Constraint Handling Rules -
Syntax and Semantics of CHR

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany
Table of Contents

Syntax and Semantics of CHR
 Introduction
 Preliminaries
 Abstract syntax
 Operational semantics
 Declarative semantics
Constraint Handling Rules (CHR)

- CHR is both: logical and practical
 - related to subset of first-order logic and linear logic
 - general-purpose programming like Prolog and Haskell
- Rules are descriptive and executable
Constraint Handling Rules (CHR)

► no distinction between data and operations
 ► constraints cover both
► CHR is a language extension
 ► Implementations available for Prolog, Haskell, C, Java, …
 ► in host language CHR constraints can be posted/inspected
 ► in CHR rules host language statements can be used
► CHR is synthesis of
 ► propagation rules
 ► multiset transformation
 ► logical variables
 ► built-in constraints

with a formal foundation in logic and methods for powerful program analysis
CHR programming language

- for theorem proving and computational logic, integrating
 - forward and backward chaining
 - (integrity) constraints
 - deduction and abduction
 - tabulation
- as flexible production rule system with constraints
- as general-purpose concurrent constraint language
Available Distributions

More than a dozen free libraries to

- Prolog: SICStus, Yap, Eclipse, XSB, hProlog, HAL, SWI,...
- Java, also C
- Haskell, also parallel

Most advanced implementations from K.U. Leuven
Highlight Properties of CHR

Complexity

Every algorithm can be implemented in CHR with best-known time and space complexity.

Algorithmic properties

Any CHR program will automatically implement a concurrent anytime (approximation) and online (incremental) algorithm.

Decidability

For terminating CHR programs confluence of rule applications and operational equivalence are decidable.
Overview

- **Syntax**: describes how constituents of a formal language are combined to form valid expressions

- **Semantics**:
 - **Operational**: Description of what it means to execute a statement (as transition system)
 - **Declarative**: Description of the meaning without referring to execution (in logic)
 - Goal: Corresponding operational and declarative semantics

- **Soundness**: Result of computation according to operational semantics is correct regarding declarative semantics

- **Completeness**: Everything proven by declarative semantics can be computed
Preliminaries
Syntactic expressions (I)

➤ **Signature:**
 ➤ Set of variables \mathcal{V}
 ➤ Set of function symbols Σ
 ➤ Set of predicate symbols Π

➤ Function and predicate symbols have arity (number of arguments they take)

➤ **Functor** f/n: symbol f with arity n

➤ **Constants**: function symbols with arity zero

➤ **Propositions**: predicate symbols with arity zero
Syntactic expressions (II)

- **Term**: variable or function term $f(t_1, \ldots, t_n)$ ($f/n \in \Sigma$, t_i terms)
- **Atomic formula (atom)**: $p(t_1, \ldots, t_n)$ ($p/n \in \Pi$, t_i terms)
- **(Logical) expressions**: Terms and atoms; sets, multisets, and sequences (lists) of logical expressions
Definition (Substitution)

Substitution $\theta : \mathcal{V} \rightarrow \mathcal{T}(\Sigma, \mathcal{V}')$: finite function from variables to terms

$\theta = \{X_1/t_1, \ldots, X_n/t_n\}$ where each $X_i \neq t_i$

Identity substitution $\epsilon = \emptyset$

Extension to terms, $\theta : \mathcal{T}(\Sigma, \mathcal{V}) \rightarrow \mathcal{T}(\Sigma, \mathcal{V}')$

defined by implicit homomorphically extension,

$f(t_1, \ldots, t_n)\theta := f(t_1\theta, \ldots, t_n\theta)$

Substitution θ obtained by replacing each X_i in E with t_i at once.

Subsitions written as postfix operators, applied from left to right.
Example – Substitution

Example

- $\theta = \{X/2, Y/5\}$: $(X \ast (Y + 1))\theta = 2 \ast (5 + 1)$
- $\theta = \{X/Y, Z/5\}$: $(X \ast (Z + 1))\theta = Y \ast (5 + 1)$
- $\theta = \{X/Y, Y/Z\}$: $p(X)\theta = p(Y) \neq p(X)\theta\theta = p(Z)$
- $\theta = \{X/Y\}, \tau = \{Y/2\}$:
 - $(X \ast (Y + 1))\theta\tau = (Y \ast (Y + 1))\tau = (2 \ast (2 + 1))$
 - $(X \ast (Y + 1))\tau\theta = (X \ast (2 + 1))\theta = (Y \ast (2 + 1))$
Instance, Renaming, Variants

Definition (Instance)

\[E\theta \] is instance of \(E \).

\(E\theta \) matches \(E \) with matching substitution \(\theta \).

\(\theta = \{ X_1/t_1, \ldots, X_n/t_n \} \), \(E \) expression)

Definition (Variant, Variable Renaming)

If \(E \) and \(F \) are instances of each other then \(E \) and \(F \) are variants of each other.

Substitution \(\theta \) is a variable renaming in \(E = F\theta \).

Variable renaming \(\theta \) is bijective, maps variables to variables.

- **Renamed apart**: Variants with no variables in common
- **Fresh variant**: Variant containing only new variables
Groundness

- Variables either **free** or **bound** (instantiated) to term
- **Ground, fixed (determined) variable**: bound or equivalent to ground term (variable is indistinguishable from the term it is bound to)
- **Ground expression**: Expression not containing (nonground) variables
Unification and syntactic equality

Unification: making expressions *syntactically equivalent* by substituting variables with terms.

Definition (Unifier)

Substitution θ is **unifier** of E and F if $E\theta = F\theta$.

E, F **unifiable**: unifier exists.

$\{p_1, \ldots, p_n\} = \{q_1, \ldots, q_m\}$ shorthand for $p_1 = q_1 \land \ldots \land p_n = q_n$ if $n = m$ and for false otherwise.
Most General Unifier

Definition (Most General Unifier (MGU))

θ is **MGU** for E, F: every unifier τ for E, F is instance of θ, i.e., τ = θρ for some ρ

(E, F expressions, θ, τ, ρ, θi substitutions)
Example – Most General Unifier

Example

\[f(X, a) = f(g(U), Y) = Z \]

MGU:

\[\theta = \{X/g(U), Y/a, Z/f(g(U), a)\} \]

Proof: \(f(X, a)\theta = f(g(U), Y)\theta = Z\theta = f(g(U), a) \) one element.

Unifier, but not MGU:

\[\theta' = \{X/g(h(b)), U/h(b), Y/a, Z/f(g(h(b)), a)\} \]

Proof: \(\theta' = \theta\{U/h(b)\} \).
Computing Most General Unifier

- Start with empty substitution ϵ
- scan terms simultaneously from left to right according to their structure
- check the syntactic equivalence of the terms encountered
 repeat
 - different function symbols: halt with failure
 - identical function symbols: continue
 - one is unbound variable and other term:
 - variable occurs in other term: halt with failure
 - apply the new substitution to the logical expressions
 add corresponding substitution
- variable is bound: replace it by applying substitution
Example – Most General Unifier (2)

Example

Computing the MGU:

<table>
<thead>
<tr>
<th>to unify</th>
<th>current substitution, remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(X,f(a)) = p(a,f(X))$</td>
<td>ϵ, start</td>
</tr>
<tr>
<td>$X = a$</td>
<td>${X/a}$, substitution added</td>
</tr>
<tr>
<td>$f(a) = f(X)$</td>
<td>continue</td>
</tr>
<tr>
<td>$a = X$</td>
<td>${X/a}$, variable is not unbound</td>
</tr>
<tr>
<td>$a = a$</td>
<td>continue</td>
</tr>
</tbody>
</table>

MGU is $\{X/a\}$

What about $p(X,f(b)) = p(a,f(X))$?
Example – Most General Unifier (3)

<table>
<thead>
<tr>
<th>s</th>
<th>t</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>failure</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>ϵ</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X/a}$</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X/Y}$, but also ${Y/X}$</td>
</tr>
<tr>
<td>$f(a,X)$</td>
<td>$f(Y,b)$</td>
<td>${Y/a, X/b}$</td>
</tr>
<tr>
<td>$f(g(a,X),Y)$</td>
<td>$f(c,X)$</td>
<td>failure</td>
</tr>
<tr>
<td>$f(g(a,X),h(c))$</td>
<td>$f(g(a,b),Y)$</td>
<td>${X/b, Y/h(c)}$</td>
</tr>
<tr>
<td>$f(g(a,X),h(Y))$</td>
<td>$f(g(a,b),Y)$</td>
<td>failure</td>
</tr>
</tbody>
</table>
Example – Most General Unifier (4)

Examples involving cyclicity:

- $X = X$ is unifiable but not:
 - $X = f(X)$
 - $X = p(A, f(X, a))$
 - $X = Y \land X = f(Y)$
Clark’s Equality Theory (CET)

Reflexivity \((true \rightarrow X = X)\)

Symmetry \((X = Y \rightarrow Y = X)\)

Transitivity \((X = Y \land Y = Z \rightarrow X = Z)\)

Compatibility \((X_1 = Y_1 \land \ldots \land X_n = Y_n \rightarrow f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n))\)

Decomposition \((f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n) \rightarrow X_1 = Y_1 \land \ldots \land X_n = Y_n)\)

Contradiction (Clash) \((f(X_1, \ldots, X_n) = g(Y_1, \ldots, Y_m) \rightarrow false) \quad \text{if } f \neq g \text{ or } n \neq m\)

Acyclicity \((X = t \rightarrow false) \quad \text{if } t \text{ is function term and } X \text{ appears in } t\)

(\(\Sigma\) signature with infinitely many functions, including at least one constant)
Theorems equality and matching

Theorem (Equality)

Expressions E and F are unifiable if and only if

$$CET \models \exists(E = F).$$

Theorem (Matching)

For expressions E, F and substitution $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$

$$CET \models \forall(E = F\theta \leftrightarrow (X_1 = t_1 \land \cdots \land X_n = t_n \rightarrow E = F)).$$

E matches F with substitution θ.

($\forall F$ denotes universal closure of formula F)
Constraint systems

- Constraints are distinguished predicates of first-order-logic
- Constraint systems take data types and operations and interpret expressions as constraints
- Data types: typically numbers are used to represent scalars, terms to represent structures
Definition constraint system

- Set of **constraint symbols**
- Set of values called **domain**
- Logical theory CT called **constraint theory**
 - consists of universally closed formulas (axioms)
 - must be nonempty and consistent
 - must include axiomatization for syntactic equality $= (CET)$ and the propositions $true$ (always holds) and $false$ (never holds)
 - **Complete**: for all constraints c either $CT \models \forall c$ or $CT \models \forall \neg c$ holds
Terminology constraint system

- **Atomic constraint**: atomic formula whose predicate symbol is constraint symbol
- **Constraint**: conjunction of atomic constraints
- **Solution**: substitution θ s.t. $C\theta$ holds ($CT \models C\theta$)
- **Satisfiable (consistent) constraint**: solution exists, otherwise unsatisfiable (inconsistent)
- **Equivalent constraints** C_1, C_2: have the same solutions ($CT \models \forall(C_1 \leftrightarrow C_2)$)
Reasoning problems

- **Satisfaction problem**: existence of a solution
 - Solved by algorithm called **decision procedure**
- **Solution problem**: Finding a solution
 - Algorithm for solution is called (constraint) **solver**
 - Solver typically also simplifies constraints.
Transition systems (*)

- Most abstract way to capture essence of computation
- Basically a binary relation over states
- Transition relation describes how one can proceed from one state to another
States and transitions

Definition (Transition system)

- Transition system T is pair $T = (S, \rightarrow)$
 - S is set of states (configurations)
 - Transition \rightarrow is binary relation on states, $\rightarrow \subseteq S \times S$

- **TS deterministic**: at most one transition from every state, otherwise **nondeterministic**

- **Reachability relation** $\rightarrow *$: reflexive transitive closure of \rightarrow

- **Initial, final states**: Nonempty subsets of S.
Derivations and computations

Definition (Derivation)

Derivation: Sequence of states $s_0 \rightarrow s_1 \rightarrow \ldots$ where $s_0 \rightarrow s_1 \land s_1 \rightarrow s_2 \land \ldots$

- **Finite** (terminating) if sequence is finite.
- **Length**: number of transitions in derivation.

Computation: derivation that start with initial state s_0 and ends with final state or is infinite.

Remarks

- S may be finite, countably infinite, or infinite
- Initial and final states not necessarily disjoint
- If no initial states given, all states initial
- Final states must include states which have no successor
- Final states can include states which have successor
- Transition (reduction) also called derivation/computation step
Example

Example (Soccer)

\[S = \{(t, p, a, b) \mid 0 \leq t, a, b \leq 90, p \in \{A, B\}\} \]

Initial states: \(\{(0, A, 0, 0), (0, B, 0, 0)\} \)

Final states: \((90, p, a, b) \in S\)

- \((t, A, a, b) \mapsto (t + 1, A, a+1, b)\)
- \((t, B, a, b) \mapsto (t + 1, B, a, b+1)\)
- \((t, A, a, b) \mapsto (t + 1, A, a, b)\)
- \((t, B, a, b) \mapsto (t + 1, B, a, b)\)
- \((t, A, a, b) \mapsto (t + 1, B, a, b)\)
- \((t, B, a, b) \mapsto (t + 1, A, a, b)\)

▷ Models progression of goal count

- \(t\): counter for minutes
- Second component models possession
- \(a\) and \(b\): goal counters
- Scoring, keeping ball, or loosing ball possible
Induction

Definition (Induction Principle)

Property P defined over states is called **invariant**:

If **base case** $P(s_0)$ holds and **induction hypothesis** “$P(s_n)$ implies $P(s_{n+1})$” holds for all $s_n \mapsto s_{n+1}$ then P holds for all s in derivation

Example (Soccer Invariant)

Score in soccer game always less or equal 90:

- Let $P((t, p, a, b))$ be $t \leq 90$
- P holds for initial states
- In all other states: $0 < t \leq 90$, final states $t = 90$
- All transition increment $t < 90$ by one
 - \Rightarrow Induction hypothesis holds \Rightarrow claim holds
Abstract syntax

Two kinds of constraints: CHR (user-defined) constraints and built-in (predefined) constraints.

- **Built-in constraints:**
 - Arbitrary logical relations (solved and simplified effectively)
 - Constraint theory for built-ins is denoted by CT
 - Built-ins $true$, $false$, and syntactic equality $=$
 - Allow embedding and utilization of given constraint solvers
 - Allow for side-effect free host language statements
 - Considered as black boxes (correct, terminating confluent)

- **User-defined constraints:**
 - Defined by rules of a CHR program
CHR program

Definition (CHR program)

Built-in Constraint:
\[C, D ::= c(t_1, \ldots, t_n) \mid C \land D, \ n \geq 0 \]

CHR Constraint:
\[E, F ::= e(t_1, \ldots, t_n) \mid E \land F, \ n \geq 0 \]

Goal:
\[G, H ::= C \mid E \mid G \land H \]

Simplification Rule:
\[SR ::= r \oplus E \iff C \mid G \]

Propagation Rule:
\[PR ::= r \Rightarrow E \Rightarrow C \mid G \]

Simpagation Rule:
\[SPR ::= r \ominus E_1 \setminus E_2 \iff C \mid G \]

CHR Rule:
\[R ::= SR \mid PR \mid SPR \]

CHR Program:
\[P ::= \{R_1 \ldots R_m\}, m \geq 0 \]

- **r** name, optional unique identifier
- **E, E_1, E_2** head, nonempty conjunction of CHR constraints
- **C** optional guard, conjunction of built-ins
- **G** body, conjunction of built-ins and CHR constraints
Definition (II)

Definition (Additional concepts)

- **Removed constraints**: head constraints of simplification rule and head constraints E_2 of simpagation rule
- **Kept constraints**: other head constraints
- **Defined constraint**: occurs in head of rule
- **Used constraint**: occurs in body of rule
- **Local variable of rule**: does not occur in rule head
- **Range-restricted rule**: No local variables
 (Program range-restricted if all rules range-restricted)
Multiset and sequence notation

- Use of first-order logic conjunction emphasizes close ties of CHR to logic
- Should be understood purely syntactically
- Conjunction interpreted as logical operator, multiset or sequence forming operator
- Operator ⊎ used for multiset union
- When multisets treated as sequences, order chosen at random
- List notation ([H|T] or []) for sequences
- Operator + denotes sequence concatenation
Generalized simpagation rule notation

- Simplification, propagation and simpagation rules as special case of **Generalized simpagation rule**

 \[E_1 \setminus E_2 \Leftrightarrow C \mid G \]

- \(E_1 \) kept, \(E_2 \) removed constraints, \(C \) guard, \(G \) body
- If \(E_1 \) empty rule equivalent to simplification rule \(E_2 \Leftrightarrow C \mid G \)
- If \(E_2 \) empty rule equivalent to propagation rule \(E_1 \Rightarrow C \mid G \)
- At least one of \(E_1 \) and \(E_2 \) must be nonempty
Operational semantics

- Describes how program is executed
- Defined by transitions system
 - States are conjunctions of CHR and built-in constraints
 - Transitions correspond to rule applications
- Starting from initial state rules are applied until exhaustion or contradiction
 - Simplification rule replaces CHR constraints matching its head by its body if guard holds
 - Propagation rule adds its body without removal
 - Simpagation rule removes part of the matched constraints
Very abstract semantics (*)

States

Definition (States)

- **State**: conjunction of built-in and CHR constraints
- **Initial state**: arbitrary state
- **Final state**: no transitions possible anymore

- Conjunction as multiset forming operator:
 - Conjunction is associative and commutative, but not idempotent
 - Multiplicity of conjuncts matters, permutation and grouping allowed
- Built-ins allow for computations with possibly infinitely many ground instances
- States can be understood as set comprehension
 - State $E \land D$ (E CHR constraints, D built-ins) stands for potentially infinite set of ground instances E, $\{E|D\}$
Transitions

Definition (Transition Apply)

\[(H_1 \land H_2 \land G) \xrightarrow{r} (H_1 \land C \land B \land G)\]

if there is an instance of a rule in the program with new local variables

\[\bar{x}\]

\[r \oplus H_1 \setminus H_2 \leftrightarrow C \land \neg B\]

and \[CT \models \forall (G \rightarrow \exists \bar{x}C)\]

▶ Rule \(r\) generalised simpagation rule in **head normal form**: Arguments of the head constraints are distinct variables.

▶ \(H_1, H_2, C, B, G\) denote possibly empty conjunctions of constraints
Ask and Tell

Built-in constraints

- **tell**: *producer* adds/places constraint to the constraint store
- **ask**: *consumer* checks entailment (implication) of constraints from the store (but does not remove any constraint)

Example:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Constraint Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell</td>
<td>$X \leq Y$</td>
</tr>
<tr>
<td>tell</td>
<td>$X \leq Y \land Y \leq Z$</td>
</tr>
<tr>
<td>ask</td>
<td>$X \leq Z$</td>
</tr>
<tr>
<td>ask</td>
<td>$X \leq Y \land Y \leq Z$</td>
</tr>
<tr>
<td>ask</td>
<td>$Y \leq X$</td>
</tr>
<tr>
<td>tell</td>
<td>$Y \leq X \land Y \leq Z$</td>
</tr>
<tr>
<td>tell</td>
<td>$Z \leq X$</td>
</tr>
<tr>
<td>ask</td>
<td>$X = Y \land Y = Z$</td>
</tr>
<tr>
<td>ask</td>
<td>$Y \leq X$</td>
</tr>
<tr>
<td>ask</td>
<td>$X > Z$</td>
</tr>
<tr>
<td>ask</td>
<td>$X = Y \land Y = Z$</td>
</tr>
</tbody>
</table>
Applicability condition

- Instance of rule (with new local variables \bar{x}) **applicable** if
 - Head constraints appear in the state
 - **Applicability condition (AC)** $\mathcal{C} \vdash \forall (G \rightarrow \exists \bar{x} C)$ holds
- Actually, AC only considers built-in constraints of G
Rule application (I)

- When rule applied
 - CHR head constraints H_1 kept, H_2 removed from state
 - Guard C and body B is added (C may contain variables not contained in body or head)

- When more than one rule applicable, one is chosen nondeterministically
 - Choice cannot be undone (committed-choice)
Rule application (II)

- CHR constraints can be added and removed by rule application
- CHR constraints behave nonmonotonically in general
- Built-in constraints can only be added but not removed
- Built-ins monotonically accumulate information
Example GCD

Example (Greatest common divisor)

\[
gcd1 \ @ \ \gcd(I) \iff I = 0 \mid true.
gcd2 \ @ \ gcd(I) \ \\gcd(J) \iff J \geq I \land I > 0 \mid gcd(J - I).
\]

\((true, =, \geq, >: \text{built-in constraints})\)

Example computation

\[
gcd(6) \land gcd(9) \\
\rightarrow_{gcd1} gcd(6) \land gcd(3) \\
\rightarrow_{gcd1} gcd(3) \land gcd(3) \\
\rightarrow_{gcd1} gcd(0) \land gcd(3) \\
\rightarrow_{gcd2} gcd(3)
\]
Example – Partial Order Relation

Example (Program)

reflexivity @ X leq Y ⇔ X=Y | true \((r1)\)
antisymmetry @ X leq Y ∧ Y leq X ⇔ X=Y \((r2)\)
transitivity @ X leq Y ∧ Y leq Z ⇒ X leq Z \((r3)\)
idempotency @ X leq Y ∧ X leq Y ⇔ X leq Y \((r4)\)

\((true \ and \ =: \ built-in \ constraints)\)
Example – Partial Order Relation (2)

Example computation

\[A \leq B \land C \leq A \land B \leq C \]
\(\xrightarrow{\text{apply } (r3)}\)
\[A \leq B \land C \leq A \land B \leq C \land C \leq B \]
\(\xrightarrow{\text{apply } (r2)}\)
\[A \leq B \land C \leq A \land B = C \]
\(\xrightarrow{\text{apply } (r2)}\)
\[A = B \land B = C \]

Example (Program)

\[X \leq Y \iff X = Y \lor \text{true } (r1) \]
\[X \leq Y \land Y \leq X \iff X = Y \ (r2) \]
\[X \leq Y \land Y \leq Z \Rightarrow X \leq Z \ (r3) \]
\[X \leq Y \land X \leq Y \iff X \leq Y \ (r4) \]
Example – Min

Example (Program)

\[
\begin{align*}
\text{min}(X,Y,Z) & \iff X \leq Y \mid Z = X \quad (r1) \\
\text{min}(X,Y,Z) & \iff Y \leq X \mid Z = Y \quad (r2) \\
\text{min}(X,Y,Z) & \iff Z < X \mid Y = Z \quad (r3) \\
\text{min}(X,Y,Z) & \iff Z < Y \mid X = Z \quad (r4) \\
\text{min}(X,Y,Z) & \Rightarrow Z \leq X \land Z \leq Y \quad (r5)
\end{align*}
\]

(=, \leq \text{ and } < \text{ built-in constraint symbols})
Example – Min (2)

Example computation

<table>
<thead>
<tr>
<th>Step</th>
<th>Expression</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\text{min}(1, 2, M))</td>
<td>apply ((r1))</td>
</tr>
<tr>
<td>2.</td>
<td>(M = 1)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(\text{min}(A, A, M))</td>
<td>apply ((r1))</td>
</tr>
<tr>
<td>4.</td>
<td>(M = A \land A \leq A)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>(\text{min}(A, B, M) \land A \leq B)</td>
<td>apply ((r1))</td>
</tr>
<tr>
<td>6.</td>
<td>(M = A \land A \leq B)</td>
<td></td>
</tr>
</tbody>
</table>

Example (Program)

\[
\text{min}(X, Y, Z) \iff X \leq Y \land Z = X \quad (r1)
\]

...
Example – Min (3)

Example computation

\[\min(A, 2, 2) \]
\[\xrightarrow{\text{apply } (r5)} \min(A, 2, 2) \land 2 \leq A \land 2 \leq 2 \]
\[\xrightarrow{\text{apply } (r2)} 2 = 2 \land 2 \leq A \land 2 \leq 2 \]
\[\equiv 2 \leq A \]

Example (Program)

\[\min(X, Y, Z) \leftrightarrow X \leq Y \mid Z = X \ (r1) \]
\[\min(X, Y, Z) \leftrightarrow Y \leq X \mid Z = Y \ (r2) \]
\[\ldots \]
\[\min(X, Y, Z) \Rightarrow Z \leq X \land Z \leq Y \ (r5) \]
Example – Min (4)

Example computation

\[
\begin{align*}
\text{apply } (r5) & : \quad \text{min}(A, B, M) \land A= M \\
\text{apply } (r1) & : \quad A= M \land A \leq B \land M \leq A \land M \leq B \land A= M
\end{align*}
\]

\[
\equiv M \leq B \land A= M
\]

Example (Program)

\[
\begin{align*}
\text{min}(X, Y, Z) & \iff X \leq Y \mid Z= X \quad (r1) \\
\ldots \\
\text{min}(X, Y, Z) & \Rightarrow Z \leq X \land Z \leq Y \quad (r5)
\end{align*}
\]
Example – Min (5)

Example computation

- min(A, 2, 1) ⇐ apply (r4) →* A = 1
- min(A, 2, 3) ⇐ apply (r5) →* false

Example (Program)

... min(X, Y, Z) ⇔ Z < Y | X = Z (r4)
min(X, Y, Z) ⇒ Z ≤ X ∧ Z ≤ Y (r5)
CHR with disjunction (*)

Nondeterminisms

- **Don’t-care nondeterminism**
 - Choice should not matter for result, it is enough to know one result
 - In CHR, for choice of constraints from a state and for choice of rule to apply

- **Don’t-know nondeterminism**
 - Trying out different choices
 - In CHR, usually provided by host-language of CHR library
 - E.g. disjunction of Prolog can be used in rule body
 - Disjunction formalized in CHR[^1]
Syntax and states

Extension of syntax of CHR. Disjunction in goals and for states.

Definition (CHR∨ extended syntax)

<table>
<thead>
<tr>
<th>Goal:</th>
<th>G, H ::= C</th>
<th>E</th>
<th>$G \land H$</th>
<th>$G \lor H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration:</td>
<td>S, T ::= S</td>
<td>$S \lor T$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Configuration** $s_1 \lor s_2 \lor \ldots \lor s_n$: Disjunction of CHR states
- Each state represents independent branch in search tree
- **Initial** configuration: initial state
- **Final** configuration: consists of final states only
- **Failed** configuration: all states have inconsistent built-ins
Transitions (I)

Two additional transitions for configurations

Definition (Split transition in CHR$^\lor$)

\[
\text{Split} \\
((H_1 \lor H_2) \land G) \lor S \rightarrow \lor (H_1 \land G) \lor (H_2 \land G) \lor S
\]

- Can always be applied when state contains disjunction
- Branching the derivation: splitting into disjunction of two states
- Each state will be processed independently
- Constructs tree of states rather than sequence (search tree)
Transitions (II)

Definition (Apply transition in CHR^\lor)

Apply

$$(H_1 \land H_2 \land G) \lor S \rightarrow^r (H_1 \land C \land B \land G) \lor S$$

if there is an instance of a rule in the program with fresh variables \bar{x},

$$r @ H_1 \setminus H_2 \iff C \mid B$$

and $CT \models \forall (G \rightarrow \exists \bar{x}C)$

- Applies to disjunct, i.e. state, inside configuration
Example – Maximum

Example (Maximum in CHR\(^{\lor}\))

\[\max(X, Y, Z) \iff (X \leq Y \land Y = Z) \lor (Y \leq X \land X = Z) \]

- \(\max \) constraint in query (initial goal) will reduce to disjunct
- \(\max(1, 2, M) \): first disjunct leads to \(M = 2 \), second fails
- \(\max(1, 2, 3) \): both disjuncts fail \(\Rightarrow \) failed configuration
- \(\max(1, 1, M) \): both disjuncts reduce to \(M = 1 \)
Abstract semantics ω_t

- Abstract operational semantics of CHR
 - Refinement of very abstract semantics
 - Distinguishes between yet unprocessed constraints, CHR and built-in constraints
 - Avoids trivial nontermination
 - Uses matching for rule heads
- Also called standard, theoretical, or high-level operational semantics
- We adopt ω_t version of abstract operational semantics
Trivial nontermination

Very abstract semantics does not care much about termination.

- Failed states do not terminate
 - In failed state any rule is applicable
 - Failed state can only lead to failed state (monotonic accumulation of built-ins)
 - Solution: declare failed states as final states

- Propagation rules do not terminate
 - Can be applied again and again
 - Solution 1: Fair rule selection strategy (not ignoring applicable rule infinitely often)
 - Solution 2: Do not apply propagation rule twice to same constraints (need to keep a propagation history)
Rules and constraints

- Head and body of rule become multisets of atomic constraints
- Guard remains a conjunction of built-in constraints
- CHR constraints with unique identifier to distinguish multiple occurrences
 - **Numbered constraint** c_i consisting of constraint c and identifier i
 - Auxiliary notation $(c_i) = c$ and function $id(c_i) = i$ (with pointwise extension to sequences and sets of constraints)
States (I)

Definition (ω_t state)

A ω_t state is a tuple $\langle G, S, B, T \rangle^V_n$

- **Goal** G: multiset of all constraints to be processed
- **CHR store** S: (multi)set of numbered CHR constraints that can be matched with rules
- **Built-in store** B: conjunction of built-in constraint that has been passed to the built-in solver
- **Propagation history** T: set of tuples (r, I) (r rule name, I sequence of identifiers that matched head constraints of r)
- **Counter** n: next free integer to be used as identifier
- V variables of initial goal (query) (the global variables of a state)
States (II)

Definition (Kinds of states)

- **Initial state**: \(\langle G, \emptyset, \text{true}, \emptyset \rangle \) (\(G \) initial goal (query, problem, call), \(\mathcal{V} \) its variables)
- **Failed state**: \(\langle G, S, B, T \rangle \) with inconsistent built-ins (\(CT \models \neg \exists B \))
- **Successful state**: Consistent built-ins and empty goal store (\(G = \emptyset \))
- **Final state**: Successful state with no transition possible or failed state
- (Conditional or qualified) **Answer** (solution, result): \(\exists \bar{y} \left((S) \land B \right) \) from final state \(\langle G, S, B, T \rangle \) (\(\bar{y} \) variables *not in* \(\mathcal{V} \))
Transitions (I)

Definition (Solve transition)

\[
\text{Solve} \\
\langle \{c\} \uplus G, S, B, T \rangle_n \leftrightarrow_{solve} \langle G, S, B', T \rangle_n \\
\text{where } c \text{ is a built-in constraint and } CT \models \forall ((c \land B) \leftrightarrow B')
\]

- Built-in solver adds built-in from \(G \) to \(B \)
- \(C \land B \) is simplified to \(B' \) (how far is left unspecified)
Transitions (II)

Definition (Introduce transition)

Introduce

\[\langle \{c\} \cup G, S, B, T \rangle_n \xrightarrow{\text{introduce}} \langle G, \{c_n\} \cup S, B, T \rangle_{(n+1)} \]

where \(c\) is a CHR constraint

- Adds a CHR constraint \(c\) to \(S\) and numbers it with \(n\)
- Counter \(n\) is incremented
Transitions (III)

Definition (Apply transition)

Apply
\[\langle G, H_1 \cup H_2 \cup S, B, T \rangle_n \xrightarrow{\text{apply } r} \langle C \cup G, H_1 \cup S, (H_1) = H_1' \land (H_2) = H_2' \land N \land B, T \cup \{(r, id(H_1) + id(H_2))\} \rangle_n \]
if there is a fresh variant of a rule in the program with variables \(\bar{x} \),

\[r @ (H_1' \setminus H_2') \iff N \mid C \]

where \(CT \models \exists(B) \land \forall(B \rightarrow \exists\bar{x}((H_1) = H_1' \land (H_2) = H_2' \land N)) \) and \((r, id(H_1) + id(H_2)) \notin T \).

Operator + denotes sequence concatenation.

- Choses rule \(r \) from \(P \)
 - for which CHR constraints matching its head exist in \(S \)
 - whose guard \(N \) is logically implied by \(B \) under this matching

- Applies that rule (rule fires, is executed)
 - By replacing matched removed constraints with body
Applicability condition

Definition (Applicability condition)

\[\mathcal{CT} \models \exists(B) \land \forall(B \rightarrow \exists\bar{x}((H_1) = H'_1 \land (H_2) = H'_2 \land N)) \]

for fresh variant \(r \circ \ H'_1 \setminus H'_2 \iff N \mid C \) of a rule with variables \(\bar{x} \)

- Ensures that \(B \) is satisfiable
- Checks whether \(H_1 \) and \(H_2 \) match \(H'_1 \) and \(H'_2 \)
 \[((H_1) = H'_1 \land (H_2) = H'_2) \]
 - \(\{p_1, \ldots, p_n\} = \{q_1, \ldots, q_m\} \) shorthand for \(p_1 = q_1 \land \ldots \land p_n = q_n \) if \(n = m \) and for \(false \) otherwise
- Checks if \(N \) together with matching is entailed by \(B \) under \(\mathcal{CT} \)
- Checks that propagation history does not contain identifier of CHR constraints matching head of chosen rule
 \[(((r, id(H_1)) + id(H_2)) \notin T) \]
Example – Matching

Example (Head matching)

\[\exists (H = H'), H \text{ from state, } H' \text{ from rule head} \]

- \[\exists X(p(a) = p(X)) \]
- \[\forall Y \exists X(p(Y) = p(X)) \]

but not

- \[\forall Y \exists X(p(Y) = p(a)) \]

Example (Applicability condition)

- \[CT \models \exists Y = a \land \forall Y(Y = a \rightarrow (p(Y) = p(a))) \]
- \[CT \models \exists Y = a \land \forall Y(Y = a \rightarrow \exists X(p(Y) = p(X)) \land X = a) \]
- \[CT \not\models \exists Y = a \land \forall Y, Z(Y = a \rightarrow (p(Z) = p(a))) \]
Rule application

- When applicable rule is applied
 - Head H_1 is kept, H_2 is removed from CHR store
 - $(H_1) = H_1' \land (H_2) = H_2'$ and N are added to the built-in store (N may share variables with C)
 - Body C is added to the goal store
 - Propagation history is updated by adding $(r, id(H_1) + id(H_2))$

- Propagation history entries can be garbage-collected if involved CHR constraints have been removed
Computations

Definition (Computation)

- Finite computation is **successful** if final state is successful
- Finite computation is **failed** if final state is failed
- Computation is **nonterminating** if it has no final state
Example (GCD for abstract operational semantics)

\[\text{gcd1 } @ \emptyset \setminus \{\text{gcd}(0)\} \iff \text{true} \mid \text{true} . \]
\[\text{gcd2 } @ \{\text{gcd}(I)\} \setminus \{\text{gcd}(J)\} \iff J \geq I \mid \{K \text{ is } J-I, \text{gcd}(K)\} . \]

Example computation

\[
\begin{align*}
&\langle \{\text{gcd}(6), \text{gcd}(9)\}, \emptyset \rangle_1 \\
\iff &\text{introduce} \quad \langle \{\text{gcd}(9)\}, \{\text{gcd}(6)\}_1 \rangle_2 \\
\iff &\text{introduce} \quad \langle \emptyset, \{\text{gcd}(6), \text{gcd}(9)\}_2 \rangle_3 \\
\iff &\text{apply } \text{gcd2} \quad \langle \{K_1 \text{ is } 9-6, \text{gcd}(K_1)\}, \{\text{gcd}(6)\}_1 \rangle_3 \\
\iff &\text{solve} \quad \langle \{\text{gcd}(3)\}, \{\text{gcd}(6)\}_1 \rangle_3 \\
\iff &\text{introduce} \quad \langle \emptyset, \{\text{gcd}(6), \text{gcd}(3)\}_3 \rangle_4 \\
\iff &\text{apply } \text{gcd2} \quad \langle \{K_2 \text{ is } 6-3, \text{gcd}(K_2)\}, \{\text{gcd}(3)\}_3 \rangle_4 \\
\iff &\text{solve} \quad \langle \{\text{gcd}(3)\}, \{\text{gcd}(3)\}_3 \rangle_4 \\
\iff &\text{introduce} \quad \langle \emptyset, \{\text{gcd}(3), \text{gcd}(3)\}_5 \rangle_5 \\
\iff &\text{apply } \text{gcd2} \quad \langle \{K_3 \text{ is } 3-3, \text{gcd}(K_3)\}, \{\text{gcd}(3)\}_3 \rangle_5 \\
\iff &\text{solve} \quad \langle \{\text{gcd}(0)\}, \{\text{gcd}(3)\}_5 \rangle_5 \\
\iff &\text{introduce} \quad \langle \emptyset, \{\text{gcd}(3), \text{gcd}(0)\}_5 \rangle_6 \\
\iff &\text{apply } \text{gcd1} \quad \langle \emptyset, \{\text{gcd}(3)\}_6 \rangle_6
\end{align*}
\]
Refined operational semantics ω_r.

Motivation

- Nondeterminism in abstract operational semantics
 - Order of processing constraints in goal
 - Order of rule applications
- Current sequential CHR implementations
 - execute constraints in goals from left to right
 - execute constraints like a procedure call
 - apply rules in textual order of program
Refined operational semantics ω_r.

- Refined semantics
 - formalizes behavior of current implementations
 - is a refinement of the abstract operational semantics
 - allows for more programming idioms and for maximizing performance
 - can cause loss of logical properties and declarative concurrency
Rules and constraints

- CHR program is sequence of rules
- Head and body are sequences of atomic constraints
- **Occurrence**: number for every head constraint (top-down, left-to-right, starting with 1)
 - But removed head constraints in simpagation rule numbered before kept ones
- **Active constraint** c_i^j: numbered constraint only to match with occurrence j of (constraint symbol of) c in some rule head
- Auxiliary notation $(.)$ and function id extended to remove occurrence: $(c_i^j) = c$, $id(c_i^j) = i$
Example GCD

Example (GCD for refined operational semantics)

\[
\begin{align*}
gcd1 @ [] \setminus [gcd(0): 1] & \iff true \mid true. \\
gcd2 @ [gcd(I): 3] \setminus [gcd(J): 2] & \iff J \geq I \mid [K \text{ is } J-I, gcd(K)].
\end{align*}
\]
States

Definition (ω_r state)

A ω_r state is a tuple $\langle A, S, B, T \rangle^V_n$

- A, S, B, T, n like in abstract semantics
- But goal A redefined into stack
 - Sequence of built-in and CHR constraints, numbered CHR constraints, and active CHR constraints
 - Numbered constraint may appear simultaneously in A and S
- Initial, final, successful, and failed states as well as computations as for abstract semantics
Transitions (I)

- Constraints in goal executed from left to right
- Atomic CHR constraints basically executed like procedure calls
- Constraint under execution is called **active**, tries all rules in textual order of program
 - Active constraint is matched against head constraint of rule with same constraint symbol
 - If matching found, guard check succeeds, and propagation history permits it then rule fires
Transitions (II)

- Rule firing like procedure call
 - Constraints in body are executed left to right
 - When they finish, execution returns to active constraint
- If active constraint still present after all rules tried or executed, it will be removed from stack, kept in CHR store
- Constraints from store will be reconsidered (woken) when new built-ins are added that affect it
Transitions (III)

- Wake-up policy is implementation of \(\text{wakeup}(S, c, B) \)
 - Defines which constraints from \(S \) are woken if \(c \) is added to built-in store \(B \)
 - Ground constraints are never woken
 - Only wake CHR constraints which potentially cause rule firing (those whose variables are further constraint by newly added constraint)
 - No second waking if constraint added a second time
Solve+Wake

Definition (Solve+Wake transition)

\[
\langle [c|A], S, B, T \rangle_n \xrightarrow{\text{solve+wake}} \langle \text{wakeup}(S, c, B) + A, S, B', T \rangle_n
\]

where \(c \) is a built-in constraint and \(CT \models \forall((c \land B) \leftrightarrow B') \)

- Moves built-in \(c \) into built-in store (Solve)
- Reconsiders CHR constraints according to wake-up policy by adding them on top of goal stack (Wake)
 - They will eventually become active again
Activate

Definition (Activate transition)

\[
\langle [c]A, S, B, T\rangle_n \xrightarrow{activate} \langle [c_1]A, \{c_n\} \cup S, B, T\rangle_{(n+1)}
\]

where \(c\) is a CHR constraint

- CHR constraint becomes active for the first time and is added to CHR constraint store
- Counter \(n\) is incremented
- Corresponds to **Introduce** from abstract semantics
Reactivate

Definition (Reactivate transition)

\[\langle [c_i|A], S, B, T \rangle_n \rightarrow_{reactivate} \langle [c_i^1|A], S, B, T \rangle_n \]

where \(c \) is a CHR constraint

- Numbered CHR constraint \(c \): Woken and re-added by \textbf{Solve}+\textbf{Wake} and now becomes active again
- Reconsider all rules in whose heads a potential match for \(c \) occurs
Apply

Definition (Apply transition)

Apply

\[
\langle [c(\bar{t})_i^{j} | A], H_1 \cup H_2 \cup S, B, T \rangle_n \xrightarrow{\text{apply } r} \langle C + H + A, H_1 \cup S, (H_1) = H'_1 \land (H_2) = H'_2 \land B, T \cup \{(r, id(H_1) + id(H_2))\}\rangle_n
\]

if there is a fresh variant of a rule in the program with variables \(\bar{x}\),

\[
r \in H'_1 \setminus H'_2 \iff N \mid C
\]

where the \(j^{th}\) occurrence of a constraint \(c\) is in the rule head \(H'_1 \setminus H'_2\) and where \(CT \models \exists(B) \land \forall(B \rightarrow \exists\bar{x}((H_1) = H'_1 \land (H_2) = H'_2 \land N))\) and \((r, id(H_1) + id(H_2)) \notin T\).

Let \(H = [c(\bar{t})_i^{j}]\) if the occurrence for \(c\) is in \(H'_1\) and \(H = []\) if the occurrence is in \(H'_2\)

- Active constraint matches against head constraint of rule with same occurrence number \(j\)
- Active constraint either kept or removed in \(H\) depending on matched occurrence in rule head
Default

Definition (Default transition)

\[
\langle [c_i^j | A], S, B, T \rangle_n \rightarrow_{\text{default}} \langle [c_i^{j+1} | A], S, B, T \rangle_n
\]

if no other transition is possible in the current state

- No matching of active constraint against rule with occurrence \(j \)
- Proceed to next, \(j+1 \)-th occurrence in rules of program
Definition (Drop transition)

Drop

\[
\langle [c_i^j | A], S, B, T \rangle_n \mapsto_{\text{drop}} \langle A, S, B, T \rangle_n
\]

where there is no occurrence \(j \) for \(c \) in \(P \)

- Removes active constraint from stack if no more occurrences
- Numbered constraint \(c_i \) stays in CHR constraint store
Example (GCD for refined operational semantics)

\[\text{gcd1} @ [\] \ [\text{gcd}(0) \hat{=} 1] \iff \text{true} \mid \text{true}.\]
\[\text{gcd2} @ [\text{gcd}(I) \hat{=} 3] \ [\text{gcd}(J) \hat{=} 2] \iff J \geq I \mid [K \text{ is } J-I, \text{gcd}(K)].\]

Example computation

\[
\langle [\text{gcd}(6), \text{gcd}(9)], \emptyset \rangle_1 \\
\xrightarrow{\text{activate}} \langle [\text{gcd}(6)_1], [\text{gcd}(9)], \{\text{gcd}(6)_1\} \rangle_2 \\
\xrightarrow{\text{default}} \langle [\text{gcd}(6)_2], [\text{gcd}(9)], \{\text{gcd}(6)_1\} \rangle_2 \\
\xrightarrow{\text{default}} \langle [\text{gcd}(6)_3], [\text{gcd}(9)], \{\text{gcd}(6)_1\} \rangle_2 \\
\xrightarrow{\text{default}} \langle [\text{gcd}(6)_4], [\text{gcd}(9)], \{\text{gcd}(6)_1\} \rangle_2 \\
\xrightarrow{\text{drop}} \langle [\text{gcd}(9)], \{\text{gcd}(6)_1\} \rangle_2 \\
\xrightarrow{\text{activate}} \langle [\text{gcd}(9)_1], \{\text{gcd}(6)_1, \text{gcd}(9)_2\} \rangle_3 \\
\xrightarrow{\text{default}} \langle [\text{gcd}(9)_2], \{\text{gcd}(6)_1, \text{gcd}(9)_2\} \rangle_3 \\
\xrightarrow{\text{apply gcd2}} \langle [K_1 \text{ is } 9-6, \text{gcd}(K_1)], \{\text{gcd}(6)_1\} \rangle_3 \\
\xrightarrow{\text{solve+wake}} \langle [\text{gcd}(3)], \{\text{gcd}(6)_1\} \rangle_3 \\
\xrightarrow{\text{activate}} \langle [\text{gcd}(3)_1], \{\text{gcd}(6)_1, \text{gcd}(3)_3\} \rangle_4 \\
\xrightarrow{\text{default}} \langle [\text{gcd}(3)_2], \{\text{gcd}(6)_1, \text{gcd}(3)_3\} \rangle_4
\]
Example GCD (II)

Example computation (continued)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow_{\text{default}}$</td>
<td>$\langle {\text{gcd}(3)^3} , {\text{gcd}(6){1,3}, \text{gcd}(3){3}} \rangle_4$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{apply gcd2}}$</td>
<td>$\langle [K_2 \text{ is } 6 - 3, \text{gcd}(K_2), \text{gcd}(3)^3] , {\text{gcd}(3)_{3}} \rangle_4$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{solve+wake}}$</td>
<td>$\langle [\text{gcd}(3), \text{gcd}(3)^3] , {\text{gcd}(3)_{3}} \rangle_4$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{activate}}$</td>
<td>$\langle [\text{gcd}(3)^1_{4}, \text{gcd}(3)^3_{3}] , {\text{gcd}(3){3}, \text{gcd}(3){4}} \rangle_5$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{default}}$</td>
<td>$\langle [\text{gcd}(3)^2_{4}, \text{gcd}(3)^3_{3}] , {\text{gcd}(3){3}, \text{gcd}(3){4}} \rangle_5$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{apply gcd2}}$</td>
<td>$\langle [K_3 \text{ is } 3 - 3, \text{gcd}(K_3), \text{gcd}(3)^3] , {\text{gcd}(3)_{3}} \rangle_5$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{solve+wake}}$</td>
<td>$\langle [\text{gcd}(0), \text{gcd}(3)^3] , {\text{gcd}(3)_{3}} \rangle_5$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{activate}}$</td>
<td>$\langle [\text{gcd}(0)^1_{0}, \text{gcd}(3)^3_{3}] , {\text{gcd}(3){3}, \text{gcd}(0){5}} \rangle_6$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{apply gcd1}}$</td>
<td>$\langle [\text{gcd}(3)^3_{3}] , {\text{gcd}(3)_{3}} \rangle_6$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{default}}$</td>
<td>$\langle [\text{gcd}(3)^3_{3}] , {\text{gcd}(3)_{3}} \rangle_6$</td>
</tr>
<tr>
<td>$\rightarrow_{\text{drop}}$</td>
<td>$\langle [], {\text{gcd}(3)_{3}} \rangle_6$</td>
</tr>
</tbody>
</table>
Relating abstract and refined semantics (I)

- ω_r is an instance of ω_t
- Abstraction that maps states and derivations of ω_r to ω_t

Definition (Abstraction function)

For states:

$$\alpha \left(\langle A, S, B, T \rangle^\gamma_n \right) = \langle G, S, B, T \rangle^\gamma_n,$$

where G contains all atomic constraints of A expect active and numbered CHR constraints.

For derivations:

$$\alpha(s_1 \mapsto s_2 \mapsto \ldots) = \begin{cases}
\alpha(s_1) \mapsto \alpha(\ldots) & \text{if } \alpha(s_1) = \alpha(s_2) \\
\alpha(s_1) \mapsto \alpha(s_2) \mapsto \alpha(\ldots) & \text{otherwise}
\end{cases}$$
Relating abstract and refined semantics (II)

Theorem

For all ω_r derivations D, $\alpha(D)$ is a ω_t derivation.

If D is a terminating computation, then $\alpha(D)$ is a terminating computation.

Termination, confluence under abstract semantics preserved in refined semantics (but not the other way round)
Nondeterminism

Refined semantics is still nondeterministic

- In **Solve+Wake** transition, order of constraints added by wake-up-policy function not defined
- Matching order in **Apply** transition: not known which partner constraint from store is chosen
Declarative semantics

- Declarative semantics associates program with logical theory
- This logical reading should coincide with intended meaning of program
- Declarative semantics facilitates nontrivial program analysis (e.g. correctness for program transformation and composition)
- Logical reading of CHR program consists of logical reading of its rules and built-ins
First-order logic declarative semantics

Logical reading of rules

- Rule logically relates head and body provided the guard is true
- Simplification rule means head is true iff body is true
- Propagation rule means body is true if head is true

Definition (Logical reading)

Simplification rule: \(H \iff C \mid B \quad \forall \ (C \rightarrow (H \iff \exists \bar{y} B)) \)

Propagation rule: \(H \Rightarrow C \mid B \quad \forall \ (C \rightarrow (H \rightarrow \exists \bar{y} B)) \)

Simpagation rule: \(H_1 \setminus H_2 \iff C \mid B \)
\[\forall \ (C \rightarrow ((H_1 \land H_2) \iff (H_1 \land \exists \bar{y} B))) \]

(\(\bar{y} \) contains all variables only appearing in \(B \))
Example

Example (Partial order relation program)

duplicate \quad @ X \ leq Y \ \& \ \ X \ leq Y \ \Rightarrow \text{true}.
reflexivity \quad @ X \ leq X \ \Rightarrow \text{true}.
antisymmetry \quad @ X \ leq Y , \ Y \ leq X \ \Rightarrow \ X=Y.
transitivity \quad @ X \ leq Y , \ Y \ leq Z \ \Rightarrow X \ leq Z.

Example (Logical reading of partial order program)

(duplicate) \quad \forall X,Y \quad (X \leq Y \ \& \ X \leq Y \ \Leftrightarrow \ X \leq Y)
(reflexivity) \quad \forall X \quad (X \leq X \ \Leftrightarrow \text{true})
(antisymmetry) \quad \forall X,Y \quad (X \leq Y \ \& \ Y \leq X \ \Leftrightarrow \ X=Y)
(transitivity) \quad \forall X,Y,Z \quad (X \leq Y \ \& \ Y \leq Z \ \Rightarrow \ X \leq Z)
Logical reading and equivalence of programs

Meaning of built-ins has to be considered, too

Definition (Logical reading)

Logical reading of program P is \mathcal{P}, CT

(\mathcal{P} conjunction of logical reading of rules in P, CT constraint theory defining built-ins)

Definition (Logical equivalence)

Programs P_1 and P_2 logically equivalent iff

$$CT \models \mathcal{P}_1 \iff \mathcal{P}_2$$
Logical correctness

Specification can be used to formally verify correctness of program

Definition (Logical correctness)

Logical specification \mathcal{T} of program P is a consistent theory for the CHR constraints in P.

P is logically correct with respect to \mathcal{T} iff

$$\mathcal{T}, CT \models \mathcal{P}$$

\mathcal{P} does not need to cover all consequences of \mathcal{T}
Logical reading of states

Definition (Logical reading of states)

Logical reading of ω_i or ω_r state is the formula

$$\exists \vec{y} \; (G \land (S) \land B)$$

(\vec{y} local variables of the state, those not in \mathcal{V})

- Empty sequences, sets or multisets are interpreted as $true$
- Variables in \mathcal{V} are not quantified
- Local variables in states come from variables of applied rules
Equivalence of states

- **Declarative Semantics**: Logical equivalence of states if their logical reading is equivalent
- **Operational Semantics**: Operational equivalence of states if the same rules can be applied to them

Operational equivalence is stricter than logical equivalence
- Take multiset character of CHR constraints into account
- Take propagation history into account
Operational equivalence of states

Definition (Operational state equivalence)

Given two states \(s_i \) (\(i = 1, 2 \)), with

- \(B_i \) built-in constraints of state \(s_i \)
- In very abstract semantics, \(C_i \) are CHR constraints of state
- In \(\omega_t, \omega_r \) operational semantics, \(C_i \) is pair of
 - CHR constraints of state with proper renaming of identifiers
 - set of tuple entries in propagation history that only contain (renamed) identifiers from the CHR constraints of the state
- Local variables \(\overline{y}_i \) of state renamed apart

\[s_1 \equiv s_2 \text{ iff } CT \models \forall (B_1 \rightarrow \exists \overline{y}_2 (C_1 = C_2) \land B_2) \land \forall (B_2 \rightarrow \exists \overline{y}_1 (C_1 = C_2) \land B_1) \]

Note analogy to rule applicability condition of operational semantics
Examples – operational equivalence of states

Example (Operational equivalence of states)

- The two states with logical reading \(q(X) \land X = a \) and \(\exists Y \ q(a) \land X = Y \land Y = a \) are equivalent.
- The state \(q(a) \) is not equivalent to those states.
- If \(X \) is not a global variable then \(\exists X \ q(X) \land X = a \), \(\exists X, Y \ q(a) \land X = Y \land Y = a \) and \(q(a) \) are equivalent.
- The state \(q(a) \land q(a) \) is not equivalent to these states.
Soundness and completeness (I)

Operational and declarative semantics should coincide

- **Soundness**: Result of computation according to operational semantics is correct regarding to declarative semantics
- **Completeness**: Everything proven by declarative semantics can be computed
 - But: logic of declarative semantics too powerful
 - Additional conditions necessary to improve completeness
- Theorems show that for CHR, semantics are strongly related
- Because all states in a derivation are equivalent
Soundness and completeness (II)

Lemma (Equivalence of States in Derivation)

If C logical reading of state appearing in derivation of G then

$$
\mathcal{P}, CT \models \forall (C \leftrightarrow G)
$$

For logical reading C_1, C_2 of two states in computation of G

$$
\mathcal{P}, CT \models \forall (C_1 \leftrightarrow C_2)
$$
Soundness and completeness (III)

Theorem (Soundness)

If G has a computation with answer C then

$$\mathcal{P}, CT \models \forall (C \leftrightarrow G)$$

Theorem (Completeness)

G a goal with at least one finite computation, C a goal.

If $\mathcal{P}, CT \models \forall (C \leftrightarrow G)$ then G has finite computation with answer C' such that

$$\mathcal{P}, CT \models \forall (C \leftrightarrow C')$$
Soundness and completeness (IV)

Completeness theorem does not hold if G has no finite computations

Example

Let P be $p \iff p$ and G be p

It holds that $\mathcal{P}, \mathcal{CT} \models p \iff p$ since \mathcal{P} is $\{p \leftrightarrow p\}$

but G has only infinite computations
Failed computations

Try to specialize theorems for failed computations

Theorem (Soundness of failed computations)

If G has a failed computation then

$$\mathcal{P}, \mathcal{CT} \models \neg \exists G$$

No analogous completeness result for failed computations

Example

$$p \Leftrightarrow q.$$
$$p \Leftrightarrow \text{false}.$$

$\mathcal{P}, \mathcal{CT} \models \neg q$ holds, but q has no failed computation
Soundness and completeness (VI)

Discrepancy between operational and declarative semantics comes from additional reasoning power of first-order logic

Example

\[
\begin{align*}
a & \iff b \\
a & \iff c
\end{align*}
\]

- From \mathcal{P}, CT follows for example $a \leftrightarrow b, a \leftrightarrow c,$ but also $b \leftrightarrow a, b \leftrightarrow c, a \leftrightarrow b \land c$

- In fact, logical equivalence between any nonempty conjunctions of a, b, c holds

- Only possible computations are $a \leftrightarrow b, a \leftrightarrow c,$ as well as $b \leftrightarrow 0 b, \text{ and } c \leftrightarrow 0 c$

Rules are directional, logical equivalence is not.
Soundness and completeness (VII)

Stronger completeness result for programs with consistent logical reading and data-sufficient goals

Definition (Data-sufficiency)
Goal is data-sufficient if it has a computation ending in a final state without CHR constraints.

Theorem (Stronger completeness of failed computations)

\[P \text{ with consistent logical reading, } G \text{ data-sufficient.} \]

If \(P, CT \models \neg \exists G \) then \(G \) has a failed computation.

Even stronger results for *confluent* programs
Linear logic declarative semantics

- Classical logic declarative semantics not always sufficient if CHR used as general purpose language
 - Simplification rules remove and add CHR constraints (nonmonotonic), can model dynamic updates
 - But first-order logic cannot directly express change
- Alternative declarative semantics
 - Based on linear logic
 - Models resource consumption
 - Stronger theorems for soundness and completeness
Syntax (I)

Definition (Syntax of intuitionistic linear logic)

\[L ::= p(t) | L \rightarrow L | L \otimes L | L \& L | L \oplus L | !L | \exists x. L | \forall x. L | \top | 1 | 0 \]

- Atoms represent resources, may be consumed during reasoning
Syntax (II)

- **Linear implication** → ("lollipop") different from classical logic
 - $A \rightarrow B$ ("consuming A yielding B") means A can be replaced by B
 - A and $A \rightarrow B$ yields B (implication also consumed)

- **Conjunction** ⊗ ("times") similar to classical logic
 - $A \otimes B$ available iff A and B available
 - $A \otimes A$ not equivalent to A
 - Neutral element 1, corresponds to true
Syntax (III)

- **Modality** ! ("bang") marks stable facts and resources that are not consumed

- **Conjunction** & ("with") represents internal choice (don’t-care)
 - $A \& B$ ("either A or B) implies A or B but not $A \otimes B$
 - Neutral element \top ("top")

- **Disjunction** \oplus expresses external choice (don’t-know, similar to classical disjunction)
 - $A \oplus B$ neither implies A nor B alone
 - Neutral element 0, expresses failure
Linear logic declarative semantics (I)

First-order logic (FOL) vs. linear logic semantics

- CHR constraints as linear resources
- Built-ins still in FOL as embedded intuitionistic formulas
- CHR rules as linear implication instead of logical equivalence
Linear logic declarative semantics (II)

Definition (Semantics P_L of CHR$^\vee$ program part 1)

<table>
<thead>
<tr>
<th>Component</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in Constraints:</td>
<td>$true^L$</td>
<td>$::= 1$</td>
</tr>
<tr>
<td></td>
<td>$false^L$</td>
<td>$::= 0$</td>
</tr>
<tr>
<td></td>
<td>$c(\overline{t})^L$</td>
<td>$::= !c(\overline{t})$</td>
</tr>
<tr>
<td>CHR Constraints:</td>
<td>$e(\overline{t})^L$</td>
<td>$::= e(\overline{t})$</td>
</tr>
<tr>
<td>Goals:</td>
<td>$(G \land H)^L$</td>
<td>$::= G^L \otimes H^L$</td>
</tr>
<tr>
<td></td>
<td>$(G \lor H)^L$</td>
<td>$::= G^L \oplus H^L$</td>
</tr>
<tr>
<td>Configuration:</td>
<td>$(S \lor T)^L$</td>
<td>$::= S^L \oplus T^L$</td>
</tr>
</tbody>
</table>

- Constraints mapped to \otimes conjunctions of their atomic constraints
- Atomic built-ins banged (treated as unlimited resources)
- CT translated according to the Girard Translation
- Disjunctions mapped to \oplus disjunctions
Linear logic declarative semantics (III)

Definition (Semantics P^L of CHR$^\vee$ program part 2)

Simpagation Rule: $(E \backslash F \Leftrightarrow C G)^L ::= !(\forall (C^L \Rightarrow (E^L \otimes F^L \Rightarrow E^L \otimes \exists \bar{y} G^L)))$

CHR Program: $\{R_1 \ldots R_m\}^L ::= R_1^L \otimes \ldots \otimes R_m^L$

- Rules mapped to linear implications
 - Consuming part of head produces body
 - Directional, not commutative (cannot be reversed)
- Formula for rule banged (to be used more than once)
- Program translated into \otimes conjunction of translated rules
Example (I)

Example (Coin throw)

- **Coin throw simulator program**

 \[
 \text{throw}(\text{Coin}) \iff \text{Coin} = \text{head} \\
 \text{throw}(\text{Coin}) \iff \text{Coin} = \text{tail}
 \]

- **Classical declarative FOL semantics**

 \[(\text{throw}(\text{Coin}) \leftrightarrow (\text{Coin} = \text{head})) \land (\text{throw}(\text{Coin}) \leftrightarrow (\text{Coin} = \text{tail}))\]

- **Leads to** \((\text{Coin} = \text{head}) \leftrightarrow (\text{Coin} = \text{tail})\) and therefore \(\text{head} = \text{tail}\)
Example (II)

Example (Coin throw continued)

\[
\begin{align*}
\text{throw}(\text{Coin}) & \iff \text{Coin} = \text{head} \\
\text{throw}(\text{Coin}) & \iff \text{Coin} = \text{tail}
\end{align*}
\]

Linear logic reading

\[
!\forall (\text{throw}(\text{Coin}) \to !((\text{Coin}=\text{head}) \otimes !\forall (\text{throw}(\text{Coin}) \to !((\text{Coin}=\text{tail})))
\]

This is logically equivalent to:

\[
!\forall (\text{throw}(\text{Coin}) \to !((\text{Coin}=\text{head}) \& !((\text{Coin}=\text{tail})))
\]

Reads as “Of course, consuming \text{throw}(\text{Coin}) produces: Choose from \text{Coin} = \text{head} and \text{Coin} = \text{tail}” (committed choice)
Another example (I)

Example (Destructive assignment)

\[\text{assign}(\text{Var}, \text{New}) \land \text{cell}(\text{Var}, \text{Old}) \iff \text{cell}(\text{Var}, \text{New}) \]

FOL reading:

\[\forall (\text{assign}(\text{Var}, \text{New}) \land \text{cell}(\text{Var}, \text{Old}) \iff \text{cell}(\text{Var}, \text{New})) \]

which is logically equivalent to

\[\forall (\text{assign}(\text{Var}, \text{New}) \land \text{cell}(\text{Var}, \text{Old}) \iff \text{cell}(\text{Var}, \text{Old}) \land \text{cell}(\text{Var}, \text{New})) \]

Means that \text{Var} holds old and new value simultaneously.
Another example (II)

Example (Destructive assignment continued)

\[
\text{assign}(\text{Var, New}) \land \text{cell}(\text{Var, Old}) \Leftrightarrow \text{cell}(\text{Var, New})
\]

Linear logic reading

\[
!\forall (\text{assign}(\text{Var, New}) \otimes \text{cell}(\text{Var, Old}) \to \text{cell}(\text{Var, New}))
\]

Reads as “Of course, consuming \(\text{assign}(\text{Var, New})\) and \(\text{cell}(\text{Var, Old})\) produces \(\text{cell}(\text{Var, New})\).”
Yet another example

Example (Prime sieve)

\[\text{prime}(I) \land \text{prime}(J) \iff J \mod I = 0 \mid \text{prime}(I) \]

FOL: \(\forall((M \mod N = 0) \rightarrow (\text{prime}(M) \land \text{prime}(N) \leftrightarrow \text{prime}(N))) \)

“A number is prime when it is multiple of another prime”.

LL: \(!\forall(!((M \mod N = 0) \multimap (\text{prime}(M) \otimes \text{prime}(N) \multimap \text{prime}(N)))) \)

“Of course, consuming \text{prime}(M) \text{ and } \text{prime}(N) \text{ where } (M \mod N = 0) \text{ produces } \text{prime}(N)”
And even more examples

Example (Birds and penguins)

\[
\text{bird} \iff \text{albatross} \lor \text{penguin}.
\]
\[
\text{penguin} \land \text{flies} \iff \text{false}.
\]

FOL:
\[
(bird \iff \text{albatross} \lor \text{penguin}) \land (\text{penguin} \land \text{flies} \iff \text{false})
\]

This is correct, but more than can be computed, e.g. \(\text{albatros} \to \text{bird} \).

LL:
\[
! (bird \multimap \text{albatross} \oplus \text{penguin}) \otimes ! (\text{penguin} \otimes \text{flies} \multimap 0)
\]

implies only computable implications

\[
\text{bird} \otimes \text{flies} \multimap \text{albatross} \otimes \text{flies}
\]

“\text{bird and flies can be mapped to albatross and flies}”
Soundness and completeness (I)

- Approach for soundness analogous to classical framework
- In the following:
 - \(P \) a CHR\(^\triangledown \) program
 - \(P^L \) its logical reading and \(!CT^L \) constraint theory for built-ins
 - \(S_0 \) initial configuration, \(S_m, S_n \) configurations
 - \(\vdash \) denotes deducability

Any configuration in derivation is linearly implied by logical reading of initial configuration

Lemma (Linear implication of states)

If \(S_n \) appears in derivation of \(S_0 \) then

\[
P^L, !CT^L \vdash \forall (S_0^L \Rightarrow S_n^L)
\]
Soundness and completeness (II)

Theorem (Soundness)

If S_0 has computation with final configuration S_n^L then

$$P^L, !CT^L \vdash \forall (S_0^L \rightarrow S_n^L)$$

Theorem (Completeness)

If

$$P^L, !CT^L \vdash \forall (S_0^L \rightarrow S_n^L)$$

then there is S_m in a finite prefix of derivation of S_0 with

$$!CT^L \vdash S_m^L \rightarrow S_n^L$$