.p.) of R1 and R2.

A critical pair (S1, S2) is joinable, if S1 and S2 are joinable [6, p. 103].

For terminating CHR programs, a decidable, sufficient and necessary condition for confluence is

given by the following theorem [6, p. 104]:

Theorem 2. A terminating CHR program is confluent iff al its critical pairs are joinable [6, p.104]

[2] [5].

2.7.1 Propagation history

A program to check the confluence of CHR programs that only contain simplification and/or sim-

pagation rules was written by Johannes Langbein in 2010 [8]. To build an enhanced confluence

checker that supports propagation rules, the propagation history H must be implemented. H

contains a list of all CHR constraints that got applied to a propagation rule. When a propagation

history is being used the constraints have to be altered since an ID is added to them and the

rules of the program are also getting an unique identifier. The propagation history is the core

element to prevent the program from infinite looping since the same constraint would get applied

to the same rule again and again [6, p. 61].

Let h be a part of H, then h has the following structure:

h = (Cidc, Ridr) where C is a list of the used constraints in the rule R.

The constraints C get a unique ID idc and the rules R, too (idr).

9



2 Constraint Handling Rules

2.7.2 Examples

In this section some example CHR programs are given which are tested for confluence. Those

examples are taken from [6]. A CHR program that only contains propagation rules or single

headed simplification rules with no overlap are trivial cases that are obviously confluent [6, p.

105].

Example 1. The following coin-throw example is an abstraction of the example given in [6]:

coin(throw)⇔ head.

coin(throw)⇔ tail.

The only overlap is (simplified for readability):

coin(throw)

and it leads to the critical pair:

(head, tail)

These two states are final and different. Thus, they are not joinable.

Example 2. A simple example with two simplification rules:

p⇔ q.

p⇔ false.

This program got a single overlap (q, false) that consists of final states that are not joinable.

Hence the program is not confluent.

Example 3. This examples consists of a single rule.

p(X) ∧ q(Y )⇔ true.

The program is not confluent, since the only rule of the program got an overlap with itself, as this

example input shows:

p(X) ∧ q(Y 1) ∧ q(Y 2)

This overlap leads to the critical pair (q(Y 1), q(Y 2)), where Y 1 and Y 2 are different variables.

Since there is no specification in CHR which constraint has to be taken first this case is always

possible. A case where this nonjoinability does not arise would be:

p(X) ∧ q(Y )⇔ X = Y | true

10



2.8 Completion

Example 4. The following example contains a propagation rule:

r1 @ p⇒ q.

r2 @ r ∧ q ⇔ true.

r3 @ r ∧ p ∧ q ⇔ s.

r4 @ s⇔ p ∧ q.

Which has the overlap:

r ∧ p ∧ q

Figure 2.4 shows that the propagation history is important. Without it the program would always

end in the final state p ∧ q (as seen in (1)). However with the propagation history for r1 it results

in the nonjoinable critical pair (p, p ∧ q) (as seen in (2)).

r ∧ p ∧ q

p

p ∧ q

s

p ∧ q

p ∧ q

(1)

r ∧ q

r ∧ p ∧ q

p s

p ∧ q

(2)

r2

r1

r3

r3

r1

r2
r3

r4

Figure 2.4: Violated confluence in lager state [6, p. 109].

2.8 Completion

Completion for CHR is a process of adding rules to a nonconfluent program until it becomes

confluent [6, p. 112]. For the generation of these rules the critical pairs of the given program

P are needed. The completion algorithm for CHR generally needs more than one rule to make

critical pairs joinable (and thus solving the nonconfluence). The generation of the new rules is

not always possible. The generation of new rules may also introduce new critical pairs that need

to be checked again for confluence. Since this check can lead to new nonjoinable critical pairs

that have to be completed the algorithm may not be terminating. Completion was introduced in

[3].

2.8.1 Completion algorithm

The completion algorithm is specified by a set of inference rules [6, p. 112]. These four rules

are called Simplification, Deletion, Orientation and Introduction. In addition there is the function
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orient which tries to generate a simplification and a propagation rule from a given critical pair.

The function is partial and does not apply if rules cannot be generated.

Definition 11. [6, p. 112] Let � be a termination order. Let (Ei ∧ Ci, Ej ∧ Ej)(i, j ∈ {1, 2}) be

a nonjoinable critical pair, where Ei, Ej are CHR constraints and Ci, Cj are built-in constraints.

The partial function orient� applies to the set of the two states in the critical pair {E1 ∧C1, E2 ∧
C2}ifE1 ∧C1 � E2 ∧C2 if E1 is a nonempty conjunction, and if E2 is a nonempty conjunction of

CT |= C2 → C1. It returns a set of rules:

{E1 ⇔ C1|E2 ∧ C2, E2 ⇒ C2|C1}

where the propagation rule is generated only if CT 6|= C2 → C1.

The task of the propagation rule is to ensure that the built-ins of both states in the critical pair

are enforced. The function does not add redundant propagation rules (CT |= C2 → C1) and

the conditions are carefully chosen so that it does not apply if the two states in the critical pair

cannot be ordered by� or if a rule with an empty head would result [6, p. 113].

Simplification: If S1 7→ S′1 then (C ∪ {{S1, S2}}, P ) 7−→ (C ∪ {{S′1, S2}}, P )

Deletion: If S1 and S2 are joinable then (C ∪ {{S1, S2}}, P ) 7−→ (C,P )

Orientation: If orient� ({S1, S2}) = R then (C ∪ {{S1, S1}}, P ) 7−→ (C,P ∪R)

Introduction: If (S1, S2) is a critical pair of P not in C then (C,P ) 7−→ (C ∪ {{S1, S2}}, P )

Figure 2.5: [6, p. 113] Inference rules of completion.

At the beginning of completion there is a given program P and its set of nonjoinable critical pairs

S, (S, P ). At this point the inference rule can be applied in the order given in figure 2.5 until

exhaustion or failure. The rule Simplification replaces a state in a critical pair by its successor

state (a rule application). When this rule is applied to exhaustion we only work with final states [6,

p. 113]. The Deletion rule removes joinable critical pairs, since they do not hurt the confluence

property we do not need them. The Orientation rule removes a critical pair from C and adds new

rules to P as computed by orient. If orient cannot be applied this inference is not possible. This

rule gets applied once. After these first three steps are finished all new critical pairs between the

new rules and the old ones are computed by the Introduction rule.

The final successful state of the completion algorithm is (∅, P ′), otherwise it has failed. Comple-

tion fails if a nonjoinable critical pair cannot be oriented. In such a critical pair the states cannot

be ordered or they consist of different built-in constraints only [6, p. 113]. Completion may also

not terminate, this is the case when new rules get produced endless. Sometimes a different

termination order can lead to termination of the completion algorithm.
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2.8.2 Examples

In the following examples we use a simple genetic termination order where built-in constraints

are the smallest, atomic CHR constraints are ordered by their symbols, and conjunctions of CHR

constraints are larger than their conjuncts. These examples are taken from: [6, p.114].

Example 5. A simple example with two simplification rules:

p⇔ q.

p⇔ false.

The program is not confluent since p leads to the critical pair (q, false). Simplification and Dele-

tion do not apply. Orientation adds the rule q ⇔ false via the function orient� to the program.

A propagation rule is not produced since CT |= false→ true. Introduction does not apply since

the new rule has no overlap with the old ones. So the completion terminates successfully with

the new program:

p⇔ q.

p⇔ false.

q ⇔ false

Example 6. Given the following CHR program where ≥ and ≤ are built-in constraints, let p �
r � q in the generic termination order:

r1 @ p(X,Y )⇔ X ≥ Y ∧ q(X,Y ).

r2 @ p(X,Y )⇔ X ≤ Y ∧ r(X,Y ).

The program is no confluent since the critical pair stemming from r1 and r2

(X ≥ Y ∧ q(X,Y ), X ≤ Y r(X,Y ))

is not joinable. Completion inserts two new rules:

r3 @ r(X,Y )⇔ X ≤ Y |q(X,Y ) ∧X ≥ Y.
r4 @ q(X,Y )⇒ X ≥ Y |X ≤ Y.

The computations show that it is necessary to add the propagation rule r4 to the program.

Consider the query p(X,Y ). A computation using rule r2 is:

p(X,Y )

7→Apply r2 r(X,Y ) ∧X ≤ Y
7→Apply r3 q(X,Y ) ∧X = Y

7→Apply r4 q(X,Y ) ∧X = Y

The application of the propagation rule r4 does not change the answer. However the computation

using r1 needs r4 to result in the same answer:
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p(X,Y )

7→Apply r1 q(X,Y ) ∧X ≥ Y
7→Apply r4 q(X,Y ) ∧X = Y

Example 7. In this last exampled the completion fails because a critical pair cannot be oriented.

r1 @ p(X,Y )⇔ X ≥ Y ∧ q(X,Y ).

r2 @ q(X,Y )⇔ X ≤ Y ∧ q(Y,X).

the program is not confluent since the critical pair stemming from r1 and r2

(X ≥ Y ∧ q(X,Y ), X ≤ Y ∧ q(Y,X))

is not joinable. However there is no termination order that can order this critical pair, as can be

seen from the rule that would result from function orient:

ro @ q(Y,X)⇔ X ≤ Y |q(X,Y ) ∧X ≥ Y.
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The confluence checker that is described in this section is built from scratch. The checker by

Johannes Langbein [8] was not extended because there were too many changes that were

needed to fulfil the requirements for the propagation history and the completion algorithm. The

new confluence checker uses parts of the old checker.

The confluence checker for CHR programs checks if a program is confluent. For this it has

to check if the minimal states of each overlap are joinable. Overlaps are created by a rule

pair that does not consist out of two propagation rules where the two rules got atleast one

head constraint in common. A rule can overlap with itself (like in example 15). The confluence

checker in its current state can detects if a program is confluent or not if the program only

contains simplification and simpagation rules and a set of built-ins. The new confluence check

that is described in this thesis also supports propagation rules and a simple set of built-ins. The

process of parsing the input program is mostly based on exercises of the lecture "Rulebased

Programming" at the Ulm University. If code from [1] has been copied this is mentioned at the

code fragments.

3.1 Theoretical Concept

The new confluence checker for CHR programs (CCp) is based on the theoretical concept men-

tioned in [6, p. 101-105]. First all overlaps between all rules of the program are searched. From

these overlaps all minimal states are generated. The minimal states are a conjunction of the

head and the guard of two overlapping rules, the minimal amount of constraints needed to fire

both rules. If the guards of two rules contradict, CCp detects that these rules cannot result into

a state of non-confluence.

For each pair of overlapping rules CCp generates a confluence test. The minimal states of these

overlaps are used to generate a constraint store for the calculation. The test of an overlap is

finished when no rule can be applied any more. After this state is reached the final states of the

overlap are checked for joinability. If the two final states are joinable the overlap does not result

into a critical pair, if not the program cannot be confluent.

Since CCp cannot check all possible permutations of rules and constraints a more simple but

still correct method is used. The correctness is ensured by checking only final states. If these

final states are identical the overlap is locally confluent. If not a critical non-joinable pair is found.
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3 The Confluence Checker for CHR Programs

The reason why this method is correct is because a program that is local confluent in every

overlap is confluent. The downside of this method is that the root of the non-confluence of a

program is harder to find in some programs. An example for this is the following program:

r1 @ a <=> b.

r2 @ a <=> c.

r3 @ b <=> c.

r4 @ b <=> d.

The program is obviously not confluent. In the figure below it is shown why:

a

b

c d

c

r1
r3

r2

r4

Figure 3.1: Local and global confluence on an example

The CCp and the checker checker will not find the critical pair that is created by the starting state

(a) that results into the critical pair ((c),(d)). They only find the critical pair ((c),(d)) that

results from the starting state (b). Both checkers do not check all permutation of the rules and

thus not find the critical pair since rule 3 will fire at both checkers and add a c to the constraint

store. This leads to the joinable state pair ((c),(c)). They still both give the correct result

that the program is not confluent because the local confluence of rule 3 and 4 is not satisfied.

The reason for this is that both checkers run in a Prolog implementation. This implementation

is working with the refined semantics. In its calculation every rule is applied by its order in the

sourcecode. This execution order cannot be influenced.

If the order of rule 3 and 4 are switched both checkers will detect the second critical pair between

rule 1 and 2 because the checkers will fire rule 1 and rule 4 when checking the overlap of rule 1

and 2. This leads to the non-joinable state pair ((c),(d)). To find this critical pair the checkers

would need to check all permutations of the rules in the program. This is no problem with

small programs but then the checker would not be scalable thus only final states are compared

because the global non-confluence is found any time.

3.1.1 Propagation Rules and History

Propagation rules require a propagation history. The theoretically concept of the propagation

history is shown after the rule transformation has been shown. For using propagation rules

and the history the input program needs to be transformed. Each CHR-Constraint of the input

program needs to be altered by increasing its arity by one. This new argument is used for the

unique identifier of the constraint. This identifier is needed so that a constraint does not fire
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a propagation rule endlessly. In the implementation of the CCp each rule is parsed and the

representation of the constraints in the rules also reflects the increased arity. The description of

all CHR-Constraints at the beginning of a program is also altered to reflect this. This method is a

explicit implementation of the abstract semantics mentioned in chapter 2.2.2. The identifier that

is normally hidden when calling a CHR-Program is explicit given after the transformation. The

actual implementation transforms with the following method:

Definition 12 (Program-Transformation). Let P be a program that is checked for confluence.

Let cn be a constraint that is used in P and cn#ID an unique identifier that is bound to the

constraint. Then the ID of cn is added as a new argument to the constraint. So a con-

straint c(A1,A2,...,AN) is transformed into c(A1,A2,...,AN,cID). The constraint defini-

tion at the beginning of the program (:- chr_constraint c1/N1, c2/N2, ..., cn/NN.)

is transformed into :- chr_constraint c1/N1+1, c2/N2+1, ..., cn/NN+1.

A rule in the program that has the following structure:

c1(A1,...,AN) ==> c2(B1,...,BM).

Is transformed into the rule:

c1(A1,...,AN,c1#ID) ==> c2(B1,...,BM,c2#ID).

The transformed program is equivalent to the input program since all parts of the CCp treat the

constraints like there would be no identifier. The only situation where the identifier is evaluated

is when a propagation rule is fired. In every other rule type the last argument of the constraint is

ignored. This guarantees that the transformed program behaves like the original input program

and thus checking the confluence correctly.

The correct handling of propagation rules is done by creating a history constraint that contains

all propagated rule heads and the calculation identifier. To this constraint all heads that were

used in a propagation rule are saved. When the checker tries to apply a propagation rule the

history constraint of the current calculation is checked whether is was already used with this rule

or not. This method guarantees that rules where the head contains a constraint multiple times

like a, a ⇒ b is fired two times when the store contains (a,a).

Definition 13 (Possible executions on a propagation rule with a constant set of constraints). Let

PR be a propagation rules, (c1,...,cn) constraints that are part of the head of PR and (#c1,...,#cn)

be the amount of times the given constraint is contained in the head. Then (#c1! · #c2! · ... · #cn!)

is the amount of possible executions when every constraint of the head is given in the constraint

store.

The history constraint saves the possible amount of applications. A counter that is part of each

element in the list that is inside the history constraint is increased when the same set of con-

straints is applied to the same propagation rule again. When the maximum amount of applica-

tions is reached the rule cannot fire any more with this set of constraints. This guarantees that
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a propagation rule will not loop infinite when the rule is not constructed to do so. A rule like a,

a ⇒ a will still create an infinite loop since the new a constraint allows the rule to fire again.

To ensure that the right constraints are checked for their occurrence in the propagation history

the unique identifiers in the last argument of the constraint are used. When other rule types

than propagation rules are evaluated the history constraint is also in the head of the given and is

added to the constraint store again. This is done because the calculation starts as soon as the

history constraint is inside the store. Without using it in the heads of the rules for simplification

and simpagation rules the calculation starts before the history is inserted. Then the correct flow

of the calculation would not be guaranteed.

Definition 14 (Rule Application). When rule application is simulated inside the CCp every rule

application needs a rule, a store and a history constraint. A rule that has the following structure

inside the input program:

a <=> b.

Is simulated by the following structure:

Rule \ Store_Before, History <=> Check_Store |

Store_After, History.

The concrete implementation is shown in chapter 3.3.3. Simpagation rules are simulated with

the same structure.

A propagation rule inside the input program like:

a ==> b

Is simulated by the following structure:

Rule \ Store_Before, History_Before <=> Check_Store, Check_History |

Store_After, History_After.

In the first example only the store is altered while the history remains untouched. In the second

example the store and the history are altered before they are added to the store.

The advantage of this handling is that every type of rule can only fire when the history constraint

is part of the constraint store. This ensures that the rules are fired in the order that is wanted.

With the transformation and the usage of the history the correct handling of propagation rules is

ensured. The implementation for the transformation is shown in chapter 3.3.1, the concrete one

for the propagation history in chapter 4.
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3.2 Overview and Requirements

The CCp works like a pipeline. The concept is shown in figure 3.2. The bold typed parts are the

modules that are part of the confluence check itself.

input.pl parser.pl cp.pl checker.pl

checker.pl

out.pl completion.pl

selfoverlap

co
m
plcheck

newRules

compl

Figure 3.2: The program flow of the CCp and its output.

Each part of the implementation has its own specialisation. This is mentioned in the name of

each of the following section.

When no overlap is found the program stops at the cp.pl module and prints it out on console.

The paths that contain compl are only chosen while completing a program.

The CCp has to fulfil the following requirements to work correctly:

• read all rules R of the input-program P and transform them.

• check R for (self-)overlaps.

• support the propagation history.

• return the result to the user.

3.3 Checking Confluence

Let P be a syntactically correct and terminating CHR-program then P can be checked for con-

fluence by the CCp. The main difference between this work and older works like the one of

Johannes Langbein [1] is that this checker supports propagation rules. With this ability it can

check more programs for confluence than the old one.

Propagation rules are often used to extract additional information from already given constraints.

The transitivity relation on orders are an example for this. To implement the relation in CHR the

leq/2 (less or equal) constraint is used:

Example 8. Transitivity

leq(a,b), leq(b,c) ==> leq(a,c).
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3.3.1 Parsing P : parser.pl

To start the confluence check the predicate confluence(File_Path) is called. It is part of

the parser.pl module. In the first step the parser will read the given input program P and filter

out all modules, CHR-constraints and rules. These three parts of P will be store in the constraint

translate/1 where each of the constraints represents one line of P .

The translate/1 constraint can have different structures:

• translate(:- use_module(M))

• translate(:- chr_constraint C)

• translate(Propagation Rule)

• translate(Simplification Rule)

• translate(Simpagation Rule)

For the confluence check we need a list of all rules of the program. To create this list all

translate(CHR Rule) constraints are transformed into another format:

Listing 3.1: Transformation of simplification and simpagation rules with a guard.

1 translate(LHS <=> GRD | RHS), rule_list(L) <=>

2 flatten(LHS <=> GRD | RHS,Out),

3 Out = [K,R,G,RH],

4 rule_list([(K,R,’<=>’,G,RH)|L]),

5 chrl(K,R,’<=>’,G,RH).

The flatten constraint ensures that the constraints and built-ins are represented in a flat list. It

returns a list with four elements: The kept head (K), the removed head (R), the guard (G) and

the body (RH). The translated rule is added to the rule_list/1 constraint. In the process

of flattening the arity of each constraint is increased by one. This extra argument on each

constraint is used to store the unique identifier that is used in the propagation history. The

chrl/1 constraint is used to transform the rules into a structure that is used to write it into the

output file when the completion is called. They represent a CHR-Rule.

Listing 3.2: Transformation of simplification rules and simpagation without a guard.

1 translate(LHS <=> RHS), rule_list(L) <=>

2 flatten(LHS <=> RHS,Out),

3 Out = [K,R,_,RH],

4 rule_list([(K,R,’<=>’,[],RH)|L]),

5 chrl(K,R,’<=>’,[],RH).

These checks cover simplification and simpagation rules since the only difference between them

is that simpagation rules got a kept head while simplification rules do not. When the rules are

used in later steps of the CCp we can distinguish between the two rule types by these properties.
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Listing 3.3: Transformation of propagation rules with a guard.

1 translate(LHS ==> GRD | RHS), rule_list(L) <=>

2 flatten(LHS ==> GRD | RHS,Out),

3 Out = [K,_,G,RH],

4 rule_list([(K,[],’==>’,G,RH)|L]),

5 chrl(K,R,’==>’,G,RH).

The rules for transforming a rule with a guard come first since the one for no guard also applies

to the translate/1 constraint. With this order it is guaranteed that the guards are handled

correct.

Listing 3.4: Transformation of propagation rules without a guard.

1 translate(LHS ==> RHS), rule_list(L) <=>

2 flatten(LHS ==> RHS,Out),

3 Out = [K,_,_,RH],

4 rule_list([(K,[],’==>’,[],RH)|L]),

5 chrl(K,R,’==>’,[],RH).

An initial rule_list/1 with an empty list (rule_list([])) is generated at the start of the

confluence check. The translate(:- use_module(M)) constraints are only replaced by

module/1 constraints that contain all used modules of P . To increase the arity in the con-

straint definition at the start of P the translate(:- chr_constraint C) constraint is used

together with the inc_arity/2 predicate:

Listing 3.5: Increase of the arity in the chr_constraint definition.

1 translate(:- chr_constraint CL) <=> flattenOH(CL,Out),

2 inc_arity(Out,NL),

3 chr_constraints(NL),

4 ccs(NL).

5

6 inc_arity([],_).

7 inc_arity([X|Xs],NL) :- X =.. [_,N,A],

8 A1 is A+1,

9 append([N/A1],L2,NL),

10 inc_arity(Xs,L2).

After all rules were parsed and their arity has been increased the job of parser.pl is done. The

rule_list/1 constraint is simplified into a cleanup/0 constraint that removes all remaining

constraints from the store and itself after no other constraint is left and start the next step of the

CCp – the search for overlaps – by calling the predicate critical_pairs/2 of the module

cp.pl.
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The parser.pl transforms P into a different structure like this:

Listing 3.6: Transformation of P .

1 :- use_module(library(chr)).

2 :- chr_constraint p/0, q/0.

3

4 p <=> q.

5 p <=> false.

6

7 Into:

8

9 :- use_module(library(chr)).

10 :- chr_constraint p/1, q/1.

11

12 p(_) <=> q(_).

13 p(_) <=> false.

The new argument in the constraints is used to store the unique identifier that is used for the

propagation history. The definition of constraints at the beginning of the program is also in-

creased because it is used in later steps to distinguish between built-ins and CHR-Constraints.

3.3.2 Finding overlaps: cp.pl

The cp.pl module is searching for all overlaps of P . First cp.pl searches for possible self-

overlaps:

Listing 3.7: Predicates for the overlap check.

1 overlapping([],_).

2 overlapping([X|XL],RL) :-

3 self_overlap(X,RL), overlapping(XL,RL).

Listing 3.8: Predicates for the self-overlap check.

1 self_overlap((KH,RH,RS,G,RHS),RL) :-

2 append(KH,RH,LHS),

3 permutation(LHS,PLHS),

4 not(check_overlap(PLHS)),

5 overlap_cp((KH,RH,RS,G,RHS),RL).

6

7 self_overlap((KH,RH,RS,G,RHS),RL) :-

8 append(KH,RH,LHS), check_overlap(LHS).
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In the process of finding self-overlaps the kept and the removed head of a given rule need to be

analysed. The permutation predicate is used because all orders of the CHR constraints need

to be checked. Since even a rule with two head constraints that are different and got an arity

greater than zero can lead to non-confluence (like in example 3 in chapter 2.7.2) self-overlaps

are found often. If there is a self-overlap the predicate adds a overlap_cp/2 constraint to the

CHR-constraint store that contains the self-overlapping rule and the rule list of P . A case where

we would not have to check the self-overlap for confluence would be:

a(X), a(X) <=> true.

In this example the final state does not depend on the order of usage of the CHR-constraints

since only a pair of equal constraints are simplified so rules like that cannot lead to critical self-

overlaps.

To check the self-overlaps the check_overlap/1 predicate shown below is used. It checks if

the self-overlap leads into a critical pair or not. It fails if the overlap is critical like seen in the

second self_overlap/2 predicate in the figure above. In the following listing the code for

check_overlap/1 is shown:

Listing 3.9: First predicates for checking critical self-overlaps.

1 check_overlap([]).

2 check_overlap([X]).

3 check_overlap([X|XL]) :-

4 X =.. XF,

5 length(XF,2),

6 check_overlap(XL).

Listing 3.10: Predicates for checking critical self-overlaps.

1 check_overlap([X,Y|XL]) :-

2 X =.. XF, reverse(XF,XFR),

3 XFR = [_|XFRL], reverse(XFRL,XFRLR),

4 XN =.. XFRLR,

5 Y =.. YF, reverse(YF,YFR),

6 YFR = [_|YFRL], reverse(YFRL,YFRLR),

7 YN =.. YFRLR, XN == YN,

8 check_overlap([X|XL]), check_overlap([Y|XL]).

The check_overlap/1 predicate first checks if the CHR constraint used in the given rule has

variables. If not length(XF,2) will succeed because the first element of XF is the name of the

constraint and the second is the variable that will contain the unique identifier in later steps of

the calculation. In the second non-trivial case the first two elements of the list are checked for
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equality if the rule contains only equal constraints (with equal variables) it cannot result into a

critical pair.

The program cp.pl also checks all rules of the program if they got overlaps with other rules. To

check this a pair for every rule with another is generated by the create_pairs(Rule_List)/1

predicate. It creates
∑n−1

m=0m pairs where n is the amount of rules in P .

Listing 3.11: Predicate for creating pairs of rules.

1 create_pairs([X,Y|XL]) :-

2 pair(X,Y),

3 create_pairs([Y|XL]),

4 create_pairs([X|XL]).

These pair/2 constraints get checked for possible overlaps. By definition even one overlapping

constraint can lead into a non-joinable final state of P . In the following figures all simplification

rules for the pair/2 constraints are shown.

Listing 3.12: Rule for pairs with propagation rules.

1 pair((_,_,==>,_,_),(_,_,==>,_,_)) <=>

2 true.

Two propagation rules cannot result into a critical pair since both are applied when the constraints

for their heads are given.

Listing 3.13: Rules for non-overlapping rules.

1 pair(([],RH1,_,_,_),(KH2,RH2,_,_,_)) <=>

2 \+single_matching(RH1,KH2),

3 \+single_matching(RH1,RH2) | true.

4

5 pair((KH1,[],_,_,_),(KH2,RH2,_,_,_)) <=>

6 \+single_matching(KH1,KH2),

7 \+single_matching(KH1,RH2) | true.

8

9 pair((KH1,RH1,_,_,_),(KH2,RH2,_,_,_)) <=>

10 \+single_matching(KH1,KH2), \+single_matching(KH1,RH2),

11 \+single_matching(RH1,KH2), \+single_matching(RH1,RH2) | true.

Pairs that do not overlap are removed from the constraint store. Rules are non-overlapping

if all head constraints are different from each other. The three rules shown above are three

different possible cases. In the first a simplification and another rule are checked. In the second

a propagation and another. Finally in the third case a simpagation and another rule get checked

for an overlap. In all cases no overlap is found.
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Listing 3.14: Predicates for the matching of the head constraint of two different rules.

1 single_matching([H1|HL1],HL2) :-

2 matching([H1],HL2,_).

3

4 single_matching([H1|HL1],HL2) :-

5 not(matching([H1],HL2,_)),

6 single_matching(HL1,HL2).

The structure of the matching/3 predicate is shown in a later chapter for the checker.pl.

The single_matching/2 predicate succeeds if at least one head constraint of rule one is part

of the head constraints of rule two. In that case one of the rules in the listings below succeeds

and a critical_pair/2 constraint is added to the constraint store.

Listing 3.15: Predicates for the matching of the head constraints of two different rules.

1 pair(([],RH1,RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)) <=>

2 single_matching(RH1,KH2);

3 single_matching(RH1,RH2) |

4 critical_pair(([],RH1,RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)).

5

6 pair((KH1,[],RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)) <=>

7 single_matching(KH1,KH2);

8 single_matching(KH1,RH2) |

9 critical_pair((KH1,[],RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)).

10

11 pair((KH1,RH1,RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)) <=>

12 single_matching(KH1,KH2);

13 single_matching(KH1,RH2);

14 single_matching(RH1,KH2);

15 single_matching(RH1,RH2) |

16 critical_pair((KH1,RH1,RS1,G1,RHS1),(KH2,RH2,RS2,G2,RHS2)).

The guards of these rules got a disjunction between their predicates since even one matching

head constraint of the two rules is enough for an overlap. After a critical pair has been found it

gets printed out on the console.

The critical pairs that have been printed out on the console get removed from the CHR-constraint

store and a fin_critical_pair/2 with the same content is inserted into the store. In the next

step all possible final critical pairs are removed from store and their content is inserted into the

cprl/2 constraint, a list where all overlaps are stored. The last action of cp.pl is calling the

next program checker.pl.
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3.3.3 Checking critical pairs: checker.pl

The checker.pl program is the core of the CCp. All calculation before this point only prepared

the input program to be check in this module. The input parameters of the check/2 predicate

are the overlaps of P and the list of rules of P .

The checker simulates an environment where CHR rules are fired like in a real SWI-Prolog

calculation. It creates a list for the store where all constraints and built-ins are stored, a set of

rules and the history constraints for the propagation history.

The check does not calculate the result for all permutations of the rule set – only for the per-

mutation of the overlaps – the calculation can still detect confluence correctly since non-joinable

states result from the application of an overlap. If the non-confluence is not fixed in this calcula-

tion we found a path to prove the non-confluence of P . If the program is confluent all paths will

lead to the same final state.

This check also does not try different permutations for the variables. That is done while checking

self-overlaps. If a rule would lead to a different result depending on the given order of the

constraints this would be detected at that point and printed out on console as a self-overlap.

Listing 3.16: Predicate for initiating the confluence check.

1 check([],_) :- done.

2 check([(R1,R2)|RL],RuleSet) :-

3 copy_term(RuleSet,Rules), gensym(1,ID),

4 history([],ID,1), history([],ID,2),

5 build_store((R1,R2),ID),

6 make_first([R1],Rules,R1F), make_first([R2],Rules,R2F),

7 build_rules(R1F,ID,1), build_rules(R2F,ID,2),

8 conf(t,ID,(R1,R2)),

9 rule_list(Rules,ID), fin(ID),

10 check(RL,Rules).

To eliminate all possible side-effects of variable bindings between the calculations the list of rules

is copied at the start of the computation. The gensym library is used the generate unique iden-

tifiers for rules, constraints and computations. Two history/3 constraints are added to the

CHR-constraint store – after this the store is built by using the head constraints of both rules of

the overlap. This store is inserted into a store/3 constraint. The make_first/3 predicate en-

sured that one of the overlapping rules is the first that is fired in the computation. With these two

orders of rules, rule/8 constraints are built by the build_rules/3 predicate. The conf/3

constraint that is added to the CHR-constraint store after this is used to save the results of the

joinability checks at the end of the computation. The done/0 constraint in the base-case is used

to print out the result of the confluence check after the calculation is done. The implementation

of this is show in the output chapter.

26



3.3 Checking Confluence

Listing 3.17: Predicate for rule CHR-constraint generation.

1 build_rules([],_,_).

2 build_rules([(KH,RH,RS,G,RHS)|RL],ID,C) :-

3 gensym(2,RID),

4 rule(KH,RH,RS,G,RHS,RID,ID,C),

5 build_rules(RL,ID,C).

The rules are generated from the rule-list in the first argument of the build_rules/3 predicate.

All rules get an unique identifier that is needed for the propagation history (RID) and an identi-

fier for the current overlap (ID). The last argument of the rule/8 constraint is the calculation

flag. For each overlap two calculation are done. The rules need these flags since one of the

overlapping rules is added to the constraint store first and thus firing first in each calculation.

Listing 3.18: Predicate for store CHR-constraint generation.

1 build_store([],_).

2 build_store(((KH1,RH1,_,G1,_),(KH2,RH2,_,G2,_)),ID) :-

3 c_flat(KH1,K1F),

4 c_flat(RH1,R1F),

5 append(K1F,R1F,LHS1),

6 c_flat(G1,G1F),

7 append(LHS1,G1F,R1),

8 c_flat(KH2,K2F),

9 c_flat(RH2,R2F),

10 append(K2F,R2F,LHS2),

11 c_flat(G2,G2F),

12 append(LHS2,G2F,R2),

13 min_store(R1,R2,Store),

14 build_id(Store,NStore),

15 store(NStore,ID,1),

16 store(NStore,ID,2).

To build the store the head constraints of both rules are needed. The minimal state that let both

rules fire is built by the min_store/3 predicate. All constraints that are used in the calculation

get an unique identifier by the build_id/2 predicate. Two identical stores are built, one for the

calculation where the first rule is the first to be fired and one where the second is fired first.

When the program has created the rules and the store, the CHR-constraint store contains the all

constraints that are needed to simulate a calculation in SWI-Prolog: rule/8, history/3 and

store/3 constraints. These constraints have an unique identifier that guarantees that different

calculation do not interact with each other.

The next step is the actual calculation. For this calculation all three types of CHR-rules need to

be simulated – including all of the operations that are done by SWI-Prolog in the background.
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These operations are logical steps like the check for matches between the head of a rule and

the CHR-constraint store or even the propagation history.

If the program contains infinite calculations (like a ⇔ a) the CCp will not terminate. There is

no need to check the program for such rules since we demand a correct and terminating input

program. When guards on multiple rules are used who cannot be understood by the CCp it

cannot give a clear result. Simple guards (like dimensions) are supported and evaluated. This is

supported by checking the guards for complete different dimensions (like X < 5 and X > 5). In

this case the two rules can not lead to different final states with the same input constraints. For

the cases where the guards are more complex the program is checked like there are no guards

– if the final states of both calculations result into a critical pair the user is getting the message

that the program is non-confluent if both guards can be applied at the same time.

To let the CCp understand a bigger set of built-ins and let it really evaluate the built-ins – since

it only works with patterns at the moment – a more complex support for built-ins needs to be

added. Such a support was implemented by Frank Richter [10] in 2014. It was built on the

Confluence Checker by Johannes Langbein [1]. Since the structure of the old checker and this

new one is different in design and implementation the built-in support of Frank Richter cannot

be used for this checker so easily. To use it the checker itself needs to be altered to support the

structures of the built-in support. The already supported built-ins are mentioned in chapter 6.

The following rules show the solver for the CHR-rules of the calculation:

Listing 3.19: Rule for simplification rules.

1 rule([],RH,<=>,[],RHS,_,ID,C) \

2 store(Store,ID,C), history(H,ID,C) <=>

3 matching(RH,Store,StoreMR) |

4 history(H,ID,C), build_id(RHS,NRHS),

5 append(NRHS,StoreMR,StoreRS),

6 apply_bindings(StoreRS),

7 find_equalities(StoreRS,StoreRS),

8 store(StoreRS,ID,C).

Listing 3.20: Rule for simpagation rules.

1 rule(KH,RH,<=>,[],RHS,_,ID,C) \

2 store(Store,ID,C), history(H,ID,C) <=>

3 matching(KH,Store,_),

4 matching(RH,Store,StoreMR) |

5 history(H,ID,C), build_id(RHS,NRHS),

6 append(NRHS,StoreMR,StoreRS),

7 apply_bindings(StoreRS),

8 find_equalities(StoreRS,StoreRS),

9 store(StoreRS,ID,C).
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If the rule has a guard a new CHR-constraint that contains the guard, the rule identifier and the

calculation identifier is generated and the guard itself is added to the store. For simpagation

rules the history is not build since the constraints in the removed head are different constraints

every time the rule fires. The apply_bindings/1 and the find_equalities/2 predicates

are looking for built-ins in the store that contain logical information (like X=Y, X>=Y) and apply

those informations to the whole store. This check can only find simple logical information in the

current implementation. While the apply_bindings/1 predicate will apply all X=Y constraints

the store the find_equalities/2 predicate removes a pair of constraints that form an equiv-

alence like X>=Y, X=<Y or X>=Y, X=<Y and insert a X=Y constraint to the store. This is done

since a store with the information (X>=Y, X=Y) contains the same information like one with

(X=<Y, X=Y). Both lead to the same result: X=Y. The check for the equality of the stores at the

end of the calculation will call the stores different if the equality checks are not done.

Listing 3.21: Rule for propagation rules.

1 rule(KH,[],==>,[],RHS,RID,ID,C) \

2 store(Store,ID,C), history(H,ID,C) <=>

3 subset_match(KH,Store,NKH),

4 check_history(NKH,H,RID) |

5 build_history(NKH,H,RID,NHIS),

6 history(NHIS,ID,C),

7 build_id(RHS,NRHS),

8 append(NRHS,Store,StoreRS),

9 apply_bindings(StoreRS),

10 find_equalities(StoreRS,StoreRS),

11 store(StoreRS,ID,C).

The history contains all constraints that were applied to a given propagation rule. It is important

that all of the head constraints are one element of the history list since by definition a propagation

rule only fires once for the same combination of constraints in the same order.

If the calculation has stopped so that no rule can be applied any more, the store/3 constraints

are removed from the store and replaced by result/3 CHR-constraints:

Listing 3.22: Rule for replacing the store constraints.

1 fin(ID) \ store(S,ID,C) <=>

2 msort(S,SSorted),

3 filter_store(SSorted,NewS),

4 result(NewS,ID,C).

The stores are sorted to make it easier to compare them and removed duplicate built-in con-

straints. The removing is done by the filter_store/2 predicate. In this predicate the store

is checked for multiple constraints that are equal. This is needed because the check for equiva-
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lence of the states would result into different states even if the only differ in the number of true

built-ins in the store. So only redundant information is removed.

Listing 3.23: Rule for checking the non-equivalence of states.

1 result(S1,ID,1), result(S2,ID,2), conf(_,ID,R) <=>

2 (not(matching(S1,S2,_));

3 not(matching(S2,S1,_))) |

4 conf(f,ID,R).

If the two states would be the same, the matching/3 predicate would succeed in both ways.

So the states are not equivalent if one of the matching predicates fail. In this case a conf/3

CHR-constraint with the failing information is added to the store.

Listing 3.24: Rule for checking the equivalence of states.

1 result(S1,ID,1), result(S2,ID,2), conf(_,ID,R) <=>

2 matching(S1,S2,_),

3 matching(S2,S1,_) |

4 conf(c,ID,R).

If the two states are the same they match in both ways. In this case a conf/3 CHR-constraint

with the succeeding information is added to the store. This check ignores if the states have

different variable names so a(X) and a(Y) are called the same.

Listing 3.25: Predicates for the matching.

1 matching([],R,R).

2

3 matching([C|CL],S,R) :-

4 length(S,SL),

5 unification(C,S,SL,RU),

6 matching(CL,RU,R).

The matching predicate checks if the constraints of the first list ([C|CL]) are part of the second

list (S) this predicate is widely used in the CCp for every situation where it is important to know

if one list is a subset of another the advantage of this predicate against built-ins like subset/2

is, that no variable bindings are done and the predicate can find matches that are not found

by subset since the structure of the constraints in CCp is special in some cases and are only

considered as identical because of the special use of this constraints in the context. The subset

constraints can also not be used for the cases where the remaining list is needed after the

elements of the first have been removed from the second. For this case the subtract/3

predicate would come into mind. The problem with this predicate is the same like before, variable

bindings are done. For the CCp this would be fatal since the unique identifiers of the CHR-

constraints would be bind to the constraints in the head of the rules. This is something that
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is avoided by the matching/3 predicate. With the matching predicate two lists can also be

checked for equality:

Example 9. Equality with matching: If two list should be checked for equality the matching/3

predicate can be used like this:

matching(List1,List2,_),

matching(List2,List1,_).

The only case where both predicates can succeed is if both list are equal to each other. Only

thing that should be considered is that the matching predicate will call two constraints with differ-

ent identifiers equal. This is needed for the check of the two states at the end of the calculation

because constraints that only differ in their identifier are the logical the same.

When the matching/3 predicate is used at the simulated rule application every constraint of

the head is checked for occurrence in the store. The matching predicate fails if the constraints

are not unifiable or the head constraints of the rule do not appear in the CHR-constraint store.

In the last argument a list with all non matched constraints is given.

Listing 3.26: Predicates for the unification check.

1 unification(C,[S|SL],_,SL) :-

2 uni(C,S).

3

4 unification(C,[S|SL],L,R) :-

5 L >= 1, L1 is L-1, not(uni(C,S)),

6 append(SL,[S],NSL),

7 unification(C,NSL,L1,R).

8

9 uni(C,S) :- C == S.

10 uni(C,S) :-

11 compound(C), compound(S),

12 C =.. [A|CL], S =.. [A|SL],

13 length(CL,L), length(SL,L).

The uni/2 predicate checks if the two constraints are unifiable without performing bindings. This

is important cause we do not want that the head constraints of the rules get bound. This would

result into a problem since the id of the constraints would be bound to the head constraints and

other constraints of the store would not match any longer. Since the normal uni/2 check does

no cover a check for identical ids there has to be another check only for the history check. The

length of the constraint store is used to know when all elements of the list have been checked.

This is needed since we do not want to remove constraints from the store that should not. So

the constraints that were already checked are appended to the end of the list.
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Listing 3.27: Checking if the arguments of the constraints are unifiable.

1 tail_check([A|AL],[B|BL]) :-

2 (var(A); var(B)),

3 tail_check(AL,BL).

4

5 tail_check([A|AL],[B|BL]) :-

6 A == B,

7 tail_check(AL,BL).

This check is used in the uni_subset/2 predicate which is only used for the history check.

3.4 Testcases and Examples

In this section some example input programs are given and their results when checked by the

CCp. Some examples are taken from [6] other are made to show special cases. The file name in

the folder of the CCp is given at each example. The overheads of the programs are cut out since

they are trivial. These examples also have been used as testcases to check the functionality of

the checker. All examples shown here are given in the folder of the CCp.

Example 10. simple.pl:

1 p <=> q.

2 p <=> false.

3

4 Overlap: p <=> q with p <=> false

5 The states of p <=> q and p <=> false are non-joinable.

This basic example shows that the CCp is able to find non-confluent overlaps. The store that is

used in this example is (p) since this is the minimal state for both rules to fire.

Example 11. coin.pl:

1 throw(Coin) <=> Coin = head.

2 throw(Coin) <=> Coin = tail.

3

4 Overlap: throw(X) <=> X=head with throw(Y) <=> Y=tail

5 The states of throw(X) <=> X=head and throw(Y) <=>

6 Y=tail are non-joinable.

This example shows that the CCp is able to work with built-ins. The variable bindings of the

body of the rule are detected as different. The final states are (Coin = head) and (Coin =

tail).
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Example 12. self.pl:

1 p(X), q(Y) <=> true.

2

3 The rule: p(X), q(Y) <=> true overlaps with itself and

4 results into a critical pair.

In this example the ability to detect self-overlaps is shown. The rule results into a critical pair

since the overlap with the constraints (p(X1), q(Y), p(X2)) would result into two different

states: (p(X1)) and (p(X2)) depending on the order of the constraints. When looking at

self-overlaps different variable names are detected and result into a non-joinable pair. This can

be done since the variables are named the same at the beginning of the calculation.

Example 13. max.pl:

1 max(X,Y,Z) <=> X =< Y | Y = Z.

2 max(X,Y,Z) <=> X >= Y | X = Z.

3

4 Overlap: max(X,Y,Z) <=> X=<Y | Y=Z with max(A,B,C) <=> A>=B | A=C

5 The states of max(X,Y,Z) <=> X=<Y | Y=Z and max(X,Y,Z) <=>

6 X>=Y | X=Z are joinable.

In this example the support of guards is shown. When X and Y are equal both rules can fire, but

since they have to be exactly the same value in this case the confluence property is not hurt. If

X and Y are not the same only one of the rules could fire and the result is always be the same

and not dependent on the order of the rules. The CCp detects this by checking if both guards

can be applied at the same time – in this case they can. The application of the guards is then

applied on the constraint store, leading to X = Y = Z.

Example 14. complex2.pl:

1 p ==> q.

2 r, q <=> true.

3 r, p ,q <=> s.

4 s <=> p, q.

5

6 Overlap: r, q <=> true with r, p, q <=> s

7 Overlap: p ==> q with r, p, q <=> s

8 The states of r, q <=> true and r, p, q <=> s are non-joinable.

9 The states of p ==> q and r, p, q <=> s are non-joinable.

The example above shows that the CCp supports propagation rules. It finds the overlap between

the first and the third rule and detects the critical pair that results from this overlap. Since the
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program terminates it can be seen that the propagation history stops the CCp from applying a

propagation rule multiple times with the same set of constraints.

Example 15. prop2.pl:

1 a(X), b(Y) <=> true.

2 a(X), b(Y) ==> c.

3

4 The rule: a(X), b(Y) <=> true overlaps with itself

5 and results into a critical pair.

6

7 Overlap: a(X), b(Y) <=> true with a(X), b(Y) ==> c

8 The states of a(X), b(Y) <=> true and a(X), b(Y) ==> c

9 are non-joinable.

This example shows how propagation rules are ignored when the program is checked for self-

overlaps. Since propagation rules can fire once for each matching of the head constraints they

will always result into the same final state.

Example 16. simple1.pl

1 a(X) <=> X < 5 | true.

2 a(X) <=> X > 5 | b(X).

3 a(X) <=> d(X).

4

5 Overlap: a(X) <=> X < 5 | true with a(X) <=> X > 5 | b(X)

6 Overlap: a(X) <=> X > 5 | b(X) with a(X) <=> d(X)

7 Overlap: a(X) <=> X < 5 | true with a(X) <=> d(X)

8 The states of a(X) <=> X < 5 | true and a(X) <=> X > 5 | b(X)

9 are joinable.

10 The states of a(X) <=> X > 5 | b(X) and a(X) <=> d(X)

11 are non-joinable.

12 The states of a(X) <=> X < 5 | true and a(X) <=> d(X)

13 are non-joinable.

In this example the critical pair that results from rule three with the other rules is found while the

other overlaps do not result into a critical pair thanks to the guards.

Example 17. cell.pl

1 assign(V,N), cell(V,O) <=> cell(V,N).

2

3 The rule: assign(V,N), cell(V,O) <=> cell(V,N) overlaps with

4 itself and results into a critical pair.
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Example 18. prop_conf.pl

1 a, b ==> c.

2 a, a, b ==> c.

3 a, b, b ==> c.

4

5 No overlaps found - the program is confluent.

Theoretical three overlaps exist in the example – but since overlaps between propagation rules

cannot result into non-joinable final states they are ignored.
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4 The Propagation History

To implement the confluence check with all types of CHR-rules a history for already propagated

CHR-constraints needs to be added. This chapter shows how the history was implemented into

the CCp.

4.1 Realising the History

When theCCp has found an overlap and starts the confluence checking process inside checker.pl,

two history/3 CHR-constraints are added to the constraint store. These constraints contain

an empty list at their first introduction, an unique identifier that is the same like the confluence

checking process they are used in and a flag for being part of the first or the second calculation

for this overlap. These constrains are updated every time a simulated CHR-rule application is

done.

4.1.1 Building the History

For building the history the build_history/4 predicate needs the constraints from the store

that matched with the head of the rule. These constraints are found by the subset_match/3

predicate. The first build_history/4 predicate has the following structure:

Listing 4.1: Predicate for building the history when the set of constraints already fired.

1 build_history(X,H,RID,NH) :-

2 sort(X,XS), XH = (XS,AP,C,RID),

3 select(XH,H,XnH), APN is AP+1,

4 Y = (XS,APN,C,RID),

5 append([Y],XnH,NH).

The X contains the constraints that were used in the rule with the unique identifier RID. H is

the already given propagation history. The constraints that should get added to the history are

sorted since this is how they are stored inside the history. Since this is the case where this set of

constraints already was applied to the rule and only a different order of constraints is used, there

is a counter that gets increased by one. This counter is used to check if the set of constraint can

still be applied to the rule.
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Example 19. Possibilities of propagations:

If we got a propagation rule with multiple same constraints in the head like:

a, a, b, b ==> c.

then this propagation rule can be fired multiple times with the same set of constraints. In this case

with the constraints {a,a,b,b}. The maximum possibilities are calculated by the his_poss/2

predicate. It calculates all possible permutations for the constraints. For the example above

these permutations would be:

{a1,a2,b1,b2},{a1,a2,b2,b1}{a2,a1,b1,b2}{a2,a1,b2,b1}

So the rule could fire four times with this set of four constraints.

Listing 4.2: Predicate for building the history when the constraints were not used before.

1 build_history(X,H,RID,NH) :-

2 sort(X,XS),

3 copy_term(XS,XSC),

4 unbind_id(XSC,XSU),

5 his_poss(XSU,C),

6 XH = (XS,_,C,RID),

7 not(select(XH,H,_)),

8 Y = (XS,1,C,RID),

9 append([Y],H,NH).

When the specific set of constraints was not be already applied to the rule with the unique iden-

tifier RID before a new history element is generated and the possible applications are calculated

by the his_poss/2 predicate. The counter for applications starts by one while the C for the

maximum applications is at least one.

4.1.2 Checking the History

When a propagation rules can fire the CCp will check the history if the rule already fired with this

specific set of constraints. This check is part of the guard of the two rules for propagation rules.

The check is only needed for propagation rules and not for simpagation rules since the used

constraints of simpagation rules change every time they are applied because of the removed

head constraints.
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Listing 4.3: First predicate for checking the history.

1 check_history(_,[],_).

2 check_history(X,[H|HL],RID) :-

3 sort(X,XS),

4 H = (HH,_,_,RID2),

5 sort(HH,HS),

6 (XS \== HS; RID \== RID2),

7 check_history(X,HL,RID).

In this first predicate the constraints X from the store that matched the head of the rule with the

unique identifier RID are not part of the history list. The constraints get sorted and the history

element H is checked against this. If the constraints are not the same or the rule identifier is

different the history element is different to the used constraints. In this case the next part of the

history list is checked until the whole history got checked.

Listing 4.4: Second predicate for checking the history.

1 check_history(X,[H|HL],RID) :-

2 sort(X,XS),

3 H = (XS,AP,MAX,RID),

4 AP < MAX,

5 check_history(X,HL,RID).

If the combination of constraints and rule identifier is already part of the history there is still the

possibility that it is a rule where the same constraints can be applied multiple times because of

the structure of the rule (like in the example above). In this case this predicate finds an match

between the constraints and the rule identifier. The element H of the history list contains the

number of already done applications AP and the maximum possible applications MAX. As long

as AP is smaller than MAX the rule can be applied. The counter AP is increased later by the

build_history/4 predicate.
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This section describes the implementation of the completion algorithm mentioned in [6]. For

the implementation the simplification and deletion inference rules are not implemented since

they already exist in the confluence check. The completion is started by the completion/1

predicate. When started the CCp performs a confluence check and calls the completion/2

predicate in the completion.pl module if the program is not confluent. When the program

reaches this state the simplification and deletion inference rule were already applied via the

confluence check. This is guaranteed since the confluence check only stops when final states

are reached and does not call the completion algorithm if the program is confluent. This also

ensures that the completion terminates if a confluent and terminating set of rules has been

found. The completion algorithm can also find no new rules because of the structure of the final

states or run infinitely because of a new rule that let the whole program be non-terminating due

to undecidability of halting problem. The rules for the completion algorithm can only find simple

loops like rules that got the same constraints on the left and the right side.

5.1 Overview and Requirements

When trying to complete a program the the bold typed modules and files are now used addition-

ally to the ones of the confluence check.

input.pl parser.pl cp.pl checker.pl

checker.pl

out.pl completion.pl

selfoverlap

co
m
plcheck

newRules

compl

Figure 5.1: The program flow of the CCp and its output.

In the figure one possible loop is already shown: A program that is checked for confluence and

is completed but never reaches a set of rules that is confluent.
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To implement the completion algorithm the following requirements must be met by the CCp:

• read the critical-pairs CP and the rule list R of P as input.

• apply the rules of the completion algorithm (Simplification, Deletion, Orientation, Introduction).

• understand when to use which rule of the algorithm.

Like the confluence checker the completion algorithm needs a correct and terminating CHR-

program to terminate. While completing the algorithm itself can produce rules that generate

infinite loops.

5.2 Changes to the program files of the confluence check

Let P be a syntactically correct and terminating non-confluent CHR-program then the CCp can

try to complete P to make it confluent. For implementing the completion algorithm all parts of

the CCp got minor changes.

5.2.1 Changes to parser.pl

To call the completion algorithm completion([File Path]) needs to be called. This works

like the confluence/1 predicate but adds a compl/0 CHR-constraint to the store. This con-

straint is needed to fire the rule that creates a file where the completed program is saved. The

parser also has rules and predicates to ensure the writing of the new rules into the out.pl file.

These rules are shown in the output chapter.

5.2.2 Changes to cp.pl

In cp.pl a compl/0 CHR-constraint is added to the store to indicate that the completion has

been called. In cp.pl this constraint is used to stop the program from writing out that the

program is confluent when no overlap is found and it lets cp.pl call a different predicate to start

the checker.pl.

In this module the rules are also checked for duplicates. This is done by the filter_rules/2

predicate. Since the different overlaps can have the same non-joinable final states it is possible

that the same rule gets generated multiple times. This happens because there is no detection

for this inside the checker.pl since checks can be done parallel and calculation can be in

different states at the same time. The other parts of the cp.pl program are working like in the

confluence check.
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5.2.3 Changes to checker.pl

In checker.pl the compl/0 constraint is also added. In the end of the computation the follow-

ing rule fires if the program is non-confluent:

Listing 5.1: Rule to find non-confluent programs while calling the completion algorithm.

1 compl \ result(S1,ID,1), result(S2,ID,2), conf(_,ID,R) <=>

2 filter_store(S1,NS1),

3 filter_store(S2,NS2),

4 (not(matching(NS1,NS2,_));

5 not(matching(NS2,NS1,_))) |

6 cp(NS1,NS2),

7 conf(f,ID,R).

The cp/2 CHR-constraint stores the non-joinable final states of the computation. When this

constraint is generated another rule is fired that calls the completion algorithm:

Listing 5.2: Rule to start the completion algorithm (output parts removed).

1 rule_list(RL,ID), compl \ conf(f,ID,((KH1,RH1,RS1,G1,RHS1),

2 (KH2,RH2,RS2,G2,RHS2))), cp(S1,S2) <=>

3 [...]

4 completion(RL,(S1,S2)),

5 cleanup(ID).

5.3 Completion a program: completion.pl

In completion.pl the algorithm that is described in [6] is implemented. This part of the pro-

gram is written in Prolog.

Listing 5.3: Main predicate of the completion algorithm.

1 completion(RL,(S1,S2)) :-

2 orientation((S1,S2),([],RHS,RSS,GS,RHSS),(KHP,[],RSP,GP,RHSP)),

3 introduction(([],RHS,RSS,GS,RHSS),(KHP,[],RSP,GP,RHSP),RL).

Like mentioned at the start of the chapter the simplification and the deletion inference rule are not

implemented in the completion part since they are already implemented in the confluence check.

The orientation/3 predicate creates none, one or two rules, based on the non-joinable fi-

nal state pair. The introduction predicate adds the new rules to the rule list, adds them to the

out.pl file and calls another confluence check on the new set of rules.
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Listing 5.4: Main predicate for orientation.

1 orientation((S1,S2),NRS,NRP) :-

2 remove_true(S1,S1wT),

3 remove_true(S2,S2wT),

4 create_simp((S1wT,S2wT),NRS),

5 create_prop((S1wT,S2wT),NRP).

The orientation/3 predicate tries to create a simplification and a propagation rule. Before

this is done the true/0 constraints have to be removed from the store – they do not contain any

information and would make the predicates to create new rules more complex or even generate

errors. When which rule can be created is described in [6, p. 113] and chapter 2.8.1, it is

depending on the content of the store.

Listing 5.5: Predicates for creating a no new simplification rule.

1 create_simp((S1,S2),NRS) :-

2 filter_cons(S1,S1C),

3 filter_cons(S2,S2C), S1C = S2C,

4 NRS = ([],[],[],[],[]).

5 create_simp((S1,S2),NRS) :-

6 filter_cons(S1,S1C),

7 filter_cons(S2,S2C),

8 matching(S1C,S2C,_),

9 matching(S2C,S1C,_),

10 NRS = ([],[],[],[],[]).

11 create_simp((S1,S2),NRS) :-

12 filter_buil(S1,S1B),

13 filter_buil(S2,S2B),

14 eq_check(S1B,S2B),

15 NRS = ([],[],[],[],[]).

The first predicate is for the case where the CHR-constraints in the store are the same, a new

simplification rule with those informations would create an infinite loop. In the second case both

stores are not exactly the same but would still loop like in: a,b ⇔ a,b,c. The new a and b

CHR-constraints will cause the rule to fire again and again. To detect this matching/3 is used.

This case is solved in later predicates by switching the left and the right side of the rule. In the

third case the built-ins of both states lead to a contradiction. Since one of the built-ins would be

in the guard and the other in the body they would lead to a non-consistent store. All three cases

would lead to rules we could not use or would make the computation non-terminating. In these

cases the completion algorithm cannot find a new rule using the given final states. If the three

cases above do not apply a simplification rule is created using the following predicate:
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Listing 5.6: Predicate for creating a new simplification rule.

1 create_simp((S1,S2),NRS) :-

2 filter_cons(S1,S1C), filter_cons(S2,S2C),

3 filter_buil(S1,S1B), filter_buil(S2,S2B),

4 unbind_id(S2C,S2U),

5 unbind_id(S1C,S1U),

6 S1U \= [],

7 append(S2U,S2B,S2Co),

8 empty_check(S2Co,S2NE),

9 not(matching(S1U,S2NE,_)),

10 NRS = ([],S1U,<=>,S1B,S2NE).

A new rule is created by splitting the store into built-ins and CHR-constraints. An empty check

is done for the body of the rules if the body is empty a true/0 predicate is inserted into the

body by the empty_check/2 predicate. There is also a second predicate in which S1 and S2

switch places. The switching is done if a rule like mentioned before would be created (a,b ⇔
a,b,c) the right and the left side get switched to form the rule a,b,c ⇔ a,b. This rule does

not create an infinite loop and this method is mentioned as valid in [6].

While creating propagation rules we have to check if redundant information is created or the

built-ins lead to a contradiction. A new propagation rule should give us new information which

leads to a joinable pair of states.

Listing 5.7: Rules for creating no propagation rule.

1 create_prop((S1,S2),([],[],[],[],[])) :-

2 ((filter_buil(S1,[]),filter_buil(S2,[]));

3 (filter_buil(S1,S1B),filter_buil(S2,S2B),

4 eq_check(S1B,S2B))).

5

6 create_prop((_,S2),([],[],[],[],[])) :-

7 filter_buil(S2,S2B),

8 not(false_check(S2B)).

9

10 create_prop((_,S2),([],[],[],[],[])) :-

11 filter_cons(S2,[]).

These are the cases where no propagation rule is created. In the first case there are either no

built-ins in the store or the built-ins contain the same information. A new propagation rule would

create no new information or none at all. In the second case a guard that contains the predicate

false/0 would be created. This rule would be never able to fire. In the last case the head of

the rule would be empty – this is impossible for CHR-Rules by definition.
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Listing 5.8: First rule for creating a new propagation rule.

1 create_prop((S1,S2),NRS) :-

2 filter_cons(S2,S2C),

3 filter_buil(S1,[]), filter_buil(S2,S2B),

4 S2B \= [],

5 false_check(S2B),

6 unbind_id(S2C,S2U),

7 S2U \= [],

8 NRS = (S2U,[],==>,S2B,[true]).

In this case a new rule is created where built-ins for a guard are in the store but none for the

right hand side of the rule. Because of the structure of rules representation in the CCp we need

to add a true to the right hand side. A false check for the guard is done since a rule with a false

guard would never be able to fire. The false_check/1 simply goes through all built-ins in the

list S2B and checks if the are false.

Listing 5.9: Second rule for creating a new propagation rule.

1 create_prop((S1,S2),NRS) :-

2 filter_cons(S2,S2C),

3 filter_buil(S1,S1B),

4 S1B \= [],

5 filter_buil(S2,[]),

6 unbind_id(S2C,S2U),

7 S2U \= [],

8 NRS = (S2U,[],==>,[],S1B).

In this case the new rule does not have a guard since there are no built-ins in the store to create

one. So this rule will only create new information which is added to the constraint store. Like in

all predicates that try to build a new propagation rule this predicate checks if the head of the rule

(S2U) or the right hand side (S1B) would be empty. In this case this predicate is not applied.

Listing 5.10: Third rule for creating a new propagation rule.

1 create_prop((S1,S2),NRS) :-

2 filter_cons(S2,S2C),

3 filter_buil(S1,S1B), filter_buil(S2,S2B),

4 not(eq_check(S1B,S2B)),

5 S1B \= [], S2B \= [],

6 false_check(S2B),

7 unbind_id(S2C,S2U),

8 S2U \= [],

9 NRS = (S2U,[],==>,S2B,S1B).
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This is the case where information for a guard and and a right hand side is existing. A new

propagation rule with all of the informations is created. Sometimes this predicate can create a

rule where the guard and the right hand side are identical. Since this is no contradiction and

redundant information gets filtered at the confluence check this cases can be ignored and does

not need to be filtered here.

The used filter_cons/2 and filter_buil/2 predicates look up the CHR-constraints in

their definition that is typically at the beginning of the program. The information was generated

at the parser.pl and is added as a CHR-constraint. They use the find_chr_constraint/1

predicate to find this information inside the constraint store.

Listing 5.11: Rules for the introduction of new rules.

1 introduction(([],[],[],[],[]),([],[],[],[],[]),_) :-

2 writeln(’No new rules could be created!’).

3

4 introduction(NRS,([],[],[],[],[]),RL) :-

5 append([NRS],RL,Rules),

6 transform_rule(NRS,NNR1),

7 compl_file([NNR1]),

8 critical_pairs_com(Rules,Rules).

9

10 introduction(NRS,NRP,RL) :-

11 append([NRS],RL,R1),

12 append([NRP],R1,Rules),

13 transform_rule(NRS,NNR1),

14 transform_rule(NRP,NNR2),

15 compl_file([NNR1,NNR2]),

16 critical_pairs_com(Rules,Rules).

In the introduction inference rule three cases are possible, no rule, one rule or two rules. For no

rule trivially no new rule is introduced. The user is getting feedback on console so that he knows

what happened and why no new rule appears on the screen. The second case is where only a

simplification rule is generated – in this case the rules is inserted into the rule list and written into

the out.pl file where the the completed program is saved. In the second case two rules were

created and are added to the rule list and the output program.

The transform_rule/2 predicate is a set of facts who transform the rule presentation of this

part of the program into the presentation that is needed by the predicate which writes the rules

into the out.pl file.
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5.4 Examples and Testcases

In this section the non-confluent examples from the confluence checker chapter are used as well

as examples from [6]. All examples that are shown here are given in the folder of the CCp. If

variables were part of the constraint their names have been replaced since SWI-Prolog is using

names like _G123 by default.

Example 20. simple.pl:

1 p <=> q.

2 p <=> false.

3

4 Overlap: p <=> q with p <=> false

5 The states of p <=> q and p <=> false are non-joinable.

6 Trying to complete ...

7 Trying with the new rule(s):

8 q <=> false

9

10 Overlap: p <=> q with p <=> false

11 The states of p <=> q and p <=> false are joinable.

After the confluence check the critical pair (q;false) is found. This pair results directly into

the new rule. With the predicates for the creation of new rules the pair (false;q) would also

find this rule.

Example 21. coin.pl:

1 throw(Coin) <=> Coin = head.

2 throw(Coin) <=> Coin = tail.

3

4 Overlap: throw(Coin) <=> Coin=head with throw(Coin) <=> Coin=tail

5 The states of throw(Coin) <=> Coin=head and throw(Coin) <=>

6 Coin=tail are non-joinable.

7 Trying to complete ...

8 Trying with the new rule(s):

9

10 No new rules could be created!

In this example no new rules can be created since the critical pair is (Coin=head;Coin=tail).

Since in both states only built-ins exist we cannot build a CHR-rule since it would need a con-

straint to be able to fire – the critical pair cannot be fixed by the completion algorithm.
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Example 22. complex2.pl:

1 p ==> q.

2 r, q <=> true.

3 r, p, q <=> s.

4 s <=> p ,q.

5

6 The states of r, q <=> true and r, p, q <=> s are non-joinable.

7 Trying to complete ...

8 Trying with the new rule(s):

9 p, q, q <=> p, q

10

11 The states of r, p, q <=> s and p, q, q <=> p, q are non-joinable.

12 Trying to complete ...

13 Trying with the new rule(s):

14 p, q <=> p

This example program is a case where the completion algorithm creates an infinite loop that

cannot be detected by simple matchings. In the computation the algorithm will create the new

rule p,q,q ⇔ p,q. This new rule leads to new critical pairs where the rule p,q ⇔ p is newly

created. When the confluence checker is checking the first rule and this rule for confluence it

will never stop because the new rule produces a p/0 constraint which can be propagated and

a q/0 constraint is created. Now the p/0 constraint and the q/0 constraint can be applied to

the new rule and so on. The problem with this is that the CCp cannot detect this problem in its

current implementation and will calculate until SWI-Prolog is out of global stack.

It is possible so write a program that stops this behaviour but due to the complexity of this

problem it is no subject of this work. A program that checks the connecting between all rules

would be needed that can detect cycles and thus stop the completion algorithm from creating

that specific rule.

Example 23. self.pl:

1 p(X), q(Y) <=> true.

2

3 The rule: p(X), q(Y) <=> true overlaps with itself and results

4 into a critical pair.

Since the critical pair of a self overlapping rule is something like (p(X);p(Y)) we cannot build

a proper new rule that would fix this critical pair. A program with only one rule never gets checked

in the completion algorithm since the generated rule would result in an infinite loop.
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Example 24. prop2.pl:

1 a(X), b(Y) <=> true.

2 a(X), b(Y) ==> c.

3

4 The rule: a(X), b(Y) <=> true overlaps with itself and results

5 into a critical pair.

6

7 Overlap: a(X), b(Y) <=> true with a(X), b(Y) ==> c

8 The states of a(X), b(Y) <=> true and a(X), b(Y) ==> c are

9 non-joinable.

10 Trying to complete ...

11 Trying with the new rule(s):

12 c <=> true

13

14 The rule: a(X), b(Y) <=> true overlaps with itself and results

15 into a critical pair.

16

17 Overlap: a(X), b(Y) <=> true with a(X), b(Y) ==> c

18 The states of a(X), b(Y) <=> true and a(X), b(Y) ==> c are joinable.

Like mentioned before the completion algorithm will not fix the self overlap which results into a

critical pair. But it will fix the critical pairs that resulted from the non-joinable states of the two

rules even when a self-overlap was already found.

Example 25. simple1.pl:

1 a(X) <=> X < 5 | true.

2 a(X) <=> X > 5 | b(X).

3 a(X) <=> d(X).

4

5 Overlap: a(X) <=> X<5 | true with a(X) <=> X>5 | b(X)

6 Overlap: a(X) <=> X>5 | b(X) with a(X) <=> d(X)

7 Overlap: a(X) <=> X<5 | true with a(X) <=> d(X)

8 The states of a(X) <=> X>5 | b(X) and a(X) <=> d(X) are non-joinable.

9

10 Trying to complete ...

11 Trying with the new rule(s):

12 b(X) <=> X>5|d(X), X>5

13 d(X) ==> X>5|X>5
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1 Trying to complete ...

2 Trying with the new rule(s):

3 b(X) <=> X>5|d(X), X>5

4 d(X) ==> X>5|X>5

5

6 The states of a(X) <=> X<5 | true and a(X) <=> d(X) are non-joinable.

7 Trying to complete ...

8 Trying with the new rule(s):

9 d(X) <=> X<5|X<5

10 d(X) ==> X<5|X<5

11 Overlap: d(X) ==> X<5 | X<5 with d(X) <=> X<5 | X<5

12 Overlap: a(X) <=> X<5 | true with a(X) <=> X>5 | b(X)

13 Overlap: a(X) <=> X>5 | b(X) with a(X) <=> d(X)

14 Overlap: a(X) <=> X<5 | true with a(X) <=> d(X)

15 Overlap: a(X) <=> X>5 | b(X) with a(X) <=> d(X)

16 Overlap: a(X) <=> X<5 | true with a(X) <=> X>5 | b(X)

17 Overlap: a(X) <=> X>5 | b(X) with a(X) <=> d(X)

18 Overlap: a(X) <=> X<5 | true with a(X) <=> d(X)

19 Overlap: a(X) <=> X>5 | b(X) with a(X) <=> d(X)

20 The states of d(X) ==> X<5 | X<5 and d(X) <=> X<5 | X<5 are joinable.

21 The states of a(X) <=> X<5 | true and a(X) <=> X>5 | b(X) are joinable.

22 The states of a(X) <=> X>5 | b(X) and a(X) <=> d(X) are joinable.

23 The states of a(X) <=> X<5 | true and a(X) <=> d(X) are joinable.

24 The states of a(X) <=> X>5 | b(X) and a(X) <=> d(X) are joinable.

25 The states of a(X) <=> X<5 | true and a(X) <=> X>5 | b(X) are joinable.

26 The states of a(X) <=> X>5 | b(X) and a(X) <=> d(X) are joinable.

27 The states of a(X) <=> X<5 | true and a(X) <=> d(X) are joinable.

28 The states of a(X) <=> X>5 | b(X) and a(X) <=> d(X) are joinable.

This example shows that the CCp has a understanding of guard logic. In the first part the con-

fluence check notices that the first and the second rule cannot result into a critical pair because

their guards eliminate the possibility that both rules can fire with the same store. But both rules

overlap with the third cause it has no guard. In the overlap between rule two and three two new

rules are added to the program but they both only fire if the logical information of the guard of rule

two is satisfied. With this rules the information X>5 is added to the constraint store even when

rule three fires instead of rule two. These two rules fix the critical pair ((d(X)),(X>5,b(X)))

since the propagation rule will add X>5 to the store and the simplification rule will remove b(X)

and add d(X).

51



5 Completion for CHR Programs

To fix the second critical pair two rules are added who only fire when the guard of rule one is

satisfied. With these rules the critical pair ((X<5),(d(X))) will get fixed since the second state

will be changed to X<5 by the simplification rule. In this case the propagation rule is not needed

at both calculation but generated because of the inference rules of the completion algorithm.
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6 Support for simple built-ins for the confluence

checker

This chapter describes how and which simple built-ins are supported in the CCp. The built-ins

that are supported currently are: <,>,=<,>=,=,\=. More could be added to the computa-

tion by implementing a complex guard check and variable management sub-program. However

the focus of this work is to implement a fully functional confluence checker and the completion

algorithm.

The support for built-ins is only implemented in checker.pl and completion.pl since these

are the only parts of the program where the logic of the built-ins can be used.

6.1 Bindings using: =, =<, >=

After each application of a rule the apply_bindings/1 predicate is called. The predicate

searches for equivalence constraints in the store like X = Y.

Listing 6.1: Predicates for the application of equivalences.

1 apply_bindings([]).

2

3 apply_bindings([(X = Y)|RL]) :-

4 X = Y,

5 apply_bindings(RL).

6

7 apply_bindings([_|RL]) :-

8 apply_bindings(RL).

The predicate will apply every binding that is mentioned in the store. The binding will also be

applied to every constraint in the store that contains the variables. Another part where bindings

are done is when the binding is a logical consequence of two constraints like X >= Y, X =< Y.

If both predicates are applicable at the same time X = Y has to be satisfied. These constraints

do not get removed from the store in the process.

53



6 Support for simple built-ins for the confluence checker

Listing 6.2: Predicates for finding equivalences.

1 find_equalities([],_).

2 find_equalities([_],_).

3 find_equalities([X =< Y|RL],S) :-

4 member((X >= Y),RL),

5 X = Y,

6 update_store(X = Y,S),

7 find_equalities(RL,S).

8

9 find_equalities([X >= Y|RL],S) :-

10 member((X =< Y),RL),

11 X = Y,

12 update_store(X = Y,S),

13 find_equalities(RL,S).

14

15 find_equalities([_|RL],S) :-

16 find_equalities(RL,S).

17

18 update_store(X = Y, _) :-

19 X = Y.

If there are multiple equivalent binding expressions in the store one of them is removed. This

is needed since the state equivalence check at the end of the computation would call states

like (X=Y,X=Y;X=Y) different. Since the multiple occurrence of the same logical expression

is redundant information the store contains the exact same information after removing these

duplicates.

6.2 Guarded confluence: >, <, =, \=

A property called guarded confluence in this context is a case where the confluence of a program

is ensured by the guards of the rules. Let R1 and R2 be two rules that overlap with each other. If

these rules both contain a guard and these guards can never be satisfied at the same time then

these rules ensure guarded local confluence.

Examples for these guards are the pairs: (X > Y, X < Y), (X = Y, X \= Y). In these

cases only one of the guards can be satisfied at the same time. The confluence check for this

overlap will be cancelled since there is no possible overlap where both rules could fire. The

finding of these guards in realised by a list of facts with all possible cases. The declaration of

local confluence for these overlaps is realised by one rule:

54



6.3 Completing with satisfiable guards

Listing 6.3: Rule for guarded confluence.

1 result(_,ID,1), result(_,ID,2), guard([G1],RID1,ID,1),

2 guard([G2],RID2,ID,2) <=>

3 check_equation(G1,G2) | guarded_conf((RID1,RID2),ID).

The results of the confluence check are not interesting since the guards guarantee local conflu-

ence for the given overlap.

6.3 Completing with satisfiable guards

In the completion.pl part of the CCp new rules are generated. Since these new rules contain

the built-ins from both states of the critical pairs these built-ins can lead to a contradiction. To

prevent this a eq_check/2 predicate is used to check if the built-ins lead to such a contradiction:

Listing 6.4: Predicates and facts for checking two relations for a contradiction.

1 eq_check([],_) :- false.

2 eq_check(_,[]) :- false.

3 eq_check([X|_],[Y|_]) :-

4 check_equation(X,Y).

5 eq_check([X|XL],[Y|YL]) :-

6 not(check_equation(X,Y)),

7 (eq_check(XL,[Y|YL]);

8 eq_check([X|XL],YL)).

9

10 check_equation(X < Y, X > Y).

11 check_equation(X > Y, X < Y).

12 check_equation(X >= Y, X < Y).

13 check_equation(X =< Y, X > Y).

14 check_equation(X < Y, X >= Y).

15 check_equation(X > Y, X =< Y).

16 check_equation(X = Y, X < Y).

17 check_equation(X = Y, X > Y).

18 check_equation(X > Y, X = Y).

19 check_equation(X < Y, X = Y).

The eq_check/2 predicate is true if a contradiction is found, in this case no new rule can be

created with the given built-ins of the final non-joinable state.
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7 Output

Like mentioned in a chapter before the CCp is working in a pipeline (figure below). In this chapter

all outputs in the individual modules are shown. Additional the code generation for the output

file (out.pl) is shown. The bold typed modules are the ones that get discussed in this chapter.

The parser.pl module itself is not marked but it creates the out.pl file.

input.pl parser.pl cp.pl checker.pl

checker.pl

out.pl completion.pl

selfoverlap

co
m
plcheck

newRules

compl

Figure 7.1: The program flow of the CCp and its output.

7.1 Output while checking confluence

When confluence([File Path]) is called the CCp wont go to the step that is marked with

compl. It will check the program for (self-)overlaps in cp.pl, if (self-)overlaps are found the

following output will be shown on the console before starting the check for confluence:

Listing 7.1: Possible outputs given by cp.pl when overlaps are found.

1 The rule: [R] overlaps with itself and results into a critical pair.

2

3 Overlap [R1] with [R2].

The advantage of showing the overlaps before starting the confluence check is that the user can

detect if a specific overlaps end in an infinite loop. It will just show the overlap and calculates

infinite. If no (self-)overlaps are found the following output will be printed out on console:

Listing 7.2: Output given by cp.pl when no (self-)overlap is found.

1 No overlaps found - the program is confluent.
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The checker.pl will only print out lines when it has a result for a computation. The first one

only occurs if the guards of two rules can be applied at the same time and the states are non-

joinable. This output is only shown when the guards are not part of the supported built-ins

mentioned in chapter 6.

Listing 7.3: Possible outputs given by checker.pl.

1 The states result into a critical pair if [G1] and [G2]

2 can be applied at the same time.

3

4 The states of [R1] and [R2] are non-joinable.

5

6 The states of [R1] and [R2] are joinable.

If the calculation does not stop because of an infinite loop no output of checker.pl is shown

since it needs a finished calculation to compare the results. This case can happen if the input

program contained such a rule or the completion algorithm created one.

After the calculation is done all local results from all overlaps are collected. A confluent pair

generates a c/1 constraint that contains the confluence information. The non-confluent pairs

generate c/1 constraints that contain the non-confluence information. If two c/1 constraints

contain the same information one is removed from the store. If one of each type is inside the

constraint store the one with the positive confluence information is removed from the store. When

only one c constraint is left the result is printed out on console:

Listing 7.4: Possible outputs for the confluence property of a program.

1 The program IS confluent.

2

3 The program is NOT confluent.

For completion this output is disabled.

7.2 Output while completing

When the calculation of the CCp is started by completion([File path]) the calculation will

do all of the steps in figure 7.1 if the program is non-confluent. The output of the parts that are

used for the confluence check does not change. The completion.pl part itself prints out the

following lines:

58



7.2 Output while completing

Listing 7.5: Possible outputs given by completion.pl.

1 Trying to complete ...

2 Trying with the new rule(s):

3

4 [Simplification Rule]

5 [Propagation Rule]

6

7 No new rules could be created!

The first output is shown every time the computation is entering the completion step. The new

rules are only shown if they are really created. If no new rule is created the last message is

printed out.

A problem with the completing of larger program is that the user cannot copy all the rules that

are printed out on the console. To address this problem the out.pl file is created every time a

completion is started. The file contains the original program and the new rules as well. For this

case all the lines that were read in parser.pl are stored in the CHR-constraint store. There are

three type of lines that are stored module/1, chr_constraints/1 and rule/1 constraints.

If a new rule is created the introduction/3 predicate calls the compl_file/1 predicate in

parser.pl. It creates a new rule/1 constraint and a new stream/2 constraint.

Listing 7.6: Predicates for adding new rules to out.pl.

1 compl_file([]) :- stream(_,write), compl.

2 compl_file([NR|NRL]) :-

3 find_chr_constraint(c_rule(OldR)),

4 same_checker(NR,OldR), compl_file(NRL).

5 compl_file([NR|NRL]) :-

6 find_chr_constraint(c_rule(OldR)),

7 not(same_checker(NR,OR)),

8 rule(NR), c_rule(NR), compl_file(NRL).

The new rule is only added if it is not already a part of out.pl, how this is done will be described

later.

For the different types of constraints that need to be written into the file and for the different types

of rules unique rules are given:

Listing 7.7: Rule for writing the module declaration into the file.

1 compl \ stream(S,write), module(M) <=>

2 open(’out.pl’,append,S),

3 write(S,’:- use_module(’), write(S,M),

4 write(S,’).\n’), close(S),

5 stream(_,write).
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Even if the CCp does not support many built-ins in its currents implementation the ability to parse

the used modules is done for possible future extensions.

Listing 7.8: Rule for writing the CHR-constraint definition into the file.

1 compl \ stream(S,write), chr_constraints(C) <=>

2 open(’out.pl’,append,S),

3 write(S,’:- chr_constraint ’), l_write(S,C),

4 write(S,’.\n’), close(S),

5 stream(_,write).

When the rules are written into the out.pl file the ids are removed from the rules. This is done

by the remove_id/2 predicates.

Listing 7.9: Rule for writing a simpagation rule with a guard into the file.

1 compl \ stream(S,write), rule((KH \ RH <=> G | RHS)) <=>

2 remove_id(KH,RKH), remove_id(RH,RRH), remove_id(RHS,RRHS),

3 open(’out.pl’,append,S),

4 l_write(S,RKH), write(S,’\\’),

5 l_write(S,RRH), write(S,<=>), write(S,’\n’),

6 l_write(S,G), write(S,’|’),

7 l_write(S,RRHS), write(S,’.\n’), close(S),

8 stream(_,write).

The compl/0 CHR-constraint is used as an indicator that the completion has been started. It is

created by the completion/1 predicate. There are six rules for writing the CHR-rules into the

file, two for every rule type one with a guard and one with none.

A problem that is resulting from the parallelism of the computation is that it is possible that a

rule is created more than one time by the completion algorithm. This happens if more than one

overlap leads into the same final critical state pair. If there is no check for duplicates they would

be added to out.pl. A program where every overlap generates the same final critical state

pair would contain many instances of the same rule – since this would distract the user a check

for duplicates is done before the new rules get added to out.pl. This is done by creating a

c_rule/1 constraint is created for every rule/1 constraint.

When the compl_file/1 predicate is called a find_chr_constraint/1 predicate searches

for a c_rule/1 constraint in the CHR-constraint store where the same_checker/2 predicate

is true. When no c_rule/1 that fulfils the predicate is found the rule is not a part of out.pl

and will be added to it.

When the rules get written into the file the variables do not have an explicit name. Their names

will be choose by SWI-Prolog like in the following example:
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7.2 Output while completing

Example 26. simple.pl:

1 Input program:

2

3 p(X) <=> q.

4 p(X) <=> false.

5

6 Completed program:

7

8 p(_G12069)<=>q.

9 p(_G12360)<=>false.

10 q<=>false.
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8 Evaluation

In the following section the performance and the correctness of the CCp will be checked. The

runtime and the results of different examples will be compared to the runtime and results of the

confluence checker written by Johannes Langbein[1]. The performance check was done to show

how long the calculation can last when programs are more complex.

To check the runtime the time/1 Prolog predicate is used. Since a program can have different

runtimes on each execution the examples will be tested twenty times. The shown times are the

arithmetic mean. If there is an execution that needed noticeable more time (like one second

more than the others) that the others it was replaced by a additional execution. While testing

the examples the checker [1] had a significant increase of runtime after several executions in the

same SWI-Prolog instance. The runtimes were on the same level like the first executions after

starting a fresh instance of SWI-Prolog.

If an examples needed had a long calculation time it was not cancelled until SWI-Prolog ran

out of global stack. An exception to this are the completion examples where the completion

algorithm creates an infinite loop.

Every example program that is used in this chapter is part of the content that is delivered together

with the CCp. The examples are divided into confluent, non-confluent and increasing complexity

examples.

8.1 Machine

For the tests all unnecessary processes on the machine got terminated.

Components Machine

CPU Intel i7-4770 @ 3.4 GHz

RAM 8.00GB DDR3 (1600 MHz)

OS Windows 10 (x64)

Storage SSD

The SWI-Prolog process was launched under normal priority. The used version was 7.1.29,

64-bit edition.
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8 Evaluation

8.2 Tests (Confluence)

The following tests were done by calling the predicate time(confluence(’File Path’))

for the CCp and time(check_confluence(’File Path’)) for the Checker by Johannes

Langbein. If the test program contains a propagation rule no runtime for the checker can be

evaluated since it does not support this type of rules.

Confluent Ex. Rules CCp Checker [1] CCp - Checker Overl. Same Result

min.pl 2 0.0155s 0.0276s - 0.0121s 1 Yes

prop_conf.pl 3 0.0081s – – 0 –1

simple.pl3 2 0.0103s – – 1 –1

simple2.pl 2 0.0177s 0.0386s - 0.0209s 1 Yes

simple3.pl 2 0.0104s – – 0 –1

simple4.pl 2 0.0011s 0.0280s - 0.0269s 0 Yes

simple5.pl3 3 0.0341s 0.0229s + 0.0112s 3 Yes

simple6.pl3 2 0.0017s 0.0019s - 0.0002s Yes

complex.pl 7 0.0411s 0.1108s - 0.0697s 11 Yes

complex2.pl 12 0.1571s 0.47685s - 0.3198s 9 Yes

max.pl 2 0.0078s 0.0215s - 0.0137s 1 Yes

N.-Confl. Ex. Rules CCp Checker [1] CCp - Checker Overl. Critical S. Res.

cell.pl3 1 0.0185s 0.2332s - 0.2147s 1 1 Yes

coin.pl3 2 0.0134s 0.1113s - 0.0979s 1 1 Yes

complex.pl 3 0.0279s 0.4478s - 0.4199s 2 2 Yes

complex2.pl 4 0.0258s – – 2 2 –1

complex3.pl 6 0.1211s 0.4271s - 0.3060s 7 3 Yes

complex4.pl 6 0.1264s 1.9147s - 1.7883s 7 3 Yes

complex5.pl 9 4.0087s 6.8243s - 2.8156s 36 36 Yes

prop.pl 2 0.0129s – – 1 1 –1

prop2.pl 2 0.0194s – – 2 2 –1

self.pl 1 0.0027s 0.2232s - 0.2205s 1 1 Yes

simple1.pl 3 0.0421s –2 – 3 2 No

simple2.pl 2 0.0078s – – 1 1 –1

simple3.pl 3 0.0294s – – 2 2 –1

simple4.pl 2 0.0114s – – 1 1 –1

simple5.pl3 2 0.0090s –1 – 1 1 –

twocoins.pl3 2 0.0095s 0.1303s - 0.1208s 1 1 Yes

1: The example contained propagation rules.

2: The checker [1] detected the program wrongly as confluent.

3: Example also used in [1].
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8.2 Tests (Confluence)

The examples test different cases to check the correctness of the CCp. The examples show

basic problems that are solved by both checkers.

The huge runtimes for the more complex examples come from the amount of comparisons,

checks and printed out lines. A factor for the better runtimes of the CCp is the lesser variable

management because the CCp only understand simple comparisons.

Another reason for the lower runtime is the less amount of redos. They require more runtime

and memory management like the garbage collection. Since the CCp is running with many CHR-

Rules the possibilities for redos is smaller. This can be read out by the profile/1 predicate

in SWI-Prolog. For the complex5.pl example the checker [1] got more than 3.2 millions redos

while the CCp got around 85,000 redos. The lesser amount of redos is done by using CHR-rules

and the lesser variable and guard management.

One more reason that the CCp is faster on most of the examples is the lesser use of print outs on

console. With increasing number of critical pairs the print out of the checker [1] is getting bigger

than the one of the CCp. Since the checker uses one write/2 predicate to print out all results

only the nl/0 predicates can be compared for a fair comparison. While the CCp uses around

0.06s for these predicates in the example complex5.pl the checker [1] uses around 0.18s for

it. Another reason is the use of many CHR-constraints in the CCp for checking the confluence.

It can even check parts of itself with the result that completion.pl is confluent while cp.pl is

not. The other parts are to big to check.

Also the garbage collection is a reason for the altering runtimes between both checkers. While

CCp uses around 0.02s for the garbage collection in the example complex5.pl the checker [1]

uses around 0.16s for it.

The result of this comparison is that the runtimes of both checkers are similar to another while

checking small programs but differ with bigger programs. In these cases the CCp is faster. Both

checkers still return the same correct result in all but one example. The example where the

checker [1] detected the program wrongly as confluent was simple1.pl. In the example the

following three rules were given:

Example 27. simple1.pl:

r1 @ a(X) <=> X<5 | b(X).

r2 @ a(X) <=> X>5 | c(X).

r3 @ a(X) <=> d(X).

The program has 3 non-trivial overlaps: (r1,r2), (r1,r3) and (r2,r3). Ther overlap between rule 1

and 2 is not critical since both rules cannot be applied at the same time thanks to the guards

of the rules. The other overlaps are critical. If X < 5 is satisfied rule 1 and 3 can be applied

resulting into the state pair (b(X),X<5),(d(X)) that is obviously not not joinable and thus

critical. If X > 5 is satisfied rule 2 and 3 can be applied and will result into the critical state

pair (c(X),X>5),(d(X)). Since the program got at least one non-joinable state pair it is not

confluent.

65



8 Evaluation

8.3 Tests with increasing complexity

The examples in this section get more and more complex with each step. They differ from one

to four rules, confluent or not and with variables or not. The complexity of each examples can be

identified by its name. The tests were done on the same conditions like the ones before.

Example CCp Check[1] CCp - Checker Time Confluent Variables

oneRule.pl 0.0015s 0.0016s - 0.0001s Yes No

oneRuleVar.pl 0.0016s 0.0017s - 0.0001s Yes Yes

twoRulesNc.pl 0.0121s 0.0194s - 0.0073s No No

twoRulesVarNc.pl 0.0077s 0.0256s - 0.0179s No Yes

twoRulesC.pl 0.0011s 0.0018s - 0.0007s Yes No

twoRulesVarC.pl 0.0012s 0.0018s - 0.0006s Yes Yes

threeRulesNc.pl 0.0328s 0.0933s - 0.0605s No No

threeRulesVarNc.pl 0.0311s 0.0959s - 0.0648s No Yes

threeRulesC.pl 0.0011s 0.0014s - 0.0003s Yes No

threeRulesVarC.pl 0.0013s 0.0017s - 0.0004s Yes Yes

fourRulesNc.pl 0.0821s 0.5389s - 0.4568s No No

fourRulesVarNc.pl 0.0792s 0.5593s - 0.4801s No Yes

fourRulesC.pl 0.0013s 0.0018s - 0.0005s Yes No

fourRulesVarC.pl 0.0015s 0.0020s - 0.0005s Yes Yes

eighteenRulesNc.pl 22.2251s 20.0626s + 2.1625s Yes No

In each example both checkers returned the same result and detected the (non-)confluence

correctly.

What can be seen in these examples is that both checkers do not differ in the runtime of simple

confluent examples. In that cases the runtime of them is nearly identical. The difference between

the usage of variables or none is minor in these cases.

When checking non-confluent small examples the CCp is faster than the checker [1]. There is

no significant difference between the usage of variables or none. In the last example the CCp

is slower than the checker [1]. This examples was the maximum of rules and overlaps that the

CCp could handle in this test environment. Added only one more rule to the program resulted

into a out of global stack exception of SWI-Prolog. The example contained eighteen rules with a

total of 153 overlaps and critical pairs.

The checker [1] can handle such extreme examples better because in the CCp it is very expen-

sive to check rules for overlaps. Only simplification rules were used in the example, for each

of the rule pairs (153) a pair/2 constraint is generated. Since SWI-Prolog calls CHR-Rules

in their order of the source file the rules that got pair/2 as the head of the rule is called 459

times. Since the single_matching/2 predicate is in all guards of this rules it is 1224 times. In

each of this calls the matching/3 predicate is called. It is called by two lists with one member

([a],[a]). In every call lists get defined and declared, unification and compound checks are
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8.4 Tests (Completion)

done, constraints are split into functor and arguments and more. All these action need some

amount of memory so much that the garbage collection spent about 12.3s of the 22.2251s com-

putation time.

8.4 Tests (Completion)

Since the checker written by Johannes Langbein [1] does not support the completion algorithm

no comparison can be made. The tests are made on the same machine like the confluence

checks. All examples can be found in the folder of the CCp.

Example Rules Runtime Completable Generated Rules

cell.pl 1 0.0046s No –

coin.pl 2 0.0407s No –

complex.pl 3 0.8312s Yes –

complex2.pl 4 ∞ Unknown1,4 ∞
complex3.pl 6 ∞ Unknown1 ?

complex4.pl 6 ∞ Unknown1 ?

complex5.pl 9 ∞ Unknown1 ?

prop.pl 2 0.0536s Yes 1

prop2.pl 2 0.0784s No2 1

self.pl 1 0.0967s No2 –

simple.pl 2 0.1871s Yes 1

simple1.pl 3 0.2794s Yes 4

simple2.pl 2 0.0464s Yes 1

simple3.pl 3 0.1271s Yes 23

simple4.pl 2 ∞ No4 14

simple5.pl 2 0.0653s Yes 1

twocoins.pl 2 0.0455s No –

1: The calculation was not finished before SWI-Prolog ran out of global stack (set to 1GB).

2: Self-overlaps cannot be fixed by the completion algorithm.

3: The algorithm generated duplicate rules.

4: The completion algorithm created an infinite loop.

Since the completion algorithm is semi-decidable it will not complete for every input program. A

program can still be completable when SWI-Prolog runs out of global stack. A self-overlap cannot

be fixed because a critical pair like (Coin = head), (Coin = tail) cannot be resolved by

CHR-Rules. The rule would have to express (head = tail) this cannot be done by definition

of predicate logic since constants must not be unified.

With the testcases it can be seen that the CCp is calculating correctly. All examples are com-

pleted with the correct new set of rules that are generated by the completion algorithm.
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9 Conclusion and Future Work

A new correct confluence checker for Constraint Handling Rules that supports propagation rules

and completion has been implemented. In this section a short overview and conclusion for all

that was done will be given and a talk about what could be implemented and improved in the

future.

9.1 Conclusion

The CCp implements the theoretical concept described in chapter 3.1. It can understand all

types of CHR-Rules and can check CHR-Programs for confluence. For the transforming of the

input program and the checking Prolog and CHR were used. To check to confluence a CHR

constraint solver was implemented that supports all types of rules with and without guards. The

main difference between the older confluence checkers like [1] and the one described in this

thesis is that the CCp supports propagation rules. With this new ability the completion algorithm

can be implemented.

A program may be completable if it is non-confluent, at least one of states of the critical pair

contains constraints and the built-ins of these both states are not a contradiction. The completion

algorithm that is used will produce new rules that can lead to the confluence of the input program.

But since the completion algorithm is not decidable it can also lead to an infinite loop or no new

rules at all. The current implementation has a basic loop detection that does not generate rules

where the head and the body are the same or the head is a part of the body. The rules that get

newly created are written into an output file together with the rules and overheads of the original

input program.

The whole program has a basic understanding of built-ins and supports basic relations. It can

decide if two guards can be fired at the same time or not for these built-ins. A problem with the

built-ins is, that the program would have to store information about variables to do more advanced

guard checks. This would be needed to support more built-ins. The completion algorithm is not

decidable therefore the computation can be infinite.

In the evaluation the performance of the CCp was checked to detect potential and the limits

of the implementation. It was shown that the CCp provides the same results like the checker

checker for the given examples.
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9.2 Future Work

In the current implementation of the confluence checker not many built-ins that are supported.

This could be addressed by a complex constraint solver that has its own variable store where

information for all variables is gathered and used to solve guards or other built-ins. With these

informations the built-ins could be called and potentially solved. Frank Richter implemented such

a support for the old confluence checker in oeqck. The built-in support for the CCp can be build

onto the concept of this work.

To improve the performance and reduce redundancies the parallelism in the completion algo-

rithm can be improved. In the current implementation every critical pair calls the completion on

its own. By adding a program that overwatches the whole program and collects all data after

each step of the program the runtime of the program could be improved.

The confluence check could be further enhanced by checking all overlaps, collecting the results

of them and evaluate the complete result. By this change the completion could be made linear

and no duplicate rules would be created. Another possibility would be a global rule list constraint

which would be altered every time a new rule is created. With this the rule list would always

be up-to-date and the creation of duplicate rule would be prevented. This could eliminate the

checking of already fixed overlaps and improve the overall performance of the checker.

Bottlenecks are a problem when checking programs with many overlaps. The generation of the

overlaps is such a bottleneck in the CCp, every rule gets matched with every other. In that step

the constraint store is filled with pair/2 constrains. The check if a pair has an overlap or not

is started after every pair has been generated. With huge programs the memory usage of the

pairs is huge. This could be resolved by generating pairs only if there is an overlap.

The completion part of the program could also be enhanced for a better user experience. More

loop detection can be done by adding more predicates to do this. Cases where two rules gener-

ate constraints to fire the other rule and so on could be detected by this.
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A Disk Content

Folder ’./CCp/Code’

This folder contains the confluence checker for CHR programs with propagation rules and the

implementation of the completion algorithm.

Folder ’./CCp/Examples/Confluent’

This folder contains the confluent examples used in this thesis.

Folder ’./CCp/Examples/Non-Confluent’

This folder contains the non-confluent examples used in this thesis.

Folder ’./CCp/Examples/Complexity Examples’

This folder contains the examples with raising complexity from the evaluation chapter.

Folder ’./CCp/Bachelor-Thesis-Daniel-Bebber.pdf’

This file is the pdf version of this work.
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