Constraint Handling Rules -
Basic CHR programs and their analysis

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany
Basic CHR programs and their analysis

Table of Contents

Basic CHR programs and their analysis
 Multiset transformation
 Procedural algorithms
 Graph-based algorithms
Overview

Analysis of CHR programs regarding

- Logical reading and program correctness
- Termination and complexity
 - Upper bound from meta-complexity theorem
 - Actual worst-case complexity in CHR (refined semantics)
- Confluence
- Anytime and online algorithm property
- Concurrency and parallelism
Multiset transformation

- Programs consisting of essentially one constraint
- Constraint represents active data
- Pairs of constraints rewritten by single simplification rule
- Often possible: more compact notation with simpagation rule
- Simpagation rule removes one constraint, keeps (and updates) other
Minimum

Minimum program

\[\text{min}(N) \ \& \ \text{min}(M) \iff N=\leq M \ | \ true. \]

- Computes minimum of numbers given as
 \[\text{min}(n_1), \ \text{min}(n_2), \ldots, \ \text{min}(n_k) \]
- Keeps removing larger values until only one value remains

Example computation

\[
\begin{align*}
\text{min}(1), & \quad \text{min}(0), \quad \text{min}(2), \quad \text{min}(1) \\
\text{min}(0), & \quad \text{min}(2), \quad \text{min}(1) \\
\text{min}(0), & \quad \text{min}(1) \\
\text{min}(0) &
\end{align*}
\]
Logical reading (I)

- \min constraints represent candidates for minimum
 - Actual minimum remains when calculation finished
 - Cannot be expressed straightforward in first-order logic

- First-order logic reading

\[
\forall (N \leq M \rightarrow (\min(N) \land \min(M) \leftrightarrow \min(N)))
\]

Logically equivalent to

\[
N \leq M \rightarrow (\min(M) \leftarrow \min(N))
\]

- “Given a minimum, any larger value is also a minimum”
Logical reading (II)

- Linear logic reading

\[\forall ((N \leq M) \rightarrow (\text{min}(N) \otimes \text{min}(M) \rightarrow \text{min}(N))) \]

- Reads as: Of course, consuming $\text{min}(N)$ and $\text{min}(M)$ where $(N=\lt M)$ produces $\text{min}(N)$

- Properly reflects the dynamics of the minimum computation.
Correctness

Correctness by contradiction

- Minimum is not correctly computed
 - Case 1: more than one min constraint left
 - Case 2: remaining min constraint does not contain minimum
- Case 1: rule is still applicable
- Case 2: minimum must have been removed
 - Contradiction: rule always removes larger value
Termination and worst-case complexity

- **Termination**
 - Rule removes constraints, does not introduce new ones
 - Rule application in constant time (applies to every pair of min constraints)
 - Number of rule applications (derivation length) bounded by number of min constraints

- **Worst-case time complexity**
 - Given n min constraints
 - $O(n)$ under refined semantics (left-to-right, immediate reaction, one constraint will be removed)
Meta-complexity

- Abstract semantics: undetermined order of tried constraints and rules
- Meta-complexity theorem (MCT)

\[O(D \sum_i ((n + D)^{n_i}(O_{H_i} + O_{G_i}) + (O_{C_i} + O_{B_i}))), \]

\((D \text{ derivation length}, i \text{ ranges over rules}, n_i \text{ number of head constraints in } i\text{th rule}, \text{costs } O_{H_i} \text{ of head matching, } O_{G_i} \text{ of guard checking, } O_{C_i} \text{ of imposing built-in constraints of body, } O_{B_i} \text{ of imposing CHR constraints of body}) \)

- In this case

\[O(n(n^2(1 + 0) + (1 + 0))) = O(n^3). \]

- Highly over-estimates (applies to all two-head simpagation rules)
Confluence (I)

- Correctness implies result is single specific min constraint
 \Rightarrow Program is confluent for ground queries (ground confluent)

- One rule, only overlaps with itself

- One nontrivial full overlap (all head constraints equated):
 $\text{min}(A),\text{min}(B), A=B, B=A$.
 (equivalent to $\text{min}(A),\text{min}(A), A=B$.)

- Apply rule in given or reversed order
 - Both cases lead to $\text{min}(A), A=B$ (hence rule removes duplicates)
Confluence (II)

- Four overlaps where one constraint shared
 \[\text{min}(A), \text{min}(B), \text{min}(C), A=B, B=C. \]
 \[\text{min}(A), \text{min}(B), \text{min}(C), A=B, B=C. \]
 \[\text{min}(A), \text{min}(B), \text{min}(C), A=B, A=C. \]
 \[\text{min}(A), \text{min}(B), \text{min}(C), A=B, C=B. \]

- First (and second) overlap leads to joinable critical pair
 \[
 \begin{align*}
 \text{min}(A), \text{min}(B), \text{min}(C), & A=B, B=C \\
 / & \\
 \text{min}(A), \text{min}(B), & A=B, B=C \\
 \text{min}(A), \text{min}(C), & A=B, B=C \\
 \text{min}(A), & A=B, B=C \\
 \end{align*}
 \]

- Only smallest constraint \(\text{min}(A) \) is left
Confluence (III)

- **Next overlap (similar)**

 \[
 \min(A), \min(B), \min(C), \ A = <B, A = <C \\
 / \ \\
 \min(A), \min(B), \ A = <B, A = <C \quad \min(A), \min(C), \ A = <B, A = <C \\
 \ \\
 \min(A), \ A = <B, A = <C
 \]

- **Last overlap**

 \[
 \min(A), \min(B), \min(C), \ A = <B, C = <B \\
 \ | \ \\
 \min(A), \min(C), \ A = <B, C = <B
 \]

- **Cannot proceed until relationship between** \(A\) **and** \(C\) **known (but then common state is reached)**

⇒ **Program is confluent**
Anytime algorithm property

- Anytime algorithm (approximation)
 - One can interrupt program at any time and restart on immediate result
 - On interrupt: subset of initial \min constraints containing actual minimum
 \Rightarrow interruption and restart possible
 - Intermediate results approximate final result
 - Set of possible minima gets smaller and smaller

\Rightarrow Program is an anytime algorithm
Online algorithm property

- Online (incremental)
 - Possibility to add constraints while program is running
 - Additional \(\text{min} \) constraints can be added at any point
 - Immediately react with other constraints
 - Confluence guarantees same result, no matter when constraint is added

\[\Rightarrow \text{Program is incremental} \]
Concurrency and parallelism (I)

- Program is well-behaved (terminating, confluent)
 ⇒ parallelization easy

- Weak parallelism
 - Apply rule to different nonoverlapping parts of query
 - Rule can be applied to pairs of \(\min \) constraints in parallel
 - Halves number of \(\min \) constraints in each parallel computation step
 - \(O(\log(n)) \) on \(n/2 \) parallel processing units (processors)

Example computation

\[
\begin{array}{cccc}
\min(1), & \min(0), & \min(2), & \min(1) \\
\min(0), & & \min(1) \\
\min(0) & & & \\
\end{array}
\]
Concurrency and parallelism (II)

▶ Strong parallelism
 ▶ Apply rule to overlapping parts of query (fix one min constraint to be kept)
 ▶ Linear complexity as in sequential execution (worst-case: with largest value fixed, no rule application possible)

▶ Cost (Time complexity times number of processors)
 ▶ Parallel execution: $O(n \log(n))$
 ▶ Sequential execution: $O(n)$
Boolean XOR

XOR program

\[
xor(X), \ xor(X) \iff xor(0).
\]
\[
xor(1) \setminus xor(0) \iff true.
\]

- Implements Exclusive Or operation of propositional logic (0 means false, 1 means true)
- Query: multiset of \texttt{xor} constraints for input truth values (e.g. \texttt{xor(1)}, \texttt{xor(0)}, \texttt{xor(0)}, \texttt{xor(1)})
- First rule: Identical inputs replaced by \texttt{xor(0)}
- Second rule: Remove \texttt{xor(0)} if there is \texttt{xor(1)}
Logical reading and correctness

- First-order logical reading
 - $xor(X) \leftrightarrow xor(0)$ (particularly $xor(1) \leftrightarrow xor(0)$)
 - Means all xor constraints are equivalent
 - Resort to linear logic reading

- Correctness
 - Map CHR conjunction to xor operation
 - Both associative, commutative, not idempotent
 - Each rule application computes one xor
 - One xor constraint left in the end
Termination and complexity

- **Terminating**
 - Each rule removes more constraints than it introduces

- **Complexity**
 - For each pair of constraints one rule application in constant time
 - Linear complexity under refined semantics
 - Cubic complexity under abstract semantics
Confluence (I)

XOR program
\[\text{xor}(X), \text{xor}(X) \iff \text{xor}(0).\]
\[\text{xor}(1) \setminus \text{xor}(0) \iff \text{true}.\]

- **Overlap** \(\text{xor}(X), \text{xor}(X)\)
 - First rule fully with itself
 - Always leads to \(\text{xor}(0)\)

- **Overlap** \(\text{xor}(X), \text{xor}(X), \text{xor}(X)\)
 - First rule with itself
 - Always leads to \(\text{xor}(0), \text{xor}(X)\)
Confluence (II)

XOR program

\[
xor(X), \ xor(X) \iff xor(0).
\]

\[
xor(1) \ \setminus \ xor(0) \iff true.
\]

- **Overlap** \(xor(1), xor(1), xor(0)\)
 - Occurs twice (first and second rule, second rule with itself)
 - Always leads to \(xor(0)\)

- **Overlap** \(xor(1), xor(0), xor(0)\)
 - Occurs twice (first and second rule, second rule with itself)
 - Always leads to \(xor(1)\)

\(\Rightarrow\) Program is confluent
Remaining properties

- **Anytime**: fewer and fewer xor constraints, result not necessarily contained $(\text{xor}(1), \text{xor}(1))$
- **Online**: xor constraints can be added at any point
- **Rules applicable in parallel (as for min)** $\Rightarrow O(n \log(n))$
Greatest common divisor

GCD program

\[
\begin{align*}
gcd(0) & \iff \text{true}. \\
\text{sub} \ @ \ gcd(N) & \setminus gcd(M) \iff 0 < N, N = < M \ | \ gcd(M - N). \\
\text{mod} \ @ \ gcd(N) & \setminus gcd(M) \iff 0 < N, N = < M \ | \ gcd(M \ mod \ N).
\end{align*}
\]

- Either \text{sub} or \text{mod} rule can be used

Example computation (\text{sub})

\[
\begin{align*}
gcd(7), & \ gcd(12) \\
gcd(7), & \ gcd(5) \\
gcd(5), & \ gcd(2) \\
gcd(2), & \ gcd(3) \\
gcd(2), & \ gcd(1) \\
gcd(1), & \ gcd(1) \\
gcd(1), & \ gcd(0) \\
gcd(1)
\end{align*}
\]

Example computation (\text{mod})

\[
\begin{align*}
gcd(7), & \ gcd(12) \\
gcd(7), & \ gcd(5) \\
gcd(5), & \ gcd(2) \\
gcd(2), & \ gcd(1) \\
gcd(1), & \ gcd(0) \\
gcd(1)
\end{align*}
\]
Logical Reading

- First-order logical reading

\[\text{gcd}(0) \leftrightarrow \text{true} \]

\[0 < N \land N < M \rightarrow (\text{gcd}(N) \land \text{gcd}(M) \leftrightarrow \text{gcd}(N) \land \text{gcd}(M-N)) \]

Latter is equivalent to

\[0 < N \land 0 = M \rightarrow (\text{gcd}(N) \land \text{gcd}(M+N) \leftrightarrow \text{gcd}(N) \land \text{gcd}(M)) \]

- Correct, but does not characterize gcd, only all its multiples
- Linear-logic semantics reflects dynamics of computation properly
Correctness

- All divisors \(d \) preserved under rule application
- Computation produces smaller and smaller values
 - \(N = Ad, M = Bd \)
 - From logical reading

 \[
 0 < Ad \land Ad \leq Bd \\
 \rightarrow (\gcd(Ad) \land \gcd(Bd) \leftrightarrow \gcd(Ad) \land \gcd(Bd-Ad))
 \]

 - \(\gcd(Bd - Ad) \) is equivalent to \(\gcd((B - A)d) \)

 \[\Rightarrow \text{Divisor } d \text{ preserved during computation} \]
- Computation continues until \(M = N = \gcd \)
- Rule is applied a last time
- \(\gcd(0) \) is removed leaving only actual \(\gcd \)
Termination and complexity

- **Termination**
 - Guard condition ensure new value smaller than removed M
 - New value cannot become negative

- **Complexity**
 - Rules applicable in constant time to any gcd pair
 - Two gcd constraints
 - sub: complexity linear in larger number
 - mod: complexity logarithmic in larger number
 - More than two gcd constraints: consider all numbers
 - sub linear in sum of numbers
 - mod logarithmic in product of numbers
Confluence

- GCD program is ground confluent (unique result for given values)
- Not confluent in general:
 - Overlaps analogous to min
 - Difference: rule not only removes constraints but also adds
 - Nonjoinable critical pair (cp)
 \[
 \begin{align*}
 \text{gcd}(A), \text{gcd}(B), \text{gcd}(C), &\ 0<A, A=B, 0<C, C=B \\
 \phantom{\text{gcd}(A),} &\ \text{gcd}(A), \text{gcd}(B-A), \text{gcd}(C), 0<A, A=B, 0<C, C=B \\
 \phantom{\text{gcd}(A),} &\ \text{gcd}(A), \text{gcd}(B-C), \text{gcd}(C), 0<A, A=B, 0<C, C=B
 \end{align*}
 \]
 - Computation cannot proceed until relationship of A, B, and C is known
Remaining properties

- Anytime: fewer and fewer \(\gcd \) constraints with smaller and smaller numbers (result not necessarily contained)
- Online: additional \(\gcd \) constraints can be added anytime
- Complexity of parallel execution not better nor worse than sequential (since \(O(\max(a, b)) = O(a + b) \))
- But \(\gcd \)'s may get smaller more quickly
- In practice: super-linear speed up with parallel CHR implementation in Haskell
Prime sieve

Prime sieve program

\[
sift @ \text{prime}(I) \ \backslash \ \text{prime}(J) \iff J \mod I = 0 \ | \ \text{true}.
\]

- Removes multiples in given set until only prime numbers left
- Query: prime candidates from 2 upto \(N\)

 \((\text{prime}(2), \text{prime}(3), \text{prime}(4), \ldots, \text{prime}(N))\)

Example computation

- \(\text{prime}(7), \text{prime}(6), \text{prime}(5), \text{prime}(4), \underline{\text{prime}(3)}, \text{prime}(2)\)
- \(\text{prime}(7), \text{prime}(5), \underline{\text{prime}(4)}, \text{prime}(3), \underline{\text{prime}(2)}\)
- \(\text{prime}(7), \text{prime}(5), \text{prime}(3), \text{prime}(2)\)
Logical reading and correctness

- **First-order logical reading**

\[\forall ((M \mod N = 0) \rightarrow (\text{prime}(M) \land \text{prime}(N) \leftrightarrow \text{prime}(N))) \]

- Means a number is prime if it is a multiple of another prime number
- Linear logic reading reflects dynamics of filtering correctly

- **Correctness**
 - Program confluent \(\Rightarrow \) result always the same
 - All composite numbers removed (with correct query)
 - Primes not removed (only multiple of 1, not included)
Termination and complexity

- **Termination**
 - Rule only removes constraints

- **Complexity**
 - Rule not applicable to all pairs of numbers
 - Thus complexity quadratic in number of constraints (refined semantics)
 - Runtime can be improved by starting from lower numbers
Confluence

- **Program is confluent**
 - **Reason: transitivity of divisibility**
 - $I|J$ and $J|K \Rightarrow I|K$
 - **Overlaps and joinability analogous to** \min
 - $\text{prime}(A),\text{prime}(B),$ $A|B,B|A$
 - $\text{prime}(A),\text{prime}(B),\text{prime}(C),$ $A|B,B|C$
 - $\text{prime}(A),\text{prime}(B),\text{prime}(C),$ $A|B,A|C$
 - $\text{prime}(A),\text{prime}(B),\text{prime}(C),$ $A|B,C|B$
 - **First three overlaps lead to joinable critical pair**
 - **Last overlap also:**
 - $\text{prime}(A),\text{prime}(B),\text{prime}(C),$ $A|B,$ $C|B$
 - $\text{prime}(A),\text{prime}(C),$ $A|B,$ $C|B$
Other properties

- Anytime and online properties as for \min
- sift does not hold for all pairs
 - All $O(n^2)$ pairs have to be tried in $O(n)$ rounds
 \Rightarrow some scheduling needed
- Strong parallelism
 - Fix one prime constraint for first head constraint
 - Search for prime constraint matching second head constraint
 - Needs $O(n)$ rounds
- Cost same as for sequential execution (quadratic)
- Linear time: maximal, linear parallel speed-up
Exchange sort

Exchange sort program

\[a(I, V), a(J, W) \iff I > J, V < W \mid a(J, V), a(I, W). \]

- Exchanges values that are in the wrong order
- Query: array of values \(A_i (a(1, A_1), \ldots a(n, A_n)) \)

Example computation

\[
\begin{align*}
& a(0, 1), a(1, 7), a(2, 5), \underline{a(3, 9)}, a(4, 2) \\
& a(0, 1), a(1, 5), \underline{a(2, 7)}, a(3, 2), a(4, 9) \\
& a(0, 1), a(1, 5), \underline{a(2, 2)}, a(3, 7), a(4, 9) \\
& a(0, 1), a(1, 2), a(2, 5), a(3, 7), a(4, 9)
\end{align*}
\]
Logical reading and correctness

- First-order logical reading

\[I \succ J \land V < W \rightarrow (a(I, V) \land a(J, W) \leftrightarrow a(J, V) \land a(I, W)) \]

- Means all arrays with same set of values are equivalent
- Resort to linear logic reading

- Correctness

- Sorted: for each \((a(I, V), a(J, W))\) with \(I \succ J\) it holds that \(V \geq W\)
- If condition \(V \geq W\) does not hold, rule is applicable
 \(\Rightarrow\) condition holds after application
 \(\Rightarrow\) if rule not applicable, array must be sorted
Termination

- Rule application cannot introduce more wrong than right orderings
- Guard: counter in each array entry
 - Counts how many values with larger index are smaller
 - On exchange:
 - Counter of smaller value increases
 - Counter of larger value decreases by same number +1
 - Counter of values in between can only decrease
 ⇒ Sum of counters decrease with each rule application
Complexity

- Derivation length quadratic in number of constraints (cf. counter)
- Two head constraints: MCT gives overestimated complexity
 \[O(n^2((n^2)^2(1 + 1) + (0 + 1))) = O(n^6) \]
- Fix one value (refined semantics): Each try costs \(O(n) \)
 - Rule can be applied in constant time once pair found
- At most \(O(n^2) \) applications \(\Rightarrow \) actual worst-case complexity \(O(n^3) \)
Confluence (I)

▶ Program is ground confluent by correctness (unique result)

▶ Not confluent in general

▶ First critical pair is joinable

\[
a(I, V), a(J, W), a(K, U), I > J, V < W, J > K, W < U
\]
\[
/ I, J \quad | \quad J, K
\]
\[
/ a(I, V), a(K, W), a(J, U), I > J, V < W, J > K, W < U
\]
\[
/ a(J, V), a(I, W), a(K, U), I > J, V < W, J > K, W < U
\]
\[
| I, K \quad | \quad I, K
\]
\[
| a(K, V), a(I, W), a(J, U), I > J, V < W, J > K, W < U
\]
\[
| a(J, V), a(K, W), a(I, U), I > J, V < W, J > K, W < U
\]
\[
\backslash J, K \quad | \quad I, J
\]
\[
\backslash a(K, V), a(J, W), a(I, U), I > J, V < W, J > K, W < U
\]
Confluence (II)

- **Two nonjoinable critical pairs**

 \[
 \begin{align*}
 &a(I, V), \ a(J, W), \ a(K, U), \ I>J, V<W, \ I>K, V<U \\
 &\quad / \ I, J \\
 &a(J, V), \ a(I, W), \ a(K, U), \ I>J, V<W, \ I>K, V<U \\
 &\quad | \ I, K \\
 &a(K, V), \ a(J, W), \ a(I, U), \ I>J, V<W, \ I>K, V<U
 \end{align*}
 \]

 Only joinable when relationship between \(J\) and \(K\) as well as \(W\) and \(U\) known

- **Analogous situation for**

 \[
 \begin{align*}
 &a(I, V), \ a(J, W), \ a(K, U), \ I>K, V<U, \ J>K, W<U
 \end{align*}
 \]
Remaining properties

- Number of wrongly ordered pairs decreases over time
- Additional array entries can be added at any point
- Rule not applicable to arbitrary pairs of constraints
 ⇒ only weak parallelism possible
 - Associate each array entry with a processor
 - Try all pairs in $O(n)$ (macro-step)
 - Each entry reacts with at most $O(n)$ other entries
 - Overall $O(n^2)$ rule applications
 - All rule applications can be performed in $O(n)$ macro-steps
 ⇒ Complexity quadratic, cost cubic
Square root

Square root program

\[\text{sqrt}(X,G) \leftrightarrow \text{abs}(G \times G/X - 1) > \text{eps} \mid \text{sqrt}(X, (G + X/G)/2). \]

- Rule implements Newton’s method
- \text{sqrt}(X, G): square root of \(X \) is approximated by \(G \)
- \(\text{eps} \) is greater but close to 0
- Start with positive numbers \(X \) and \(G \)
Logical reading and termination

- Logical reading
 \[\text{abs}(G * G/X - 1) > \epsilon \rightarrow (\text{sqrt}(X, G) \leftrightarrow \text{sqrt}(X, (G + X/G)/2)) \]

 - Means that any value is an approximation of \(\sqrt{X} \)
 - Resort to linear logic reading

- Termination
 - After first rule application \(G \geq \sqrt{X} \)
 - If \(G = \sqrt{X} \) rule not applicable
 - Otherwise rule applicable, second argument will decrease
Remaining properties

- Confluence, anytime, online algorithm
 - Hold trivially (single rule with single head constraint)
- Concurrency, parallelism
 - Several constraints can run independently in parallel
Maximum

Maximum program

\[
\begin{align*}
\text{max}(X, Y, Z) & \iff X =< Y \quad | \quad Z = Y. \\
\text{max}(X, Y, Z) & \iff Y =< X \quad | \quad Z = X.
\end{align*}
\]

- \(\text{max}(X, Y, Z) \) means \(Z \) is the maximum of \(X \) and \(Y \)
- \(=< \) and \(< \) built-ins

Example computation

- \(\text{max}(1, 2, M) \): first rule applicable, reduces to \(M = 2 \)
- \(\text{max}(1, 2, 3) \): fails because of built-in \(3 = 2 \)
- \(\text{max}(1, 1, M) \): both rules applicable, reduces to \(M = 1 \)
Logical reading and correctness

- First-order logical reading is

\[X \leq Y \rightarrow (\text{max}(X, Y, Z) \leftrightarrow Z = Y) \]

\[Y \leq X \rightarrow (\text{max}(X, Y, Z) \leftrightarrow Z = X) \]

- Logical consequences of the definition of \(\text{max} \)

\[\text{max}(X, Y, Z) \leftrightarrow (X \leq Y \land Z = Y \lor Y \leq X \land Z = X) \]

- This shows logical correctness
Termination and complexity

- One constraint removed in each step
 - At most n (number of constraints) derivation steps
- In each step at most n constraints checked against rules
- Checking or establishing syntactic equality in constant time
- Matching constraint against rule in quasi-constant time
- Rule application in quasi-constant time
- Worst-case complexity slightly worse than $O(n^2)$
 - Same complexity is obtained using MCT
Remaining properties

- **Confluence**
 - Only overlap is $\max(X, Y, Z) \land X \leq Y \land Y \leq X$
 - Leads to critical pair
 \[
 (Y = Z \land X \leq Y \land Y \leq X, X = Z \land X \leq Y \land Y \leq X)
 \]
 - Both states equivalent to $X = Y \land Y = Z$

- **Anytime, online algorithm**
 - Hold trivially (single-headed simplification rule)

- **Concurrency, parallelism**
 - \max constraint may have to wait for result of other constraint
 (e.g. $\max(X, Y, Z), \max(Y, Z, W)$)
Fibonacci numbers

Fibonacci program

\[
\begin{align*}
 f_0 & @ \text{fib}(0,M) \iff M=1. \\
 f_1 & @ \text{fib}(1,M) \iff M=1. \\
 f_n & @ \text{fib}(N,M) \iff N \geq 2 \mid \\
 & \quad \text{fib}(N-1,M_1), \text{fib}(N-2,M_2), \text{M is M}_1+M_2.
\end{align*}
\]

▶ **fib** \((N, M)\) holds if \(M\) is \(N\)th Fibonacci number

Example computations

- Query **fib**\((8, A)\) yields \(A=34\)
- Query **fib**\((12, 233)\) succeeds
- Query **fib**\((11, 233)\) fails
- Query **fib**\((N, 233)\) delays
Logical reading and correctness

- First-order logical reading

\[\text{fib}(0, M) \iff M = 1 \]

\[\text{fib}(1, M) \iff M = 1 \]

\[N \geq 2 \rightarrow (\text{fib}(N, M) \iff \text{fib}(N - 1, M1) \land \text{fib}(N - 2, M2) \land M = M1 + M2) \]

- Shows correctness (coincides with mathematical definition)
Termination and complexity

- Program terminates
 - First argument of \texttt{fib} decreases in each call
 - Call only possible with positive first argument
- Ranking gives upper bound on derivation length
 \[
 \text{rank}(\text{fib}(n, m)) = 2^n.
 \]
- Expected exponential complexity $O(2^n)$
- If first argument unknown complexity may increase (depending on wake-up policy)
- MCT reflects this and gives $O(4^n)$
Remaining properties

- **Confluence:**
 - No overlaps (single-headed simplification rules whose heads and guards exclude each other)

- **Anytime, online algorithm, and concurrency**
 - Hold trivially (single-headed simplification rule)
Fibonacci numbers (memorization version)

Fibonacci program with memorization

mem @ fib(N,M1) \ fib(N,M2) <= M1=M2.

f0 @ fib(0,M) ==> M=1.

f1 @ fib(1,M) ==> M=1.

fn @ fib(N,M) ==> N>=2 |

fib(N-1,M1), fib(N-2,M2), M is M1+M2.

Example computations

Query **fib(8,A)** returns all Fibonacci numbers up to 8:

fib(0,1), fib(1,1), fib(2,2), ..., fib(7,21), fib(8,34)
Complexity

- With indexing on the first argument
 - Linear complexity (each Fibonacci number only computed once)
- Without indexing on first argument
 - Quadratic complexity (Searching for suitable pairs in \text{mem})
- MCT does not apply here (propagation rules)
Confluence

- Nontrivial overlaps between mem and each propagation rule
- First critical pair: \(\text{fib}(0, M_1), \text{fib}(0, M_2) \)

\[
\begin{align*}
\text{fib}(0, M_1), \text{fib}(0, M_2) \\
/ \text{mem} \quad \backslash \quad \text{f}0 \\
\text{fib}(0, M_2), M_1 = M_2 \quad \text{fib}(0, M_1), M_1 = 1, \text{fib}(0, M_2) \\
\quad | \quad \text{f}0 \quad | \quad \text{mem} \\
\text{fib}(0, M_2), M_1 = M_2, M_2 = 1 \equiv M_1 = M_2, M_1 = 1, \text{fib}(0, M_2)
\end{align*}
\]
Confluence

- Second critical pair \texttt{fib(N,M1), fib(N,M2)} (shown split)

 \begin{verbatim}
 fib(N,M1)
 | mem
 fib(N,M2), M1=M2
 | fn
 fib(N,M2), M1=M2, fib(N-1,M5), fib(N-2,M6), M2 is M5+M6

 fib(N,M2)
 | fn
 fib(N,M1), fib(N-1,M3), fib(N-2,M4), M1 is M3+M4, fib(N,M2)
 | mem
 M1=M2, fib(N-1,M3), fib(N-2,M4), M1 is M3+M4, fib(N,M2)
 \end{verbatim}

- The two reached states are equivalent

- Overlap with rule f1 analogous
Other properties

- **Online**: trivial
- **Anytime**
 - In theory: no computation steps redone when started on intermediate result
 - In practice: recomputation may occur (propagation history not explicit)
 - Additional computations absorbed (confluence and ```mem``` rule)
 - Execution of two recursive calls in parallel possible
 - No gain: ```mem``` rule will absorb multiple computations
Fibonacci numbers (program variations)

- Similar reasoning, results hold for `fib` as function with given first argument
- Exception: finite bottom-up computation

```
fn @ fib_upto(Max), fib(N1,M1), fib(N2,M2)
    ==> Max>N2, N2:=N1+1 | fib(N2+1,M1+M2).
```

- Quadratic complexity (no indexing between to `fib` constraints in head)
Depth-first search

Depth-first search program

```prolog
empty @ dfsearch(nil,X) <=> false.
found @ dfsearch(node(N,L,R),X) <=> X=N | true.
left @ dfsearch(node(N,L,R),X) <=> X<N | dfsearch(L,X).
right @ dfsearch(node(N,L,R),X) <=> X>N | dfsearch(R,X).
```

- Tree encoding `node(Data, Lefttree, Righttree)`
- Data ordered such that every node in left subtree smaller, every node in right subtree larger than parent node
- Search for datum `Data` in binary tree `Tree` by calling `dfsearch(Tree, Data)`
- All analyzed properties hold in a trivial way (single-headed simplification rules with exclusive heads and guards)
- Complexity linear in depth in tree per search
Depth-first search

Depth-first search program (variant)

- `empty @ nil(I) \ dfsearch(I,X) <= fail.
- `found @ node(I,N,L,R) \ dfsearch(I,X) <= X=N | true.
- `left @ node(I,N,L,R) \ dfsearch(I,X) <= X<N | dfsearch(L,X).
- `right @ node(I,N,L,R) \ dfsearch(I,X) <= X>N | dfsearch(R,X).

- Different granularity: node represented by CHR data constraint
- Tree is set of such `node constraints
- For valid binary search tree properties of previous programs inherited
- With indexing complexity unaffected
- Data constraints can be added ⇒ online algorithm
Depth-first search

Depth-first search program (another variant)

\[
\text{found @ node}(N) \ \backslash \ \text{search}(N) \iff \text{true}.
\]
\[
\text{empty @ search}(N) \iff \text{fail}.
\]

- Directly access data by mentioning in rule head
- All properties except anytime break down (due to `empty` rule)
- With indexing constant time complexity
Destructive assignment

Destructive assignment program

\[
\text{assign}(\text{Var}, \text{New}), \; \text{cell}(\text{Var}, \text{Old}) \iff \text{cell}(\text{Var}, \text{New}).
\]

- **Constraint** \text{assign} assigns new value to variable \text{Var}
- **Not confluent**
 - **Nonjoinable overlap:**
 \[
 \text{assign}(\text{Var}, \text{New}_1), \; \text{assign}(\text{Var}, \text{New}_2), \; \text{cell}(\text{Var}, \text{Old})
 \]
 - **Results in either** \text{cell}(\text{Var}, \text{New}_1) \text{ or } \text{cell}(\text{Var}, \text{New}_2)
- **Order matters** \(\Rightarrow\) not executable in parallel as intended
- **First-order logical reading does not reflect intended meaning** (linear-logic semantics needed)
Transitive closure

Transitive closure program

\[
\begin{align*}
\text{dp} & @ p(X,Y) \setminus p(X,Y) \iff \text{true}. \\
\text{pl} & @ e(X,Y) \implies p(X,Y). \\
\text{pn} & @ e(X,Y), p(Y,Z) \implies p(X,Z).
\end{align*}
\]

- Relation: edge \(e \) between two nodes
- Transitive closure: path \(p \) between two nodes

Example computation

Query \(e(1,2), e(2,3), e(2,4) \) adds path constraints

\(p(1,4), p(2,4), p(1,3), p(2,3), p(1,2) \)
Logical reading and correctness

- First-order logical reading as implications
 \[p(X, Y) \land p(X, Y) \leftrightarrow p(X, Y) \]
 \[e(X, Y) \rightarrow p(X, Y) \]
 \[e(X, Y) \land p(Y, Z) \rightarrow p(X, Z) \]
 - Logical reading of duplicate removal is tautology
 - Not expressible in FOL but in linear logic: transitive closure is smallest transitive relation
 - Rules actually calculate smallest relation (left to right application produces relation bottom-up)

⇒ Program is correct
Termination

- **Refined semantics**
 - Duplicates removed by d_p before propagation rules applied
 - Finite number of paths in finite graph
 \[\Rightarrow \text{Program terminates} \]

- **Abstract semantics**
 - d_p can be applied too late in cyclic graph
 - Same paths generated again and again
 \[\Rightarrow \text{Termination not guaranteed} \]
Complexity (I)

- It holds that $\frac{v}{2} \leq e \leq p \leq v^2$ (v #vertices, e #edges, p #paths)
- Rules can be applied in constant time
- Without indexing
 - Upper bound for propagation rule attempts: product of number of head constraints occurring during computation
 - p_1 tried at most e times, applies e times
 - p_n tried at most ep times, applies at most $\max(ev, vp) = vp$ times
 - Path constraint produced with each rule application
 - Thus, d_p applied pvp times

\Rightarrow Worst-case complexity due to $d_p O(vp^2) = O(v^5)$
Complexity (II)

- With indexing
 - Index constraints on arguments with shared variables in heads
 - Upper bounds for rule attempts and rule application coincide now
 - p_1 tried and applied at most e times
 - p_n tried and applied at most $\max(ev, vp) = vp$ times
 - Thus, dp applied vp times now

\Rightarrow Worst-case complexity due to $p_n \ O(vp) = O(v^3)$

- Optimal for this algorithm
Confluence

- Only nontrivial overlap (between dp and pn)

```
\cpp

e(X, Y), p(Y, Z), p(Y, Z)
/ dp \ pn
\cpp

e(X, Y), p(Y, Z)  e(X, Y), p(Y, Z), p(Y, Z)
\ pn / dp
\cpp
\cpp

\cpp

e(X, Y), p(Y, Z), p(X, Z)
```

- Program is confluent
Remaining properties

- **Anytime**: Repeated application of propagation rule does not matter
 - Confluence, duplicate paths removed
- **Online**: edges can be added during computation
- **Strong parallelism**
 - Apply p_1 to all edges in parallel
 - Next rounds: all possible applications of p_n and then d_p
 - With indexing v_p application of those rules
 - Given v processors parallel complexity $O(v^2)$
 - Cost $O(v^3)$
Single-source and single-target paths

Transitive closure program (single-source)

\[
\begin{align*}
\text{dp} @ & \ p(X,Y) \ \backslash \ p(X,Y) \Leftrightarrow \text{true}. \\
\text{sl} @ & \ \text{source}(X), \ e(X,Y) \Longrightarrow p(X,Y). \\
\text{sn} @ & \ \text{source}(X), \ p(X,Y), \ e(Y,Z) \Longrightarrow p(X,Z).
\end{align*}
\]

- Only paths from (or to) a certain node computed
- Complexity
 - Number of created path constraints reduced by factor v
 \[p \leq v \leq 2e \leq 2v^2\]
 - Without indexing $O(vp^2) = O(v^3)$
 - With indexing: $O(vp) = O(v^2)$
Shortest path

Shortest path program

\[
dp \ @ \ p(X,Y,N) \ \& \ p(X,Y,M) \iff N \leq M \mid \text{true.}
\]
\[
e(X,Y) \implies p(X,Y,1).
\]
\[
e(X,Y), p(Y,Z,N) \implies p(X,Z,N+1).
\]

- Computes shortest path length between all pairs of nodes

Example computation

Query \(e(X,Y), e(Y,Z), e(X,Z) \) adds path constraints

\(p(X,Z,1), p(Y,Z,1), p(X,Y,1) \)
Termination and complexity

- New active path constraint only removed by d_P if equal or longer
- Otherwise old path removed (work repeated, at most v times)
 \Rightarrow Worst-case complexity with indexing $O(e v^2) = O(v^4)$
- Better complexity (i.e. $e v$) needs more clever scheduling
 - E.g. in Dijkstra’s algorithm, computation always continues with shortest path found so far
Partial order constraint

Partial order program

duplicate @ X leq Y \ X leq Y <-> true.
reflexivity @ X leq X <-> true.
antisymmetry @ X leq Y , Y leq X <-> X=Y.
transitivity @ X leq Y , Y leq Z ==> X leq Z.

▶ Maintains nonstrict partial order relation leq ≤

Example computation

A leq B, C leq A, B leq C
A leq B, C leq A, B leq C, C leq B
A leq B, C leq A, B=C
A=B, B=C
Termination and complexity

- **duplicate and transitivity** analog to transitive closure (i.e. cubic)
- **reflexivity** does not change complexity
- **With indexing**
 - Application of antisymmetry triggers at most $O(v)$ constraints (all leq with X and Y)
 - In those constraints, one variable is replaced by other
 - problem shrinks by one variable (at most $O(v)$ times)
 - Thus, antisymmetry applied $O(v)$ times
 - Trying and applying of antisymmetry: $O(v^2)$
 - Overall complexity $O(v^3)$
Remaining properties

- Algorithm is anytime and online (as discussed in chapter 4)
- Similar to transitive closure: transitivity can be applied in parallel to all pairs, then all other rules can be applied
- First-order logical reading

 (duplicate) \(\forall X, Y \ (X \leq Y \land X \leq Y \Rightarrow X \leq Y) \)

 (reflexivity) \(\forall X \ (X \leq X \Leftrightarrow \text{true}) \)

 (antisymmetry) \(\forall X, Y \ (X \leq Y \land Y \leq X \Leftrightarrow X = Y) \)

 (transitivity) \(\forall X, Y, Z \ (X \leq Y \land Y \leq Z \Rightarrow X \leq Z) \)

- **duplicate** rule is tautology
- Other rules give axioms of partial order
- FOL reading suffices and shows correctness (see also chapter 3)
Cocke-Younger-Kasami

CYK algorithm

- **duplicate** @ \ p(A,I,J) \ p(A,I,J) \leftrightarrow true.
- **terminal** @ A->T, e(T,I,J) \rightarrow p(A,I,J).
- **nonterminal** @ A->B*C, p(B,I,J), p(C,J,K) \rightarrow p(A,I,K).

- Parses a string according to a context-free grammar bottom-up.
- Specialization of transitive closure
Termination and complexity

General idea: With indexing:

- Arguments of constraints can be associated with finite domains
 ⇒ Product of domain sizes of variables in rule head gives upper bound on number of rule applications and attempts
- Chain representing string has v nodes and $e(=v-1)$ edges
- Grammar with t terminals and n nonterminals
- Number of grammar rules $r \leq nt + n^3$ (assuming $t \leq n^2$)
- Products of domain sizes
 - terminal (variables A, T, I, J): $ntv = ntv^2$
 - nonterminal (variables A, B, C, I, J, K): n^3v^3
 - duplicate tried with each produced: n^3v^3

⇒ Overall complexity of $O(n^3v^3)$ with indexing (n usually fixed)
Confluence

- Confluent when used on ground chains
- Not confluent in general
- Nonjoinable critical pair from overlap

\[
\begin{align*}
A \rightarrow &B \ast B, \quad p(B,I,I), \quad p(B,I,I) \\
&/ \text{ nonterminal} \quad \backslash \text{ duplicate} \\
A \rightarrow &B \ast B, \quad p(B,I,I), \quad p(B,I,I), \quad p(A,I,I) \\
&A \rightarrow B \ast B, \quad p(B,I,I) \\
&| \text{ duplicate} \\
A \rightarrow &B \ast B, \quad p(B,I,I), \quad p(A,I,I)
\end{align*}
\]
Mergesort

Merge sort program

\[
A \rightarrow B \\ \ \ A \rightarrow C \Leftrightarrow A < B, B = C \ | \ B \rightarrow C.
\]

- Implements merge sort algorithm
- Query contains only arcs \(0 \rightarrow A_i\)
- Answer: sequence of values stored as arcs
 (e.g. \(0, 2, 5\) is \(0 \rightarrow 2, 2 \rightarrow 5\))

Example computation

\[
\begin{align*}
0 \rightarrow 2, & \ 0 \rightarrow 5, \ 0 \rightarrow 1, \ 0 \rightarrow 7. \\
0 \rightarrow 2, & \ 2 \rightarrow 5, \ 0 \rightarrow 1, \ 0 \rightarrow 7. \\
1 \rightarrow 2, & \ 2 \rightarrow 5, \ 0 \rightarrow 1, \ 0 \rightarrow 7. \\
1 \rightarrow 2, & \ 2 \rightarrow 5, \ 0 \rightarrow 1, \ 1 \rightarrow 7. \\
1 \rightarrow 2, & \ 2 \rightarrow 5, \ 0 \rightarrow 1, \ 2 \rightarrow 7. \\
1 \rightarrow 2, & \ 2 \rightarrow 5, \ 0 \rightarrow 1, \ 5 \rightarrow 7.
\end{align*}
\]
Logical reading and correctness

- Classical logical reading is sufficient

\[A < B \land B \rightarrow C \rightarrow (A \rightarrow B \land A \rightarrow C \leftrightarrow A \rightarrow B \land B \rightarrow C). \]

- \(A \rightarrow B \) means \(A \leq B \), thus logical correctness is consequence of axioms for \(\leq \)

\[A < B \land B \leq C \rightarrow (A \leq B \land A \leq C \leftrightarrow A \leq B \land B \leq C) \]
Termination and complexity

- Complexity of merging two ordered chains (lengths n and m)
 - Indexing on the first argument of arc constraint:
 - Second arc constraint found in constant time since rule is applicable to arbitrary pairs of arcs with same first argument
 - Each rule application processes one arc constraint
 - $O(m + n)$

- Complexity of sorting n values given as second argument of arc
 - First argument can be replaced at most n times in each arc
 - Worst time complexity $O(n^2)$
Confluence

- Ground confluent (correct, unique result)
- Overlaps and joinability analog to gcd
 \(\text{gcd}(N) \) mapped to \(X \rightarrow N \), \(\text{gcd}(M-N) \) to \(N \rightarrow M \)
- One nonjoinable overlap

\[
\begin{align*}
X \rightarrow A, & \ X \rightarrow B, \ X \rightarrow C, \ X < A, A = < B, \ X < C, C = < B \\
/ & \\
X \rightarrow A, & \ A \rightarrow B, \ X \rightarrow C, \ X < A, A = < B, \ X < C, C = < B \\
/ & \\
X \rightarrow A, & \ C \rightarrow B, \ X \rightarrow C, \ X < A, A = < B, \ X < C, C = < B \\
\end{align*}
\]

- Cannot proceed until relationship between \(A \) and \(C \) is known
Anytime and online algorithm

- Anytime property
 - Intermediate results: connected acyclic graph
 - Smallest value is root
 - Longer and longer chains without branches

- Online property
 - Sorting incrementally, new arcs can be added at any time
Mergesort (optimal complexity sorting)

- Complexity can be improved to optimal $O(n \log(n))$ by optimal merging order
- Merging chains of same length
 - Precede chain with length (N=>Firstnode)
 - Rule to initiate merging of chains of same length
 \[N=>A, \ N=>B \iff A<B \ | \ N+N=>A, \ A->B. \]
 - Works only if length of query is a power of 2
- Start by merging n chains of length 1 then merge $n/2$ chains of length 2 and so on
- Finished after $\log(n)$ rounds \Rightarrow complexity $O(n \log(n))$
- works for any length with one more rule
Concurrence and parallelism

- Follows structure of proof of optimal complexity
- Merging of two chains strictly sequential
- In second round start merging new chains while tail of chains still produced
- \(\log(n) \) rounds of merging, last round my need \(n \) more steps
- Overall \(n + \log(n) \) steps
- With \(n \) processors: complexity \(O(n) \) and cost \(O(n^2) \)
- Also possible for original version (scheduling)