Handbook of Constraint Programming

Francesca Rossi, Peter van Beek, Toby Walsh

Elsevier

Contents

Contents Y
| First part 1
1 Constraints in Procedural and Concurrent Languages 3

Thom Frihwirth, Laurent Michel, Christian Schulte

1.1 Procedural and Object-Oriented Languages 4

1.2 Concurrent Constraint Programming 15

1.3 Rule-Based Languages i 23

1.4 Challenges and Opportunities 35

15 Conclusion 36
Appendices 45

Part |

First part

Handbook of Constraint Programming 3
Francesca Rossi, Peter van Beek, Toby Walsh
(© 2006 Elsevier All rights reserved

Chapter 1

Constraints in Procedural and
Concurrent Languages

Thom Fruhwirth, Laurent Michel, Christian Schulte

This chapter addresses the integration of constraints @artls into programming lan-
guages from three different points of views. It first focusaesthe use of constraints to
model combinatorial optimization problem and to easily iempent search procedures,
then it considers the use of constraints for supporting goeat computations and finally
turns to the use of constraints to enable open implementatibconstraints solvers.

The idea of approaching hard combinatorial optimizatioobpems through a combi-
nation of search and constraint solving appeared first iit jpgpgramming. The genesis
and growth of constraint programming within logic prograimgnis not surprising as it
catered to two fundamental needs: a declarative style andlaterminism.

Despite the continued support of logic programming for tx@mst programmers, re-
search efforts were initiated to import constraint tecbg@s into other paradigms (in par-
ticular procedural and object-oriented paradigms) tordata broader audience and lever-
age constraint-based techniques in novel areas. The fitstation behind a transition is a
desire to ease the adoption of a successful technology.nd@anstraints to a platform and
paradigm widely accepted would facilitate their adoptidthim existing software systems
by reducing resistance to the introduction of technologig$tools perceived as radically
different. A second motivation is that constraints are atle abstractions equally well
suited for modeling and supporting concurrency. In paldiclconcurrent computation
can be seen as agents that communicate and coordinatehha@igired constraint store.
Third, constraint-based techniques can leverage the smmanf a target application do-
main to design specialized constraints or search procedha¢ are more effective than
off-the-shelves constraints. The ability, for domain saksts, toeasilycreate, customize
and extend both constraints solvers and search is ther@fuzeessity for adaptability.

The continued success and growth of constraints dependie @vailability of flexible,
extensible, versatile and easy to use solvers. It is coatihgn retaining performance that
rival or exceed the ad-hoc methods they supplant. Thereédfieiency remains a key
objective, often at odds with flexibility and ease of use.

4 1. Constraints in Procedural and Concurrent Languages

Meeting these broad objectives, namely ubiquity, flexipilversatility and efficiency
within traditional paradigms that lack support for dectaw&programming creates unique
challenges. First, a flexible tool must support mechanigmsttusers define new con-
straints either through combinators or from first principl@he mechanisms should focus
on the specification ofvhat each constraint computes (its declarative semanticsgrath
thanhowit computes it (operational semantics) to retain simpfigitthout sacrificing ef-
ficiency. Second, search procedures directly supportedrigulage abstractions, i.e., non-
determinism in logic programming, must be available inittadal languages and remain
under end-user control. Also, search procedures showthrigteir declarative nature and
style to preserve simplicity and appeal. Finally, a constimol must bridge the semantic
gaps that exists between a high-level model, its implentiemtand the native abstractions
of the host language to preserve clarity and simplicity @/kbiffering a natural embedding
in the target language that does not force its users to belmgiteprogramming experts.

Many answers to these challenges have been offered and siffkrent trade-offs.
Each answer can be characterized by features that addnelssed sf the objectives. Some
constraint tools favored ease of adoption and efficiency preserving declarativeness and
flexibility. Others focused on the creation of néwbrid, multi-paradigm languages and
platforms that preserved declarative constructions, edopstraints and concurrency as
first class citizens in the design, and preserve efficiently aviesser emphasis on targeting
existing platforms. A third option focusing on flexibilitynd declarative constructions
brought rule-based systems where new solvers over entimlydomains can be easily
constructed, extended, modified and composed.

This chapter provides insights into the strengths, weadereand capabilities of sys-
tems that fall in one of these three classes: toolkits focgdaral and object-oriented
languages, hybrid systems and rule-based systems.

1.1 Procedural and Object-Oriented Languages

Over the last decade, constraint programming tools hawgressively found their way into
mainstream paradigms and languages, most notably C++.tfEmsformation, however,
is not obvious and creates many challenges. To understanuatire of the difficulty, it
is useful to step back and consider the initial motivatiofis.apprehend the interactions
between constraint toolkits and their procedural or obetnted host languages, it is
useful to separate two key components of constraint program i.e., modeling with
constraintsand programming the searchEach component brings its own challenges that
vary with the nature of the host language. Section 1.1.levevithe design objectives
and inherent challenges before turning to the issue of cainsthased modeling in section
1.1.2, and search programming in section 1.1.3. Finalttice 1.1.4 discusses pragmatic
issues that permeate throughout all integration attempts.

1.1.1 Design Objectives

Modern constraint-based languages strive to simplify #s# bf writing models that are
readable, flexible and easy to maintain. This is naturaligllehging as programs for
complex problems often requires ingenuity on the part oftihnesloper to express multiple
orthogonal concerns and encode them efficiently within guage that imposes its own

Thom Fiihwirth, Laurent Michel, Christian Schulte 5

limitations. Logic programming is the cradle of constrginbgramming for good reasons
as it offers two important supports: a declarative framéwvar which to build constraints
as generalizations of unification; and non-determinismupgpsrt search procedures, and,
in particular, depth-first search.

The Challenges

Nonetheless, logic programming imposes a few limitatioRisst, it does not lend itself
to the efficient implementation of extensible toolkits. am, efficiency considerations
as well as simplicity pushed logic programming systems tplément all constraints as
“built-ins” of the language giving rise to closddback-boxsolvers. Second, it does not eas-
ily accommodate search procedures that deviate from thindiegt strategy. It therefore
raises significant challenges for potential users of giaselike BFS, IDFS [69] or LDS
[50]to name a few. Third, its target audience comprises atexclusively computer-savvy
programmers, who feel comfortable writing recursive pcatks for tasks as mundane as
generating constraints and constraint expressions. &laisve difficulty does not appeal to
a much larger group of potential users of the technology ntathematical programming
community. Mathematical solvers (LP, IP, MIP [55, 46]) aheit modeling languages
[34, 26, 103] indeed offer facilities that focus on modelaryl, to a large extent, relieve
their users from most (all) programming efforts.

The past two decades saw improvements on one or more of tregs.f The next
paragraphs briefly review two trenddated toprocedural and object-oriented languages.

Libraries and glass-box extensibility. llog Solver [57] is a C++ library implementing
a finite domain solver and is thus a natural example of an thjgéented embodiment.
The embedding of a solver within a C++ library offers oppaities to address the ex-
tensibility issues as both decision variables and comdgtraan be represented with object
hierarchies that can be refined and extended. However the tod@++, a language that
does not support non-deterministic computation, has asae the challenges one faces
to write, debug and maintain search procedures. Note th& (39] supports glass-box
extensibility through user-definable rules and is the sutljeéSection 1.3.

From programming to modeling. Numerica [110] is a modeling language for highly
non-linear global optimization. It was designed to addtlessthird limitation and make
the technology of Newton [111] (a constraint logic prograimgrianguage) available to
a much broader audience of mathematical programmers. Tjeetivie behind Numerica
was to improve the modeling language to a point where exbitaodels were expressed
at the level of abstraction of their formal counterpartddgfly found in scientific papers.
The approach was further broadened with novel modelinguages for finite domain
solvers supporting not only the statement of constraintsaalso the specification of ad-
vanced search procedures and strategie=s. [004, 103, 113] embodies those ideas in a
rich declarative language while OplScript [107] implenseatprocedural language for the
composition of multiple ®@L models. Note that €L is an interpreted language whose vir-
tual machine is implemented in terms @bl SOLVER constructions. The virtual machine
itself is non trivial given the semantic gap betweenL.@nd ILOG SOLVER.

At the same time, a finite domain solver was implemented in REJ21] and then
moved to CLAIRE [62], a language compiled to C++ that simpdfLAURE’s construc-

6 1. Constraints in Procedural and Concurrent Languages

tions to make it accessible to a broader class of potentesusCLAIRE was later en-
hanced with SALSA [62], a declarative and algebraic extam#ihat focused on the im-
plementation of search procedures.

1.1.2 Constraint Modeling

Constraint modeling raises two concerns: the ease of usexadssiveness of the toolkit
and its underlying extensibility. Each concern is intriadly linked to the host language
and has a direct impact on potential end users. This sedsonsses each one in turn.

Ease of Use and Expressiveness

The constraint modeling task within a procedural or an dbjeiented language presents
interesting challenges. It is desirable to obtantealarativereading of ehigh-levelmodel
statement that exploits the facilities of the host langu@e., static and strong typing
in C++). The difficulty is to leverage the language to simplifrograms and raise their
modeling profile to a sufficient level of abstraction. Notattimodeling languages (e.qg.,
OpL) tightly couple the toolkit and the language to obtain thedirlevel of integration that
preserves a complete declarative reading of models desmpisgparent procedural style.
Indeed, CrL looks procedural but is actually declarative as it is sideatfiree (i.e., it has
no destructive assignments).

Aggregation and combinators. Consider the classic magic series puzzle. The problem
consists of finding a sequence of numbgrs- (sg, s1, - - , sn—1) such thats; represents
the number of occurrencesofvithin the sequencs. Forinstance(6, 2,1,0,0,0,1,0,0,0)

is a sequence of lengttd with 6 occurrences ofl, 2 occurrences of, 1 occurrence of

and finally1 occurrence 06. Clearly, any solution must satisfy the following property

n—1

Z(Sk:i)zsi V’LE{O71,27,TL_1}

k=0

To solve the problem with a constraint programming toolkits first necessary to state
then constraints shown above. Each constraint is a linear caatibimof the truth value
(interpreted a$ or 1) of elementary constraints of the form = 4. The difficulty is
therefore to construct a toolkit with automatic reificatmfrconstraints and with seamless
aggregation primitives, i.e., summations, products, @octjons or disjunctions to name a
few that facilitate the combination of elementary prinéty

Figure 1.1 illustrates the differences between tire @nd ILOG SOLVER statements for
the magic series problem. ThedG SoLVER model constructs an expression iteratively
to build the cardinality constraint for each possible valliealso relies on convenience
functions likelloScalProd to create the linear redundant constraint. The@odel
is comparatively simpler as the mathematical statemensrdapctly to the model. It is
worth noting that the level of abstraction shown by theL@®nodel is achievable within
C++ libraries with the same level of typing safety as demmtet in [71]. Finally, both
systems implement constraint combinators (e.g., caitiand offer global constraints
that capture common substructures, simplify some of theatiogleffort, and can exploit
the semantics of constraints for better performance.

Thom Fiihwirth, Laurent Michel, Christian Schulte 7

ILOG SOLVER OpPL

1. int main(int argc,char * argvl]) A 1. int n<<"Number of Variables:";

2 lloEnv env;int n;cin>>n; 2. range Dom 0..n-1;

3 try 3. var Range s[Dom];

4 lloModel m(env); 4. solve {

5. lloIntVarArray s(env,n,0,n); 5. forall(i in Dom)

6 lloIntArray c(env,n); 6. s[i] = sum(in Dom) (s[j]=i);
7 for(int i=0;i<n;i++) { 7. sum(j in Dom) s[j] *j = n
8. llcintExp e = s[0] == i; 8. }

9. for(int k=1;k<n;k++)

10. e += s[k] == i;

11. m.add(s[i] == e);

13. for(int i=0;i<n;i++) cli]=i;
14. m.add(lloScalProd(s,c) == n);

15. solve(m,env,vars);
16. } catch(lloException& ex) ...
17.}

Figure 1.1: The Magic Series statements.

Typing. A seamless toolkit integration depends on the adherenceet@recepts and
conventions of the host language. For instance, C++ progiesoften expect static and
strong typing for their programs and rely on the C++ compitecatch mistakes through
type checking. From a modeling point of view the ability ttyren types and, in particular,
on finite domain variables defined over domains of specifiesyip instrumental is writing
clean and simple models. Consider the stable marriagegmobl'he problem is to pair
up men and women such that the pairings form marriages aisflysstbility constraints
based on the preferences of all individuals. A marriage betwn andw is stable if and
only if whenevemn prefers a womatk over his wifew, k also happens to prefer her own
husband ovem so thatn andw have no reason to part. TheeOmodel is shown in Figure
1.2. The fragmentusband[wife[m]] = m illustrates that the type of values in the
domain ofwife[m] is an enumerated typ&omerthat happens to be equal to the type of
the index for the arrafiusband . Similarly, the type of each entry of the husband array is
Menand therefore equal to the type of the right hand side of thalig constraint. To the
modeler, the result is a program that can be statically tyyeeked.

Matrices. From an expressiveness point of view, the ability to indeays with finite
domain variables is invaluable to write concise and elegadels. It is equally useful on
matrices, especially when its absence implies a non trief@rmulation effort to derive
for an expressiom|x, y] atight reformulation based on an element constraint. The refor-
mulation introduces a ternary relatidi(i, j, k) = {{i,j,k) |i € D(x) Aj € D(y) Nk €
0..|D(x)| - |D(y)| — 1} that, for each pair of indicese D(z) andj € D(y), maps the
entrymli, j] to its locationk in an arraya. Then,m[z, y] can be rewritten ag[z] with the
addition of the constrairtz, y, z) € R wherez is a fresh variable.

Note that if the language supports a rich parametric typtesyge.g., C++), it is pos-
sible to write templated libraries that offer both autoroagiformulations and static/strong
typing as shown in [71].

8 1. Constraints in Procedural and Concurrent Languages

1. enum Women ...;

2. enum Men ..;

3. int rankW[Women,Men] =
4. int rankM[Men,Women] = ...
5. var Women wife[Men];
6

7

8

var Men husband[Women];

solve {

forall(m in Men) husband[wife[m]] = m;
9. foralllw in Women) wife[husband[w]] = w;
10. foralllm in Men & o in Women)
11. rankM[m,o] < rankM[m,wife[m]] => rankW[o,husband[o]] < rankW[o,m];
12. forall(w in Women & o in Men)
13. rankW[w,0] < rankW[w,husband[w]] => rankM[o,wife[0]] < rankM[o,w];
14.

Figure 1.2: The ®L model for Stable Marriage.

Extensibility

Extensibility is crucial to the success of toolkits and dikies alike. It affects them in at
least two respects. First, the toolkit or library itself sltbbe extensible and support the
addition of user-defined constraints and user-defined lsgaocedures. This requirement
is vital to easily develop domain specific or applicationafie constraints and blend them
seamlessly with other pre-defined constraints. Given thastraints are compositional and
implemented in terms of filtering algorithms that task skido# easily handled. Second,
it is often desirable to embed the entire constraint progndtiin a larger application to
facilitate its deployment.

1. class MyEqual : public llcConstraintl {

2. licintvar X, Y,

3. public:

4. MyEqual(lloSolver s,licintvVar x,llcintVar vy)

5. licConstraintl(s), xX(x), Yy {}

6. void post() {

7. x.whenValue(equalDemon(getSolver(),this, X));
8. _y.whenValue(equalDemon(getSolver(),this, y);
9.

10. void demon(licintVar x) {

11. licintvar other = (x == xX)? y:X

12. other.setMin(x.getMin());

13. other.setMax(x.getMax());

14. }

15. }

16. ILCCTDEMON1(equalDemon,MyEqual,demon,licintVar,v ar);

Figure 1.3: LOG SOLVER custom constraint.

Solver extensibility. Object orientation is a paradigm for writing extensibletaaire
through a combination of polymorphism, inheritance, aniégtgion. In the mid 90s, the
first version of LOG SOLVER [78, 79] was developed to deliver an extensible C++ library.

Thom Fiihwirth, Laurent Michel, Christian Schulte 9

The extensibility of its modeling component stems from aarele on abstract classes
(interfaces) for constraints to specify the API that mustshpported to react to events
produced by variables. For instance awé SOLVER integer variable can expose notifi-
cations for three eventshenDomain, whenRange, whenValue to reporta change
in the domain, the bounds, or the loss of a value. A constraibscribes to notifications
from specific variables to respond with tiemon method. Figure 1.3 illustrates a user-
defined equality constraintimplementing bound consistelispost method creates two
demons and attaches them to the variables. Both demons pleniented with a macro
(last line) that delegates the event back to the constraim.demon method propagates
the constraint by updating the bound of the other variabe 8xtension mechanism heav-
ily depends on the specification ofiering algorithmrather than a set afidexicals(e.g.,
clp(FD) [28]) orinference ruleqe.g., CHR [39]) and therefore follows a far more pro-
cedural mind-set that requires a fair level of understagttindentify relevant events and
variables and produce a filtering procedure.

Solver embedding. Extensibility also matters for the deployment of constrdiased
technology. In this respect, the integration of a CP toolithin a mainstream object-
oriented language is a clear advantage as models can easihchpsulated within reusable
classes linked within larger applications. Modeling laages present an additional diffi-
culty but can nonetheless be integrated through compoaemiblogy (COM or CORBA)
[56] or even as web-services as illustrated by the OSiL &ff@3].

1.1.3 Programming the Search

The second component of a constraint programming modeliseraed with the search.
The search usually addresses two orthogonal concerns, Wiratis the topology of the
search tree that is to be explored. Secdmmydoes one select the next node of the search
tree to be explored. Or, given a search tree, what is the ot to visit its nodes? Both
can be thought of as declarative specifications but are offigrd to accommodate the
implementation language. The integration of the two elemé@nprocedural and object-
oriented languages is particularly challenging, givenl#uk of language abstractions to
manipulate the search control flow.

Search Tree Specification

OpPL is a classic example of declarative specification of thecsetaee. It supports state-
ments that specify the order in which variables and valuest ioe considered. € pro-
vides default strategies and does not require the user tieingmt his own. However, as
problems become more complex, it is critical to provide #hdity. Figure 1.4 illustrates
on the left-hand side the naive formulation for the queens model. The constraints are
stated for all pairs of indicesandj in Domsuch thati < j. The right-hand side shows
the search procedure. Lines 10-14 specify the search ttbeawiariable and a value or-
dering . It simply scans the variables in the order indicdtgdom(ascending) and, for
each variable, it non-deterministically chooses a valuefrom Domand attempts to im-
pose the additional constraigtieen[i] = v . On failure, the non-deterministic choice
is reconsidered and the next value fr@mmis selected.

10 1. Constraints in Procedural and Concurrent Languages

1. int n = ...; range Dom 1..n; 10. search {

2. var Dom queen[Dom]; 11. forall(i in Dom)
3. solve { 12. tryall(v in Dom)
4. forall(ordered i,j in Dom) { 13. queen[i] = v;
5. queen[i] <> queenlj]; 14.

6. queen(il+i <> queen[j]+j;

7. queenlil-i <> queen[j]-j;

8. }

9. }

Figure 1.4: The ®L queens model.

Implementing a search facility in an object-oriented laaggilike C++ or Java is hard
for a simple reason: the underlying language has no suppomdn-determinism and
therefore no control abstractions for making choices figall . To date, all libraries
have used some form of embeddgzhl interpreterwhose purpose is to evaluateamd-or
tree data structure reminiscent of logic programming prediatbere non-determinism
is expressed with or-nodes and conjunction with and-nodé® approach was used in
ILOG SOLVER and more recently in Boco, a Java-based toolkit. Figure 1.5 shows a
goal-based implementation of the-queens search tree.dG SOLVER also provides pre-
defined search tree specifications for the often-used method

1. ILCGOAL4(ForallllointVarArray,x,lloint,i,lloint, low,llolnt,up) {
2 if (i <= up)

3 return llcAnd(Tryall(getSolver(),x[i],low,up),

4. Forall(getSolver(),x,i+1,low,up));

5. else return llcGoalTrue(getSolver());
6

7

8

ILCGOAL3(Tryall,lloIntVar,x,lloint,v,lloint up) {
if (x.isBound()) return O;
9. else if (v > up) fail();
10. else return llcOr(x=v,lIcAnd(x!=v, Tryall(getSolver 0.x,v+1)));
11. }

13. gélver.solve(ForalI(queens,l,1,n));
Figure 1.5: An LOG SOLVER implementation of a search tree specification.

Lines 1 through 6 define a goal that performs the same vargdéetion as line 11
of the OPL model. Lines 7-11 define a goal to try all the possible valeedte chosen
variable and correspond to lines 12 and 13 of tire. @odel. The two macroé CGOAL4
andILCGOAL3 define two classeg-pralll andTryalll) together with convenience
functions Forall andTryall) to instantiate thef The block that follows each macro
is the body of the goal whose purpose is to construct the Antte@ on the fly.

Observe that the implementation of the search procedurevisbroken down into
several small elements that are not textually close. A fegeolation are in order

e A goal-based solution relies on an embedded goal intenpagie is therefore in-
compatible with C++ development tools like a debugger. Rstance, tracing the

10Observe that the code in Figure 1.5 always uses the conwenfenctions and never directly refer to the
underlying implementation class

Thom Fiihwirth, Laurent Michel, Christian Schulte 11

execution is hard as there is no access to the state of thprietier (e.g., current in-
struction, parameters’ value, etc..). To compensatenteegsions of LOG SOLVER
provide debugging support through instrumented libratgemspect and visualize
the state of the search tree.

Every single operation that must occur during the seardh,(printing, statistic
gathering, visualizations) must be wrapped up in user-ddfgoals that are inserted
into the search tree description.

It is non-trivial to modularize entire search procedureadtual C++ functions or
classedo reuse search fragments. Again, the only option is to veritenction or
class that willinline a goal data structure representing the search procedurggid.i
Note that a deep copy of the entire goal (the entire funci®rgquired each time to
simulate the parameter passing as there is no call mechaeisse.

The body of a goal’s implementation is both delicate andlswst there is a temporal
disconnection between the execution of its various compisng-or instance, one
may be tempted to optimize th®rall goal shown in Figure 1.5 to eliminate the
crelat_ion of a fresh goal instance for each recursive goafauu a purely recursive
solution as in

ILCGOALA4(Forall,llointVarArray,x,lloint,i,lloint,lo w,lloint,up) {
if (i <= up) {
lloint i0 = i; i =i + 1;

return llcAnd(Tryall(getSolver(),x[i0],low,up),this)
} else return licGoalTrue(getSolver());

}

However, this would be wrong. Indeedis an instance variable of the goal that is
merely re-inserting itself back into the query resultingniaking: = ¢ + 1 visible

to the next invocation. However, on backtradk not restored to its original value.
Consequently, one must compensate wieeersibleinteger (IcRevint). Yet,
this is insufficient as the modification & 7 + 1) should occuinsidethe Tryall
choice point and it is thus necessary to add a goal to increfanin

ILCGOALA4(Forall,llointVarArray,x,lIcRevInt&,i,lloln t,low,lloint,up) {
if (i <= up)
return llcAnd(llcAnd(Tryall(getSolver(),x]i],low,up)
Incrementlt(i)),this);
} else return licGoalTrue(getSolver());

}

Finally, note how the arguments to goal instantiations aaéuated when the parent
goal executeyotwhen the goal itself is about to execute. For instance, athaal
follows Incrementlt(i) should not expectto be incremented yet.

Standard search procedures are not limited to static Jafigbue ordering but often rely
on dynamic heuristics in order to select the next variablegto branch on. Such heuris-
tics can be implemented both within modeling languages ibnarles.

Variable selection heuristic. In OPL, the variable selection heuristic is specified with
a clause in thdorall ~ statement that associates with the selection a measurenof ho
desirable the choice is. For instance, the fragment

12 1. Constraints in Procedural and Concurrent Languages

forall(i in Dom ordered by increasing dsize(queensli])) ..

indicates that the queens should be tried in increasingrafldomain size. Note that
OPL supports more advanced criteria based on lexicographiriogl of tuple-values to
automate a useful but tedious task. For instance, the fraggme

forall(i in Dom ordered by increasing <dsize(queensJi]),a bs(i - n/2)>)
tryall(v in Dom)
queen[i] = v;

implements a middle variable selection heuristic that wars first the variable with the

smallest domain and breaks ties by choosing the varialdestao the middle of the board.
ILOG SoLVER s equally capable at the expense of a few small additions¢o-defined

goals. Indeed, the key change is that the index of the neiehlarto consider is no longer

a static expression (theof theForall goal in Figure 1.5), but is instead computed at the

beginning of the goal. Note that the selection is re-donaelh énvocation of th&orall

and can skip over bound variables.

Value selection heuristic. OPL provides an ordering clause for ttyall ~ that matches
the variable ordering clause of tlmrall ~ both in syntax and semantics. For instance the
statement

tryall(v in Domain ordered by increasing abs(v - n/2)) ...

would consider the values froMomain in order of increasing distance from the middle of
the board. LOG SOLVER goals for the value selection operate similarly with oneeedv
The value selection goal must track (with an additional dditacture) the already tried
values to focus on only the remaining values, a task hidde@rys implementation.

Control flow primitives. For the search, the most significant difference between a mod
eling language and a library is, perhaps, the availabilitiraditional control statements.
As pointed out earlier,loG SOLVER’s level of abstraction for programming the search is
the underlying and-or tree. K2, provides traditional control primitives such as iteraso
(while loops), selectionssglect), local bindings et expressions) and branchings
(if-then-else). Consider for instance the simplerOfragment shown in Figure 1.6
which, upon failure, adds the negation of the failed coistralThe distance between a
goal-based specification and a high-level procedure isfgignt.

1. search {

2 forall(in in Dom)

3 while (not bound(queens[i])) do

4. let v = dmin(queens]i]) in

5. try

6 queens[i] = v | queens[i] <> v
7 endtry;

8 }

Figure 1.6: Traditional Control Abstractions Example irlO

Thom Fiihwirth, Laurent Michel, Christian Schulte 13

Exploration Strategies

The specification of the search tree was concerned wiitht was going to be explored.
Exploration strategies are concerned withwthe dynamic search tree is going to be ex-
plored. Many strategies are possible, ranging from thedstahdepth first search to com-
plex combination of iterated limited searches. Even thaargbxploration strategy sounds
like a very algorithmic endeavor, it is both possible andrdéxde to produce a declarative
specification and let the search engine implement it autcailt This is especially true
in the context of a procedural (or object-oriented) languag a procedural specification
would force programmers to explicitly address the issueani-determinism (and its im-
plementation). This section briefly reviews two approadtesed on ®L [112] (or ILOG
SOLVER [77]) and GOMET [72].

OPL and ILOG SOLVER strategy specifications. The key ingredient to specify an ex-
ploration strategy is to provide a search node managemdnyp&ach time a choice is
considered during the search, it creates search nodespon@ing to the various alterna-
tives. Once created, the exploration msestectthe node to explore next amabstponehe

less attractive ones. Thewaluationof a node’s attractiveness is, of course, strategy depen-
dent. But once the attractiveness function and the postpentrules are encaspulated in a
strategy object, the exploration algorithm becomes cotalyigieneric with respect to the
strategy.

1.SearchStrategy dfs()

2. evaluated to - OplSystem.getDepth();

3. postponed when OplSystem.getEvaluation()>OplSystem. getBestEvaluation();
4.}

5.applyStrategy dfs()
6. forall(i in Dom)
7. tryall(v in Dom)
8. queen[i] = v;

Figure 1.7: Exploration Strategy infQ.

Consider the statement in Figure 1.7. It first defines a DF&egy and uses it to
explore the search tree. The specification contains twoesiésn the evaluation function
that defines the node’s attractiveness and the postponeuierthat states when to delay.
Each time the exploration produces a node, it is subjectedestrategy to evaluate its
attractiveness and decide its fate. To obtain DFS, it suffioeuse the opposite of the
node’s depth as its attractiveness and to postpone a nodeewdreit is shallower than
the “best node” available in the queue. The system ob@piystem gives access
to enough statistic about the depth, right depth, numbeaibfres, etc..) to implement
advanced strategies like LDS or IDS to name a few. When tlagesly is expressed as a
node management policy, one can implement the same mephamdslibrary.

COMET strategy specifications. COMET [70] is an object-oriented programming lan-
guage for constraint-based local search offering conbrstractions for non-determinism[105].

14 1. Constraints in Procedural and Concurrent Languages

These abstractions are equally suitable for local sear¢hads (low overhead) and com-
plete methods.
CoMET uses first-class continuations to represent and manipthlatgtate of the pro-

gram’s control flow. ©@MET's tryall is semantically equivalent to @’s tryall
Search strategies can be expressed via policies for thegearent of the captured contin-
uations and embedded 8earch Controllers that parameterize the search.
1. DFS sc(); 1. class DFS implements SearchController {
2. exploreall<sc> { 2 Stack _s; Continuation _exit;
3. forall(i in Dom) { 3. DFS() { -s = new Stack(); }
4. tryall<sc>(v in Dom) { 4. void start(Continuation c) {exit = ¢c; }
5. queen]i] = v; 5 void exit() { call(_exit); }
6. 6 void addChoice(Continuation c) {
7 } 7 _s.push(c);
8 } 8. 1

9. void fail() {

10. if (-s.empty()) exit();
11. else call(_cont.pop());
12.

13. }

Figure 1.8: Exploration strategies witrO®IET.

The code fragment on the left hand side of Figure 1.8 isosET procedure whose
semantics are identical to therO statement from Figure 1.7. The key difference is the
search controllersc) of type DFS whose implementation is shown on the right hand
side. The statements parameterizedsby(exploreall andtryall) delegate to the
search controller the management of the continuationsrépaesent search nodes. To
derive DFS, it suffices to store in a stack the continuationdpced by the branches in the
tryall . When a failure occurs (e.g., at an inconsistent node),aheniethod transfers
the control to the popped continuation. If there is none ta#é execution resumes after the
exploreall thanks to a call to theexit continuation.

CoMET completely decouples the node management policy from thleation algo-
rithm, allows both a declarative and an operational readfritbe search specification and
provides a representation of the control flow’s state thaidependent of the underlying
computation model.

1.1.4 Pragmatics

The integration of a constraint programming toolkit witlsipurely procedural or object-
oriented language presents challenges for the modelingrgridmentation of the search.

Constraint Modeling

Constraint modeling is relatively eadythe host language supports first-class expressions
or syntactic sugar to simulate them. If operators cannoteel@aded (like in Java), the
expression of arithmetic and set-based constraint is BeaBee Figure 1.9 for a Java
fragment setting up the queens problem in theo€o solver.

Thom Fiihwirth, Laurent Michel, Christian Schulte 15

Problem p = new Problem();
IntVar[] queens = new IntVar[n];
for(int i = 0; i < n; i++)
qgueens[i] = p.makeEnumintVar("queen" + i, 1, n);
for (int i=0; i<n; i++) {
for (int j=i+1; j<n; j++) {
p.post(p.neq(queens]i], queens[j]));
p.post(p.neq(queens]i],p.plus(queens(jl, j-i)));
p.post(p.neq(queensli],p.minus(queens]j], j-i)));

RBOo~NOORrONE

= o

Figure 1.9: Thes—queens problem in €oco.

Search Implementation

The lack of support for non-determinism is far more disnmti One extreme solution
is to close the specification of the search and only offerdafned procedures. The clear
advantage is an implementation of non-determinism thabeapecialized to deliver good
performance.

A second option, used with.6G SOLVER [57], is to embed in the library a goal ori-
ented interpreter. With a carefully crafted API addresding issues listed below, it is
possible to open the interface to support user-defined sixies

Control transfer. The interface between the goal-based search and the rést pfa-
gram must be as seamless as possible.

Mixed memory models. Multiple memory models must coexist peacefully (traditibn
C Heap, logical variables Heap, traditional executionkstaearch stack or trail to name a
few) to avoid leaks or dangling pointer issues.

Debugging support. A significant part of the program runs inside an embedded-inte
preter which renders the native debugging facilities wlijuuseless. This must be mit-
igated with the inclusion of dedicated and orthogonal dgmgtools to instrument the
goal interpreter.

Control abstractions. The native control abstraction tend to be ineffective toresp
search procedures and underscore the importance of hidisglating the semantic sub-
tleties associated with the goal interpreter. Note thatahel of abstraction of search pro-
cedures can be lifted closer tcOas demonstrated in [71]. However, this implementation
retains a goal-like interpreter that also fails to integnaith existing tools.

1.2 Concurrent Constraint Programming

At the end of the 1980s, concurrent constraint logic progmamg (CCLP) integrated ideas
from concurrent logic programming [96] and constraint togiogramming (CLP):

e Maher [64] proposed the ALPS class of committed-choiceuaggs.

16 1. Constraints in Procedural and Concurrent Languages

e The ambitious Japanese Fifth-Generation Computing Rrrgéed on a concurrent
logic language based on Ueda’'s GHC [102].

e The seminal work of Saraswat [81] introduced #ek-and-tellmetaphor for con-
straint operations and the concurrent constraints (C@uage framework that per-
mits both don’t-care and don’t-know non-determinism.

e Smolka proposed a concurrent programming model Oz thatisudsfunctional and
object-oriented programming [100].

Implemented concurrent constraint logic programming leges include AKL, CIAO,
CHR, and Mozart (as an implementation of Oz).

1.2.1 Design Objectives

Processes are the main notion in concurrent and distritprtegtamming. They are build-
ing blocks ofdistributed systemsvhere data and computations are physically distributed
over a network of computer®rocessesire programs that are executed concurrently and
that can interact with each other. Processes can eitheudecal actions occommunicate
andsynchronizéoy sending and receiving messages. The communicating gses®uild
aprocess networlwhich can change dynamically. For concurrency it does ndtené the
processes are executed physically in parallel or if theyiraezleaved sequentially. Pro-
cesses can intentionally be non-terminating. Considempanating system which should
keep on running or a monitoring and control program whichticmously processes in-
coming measurements and periodically returns intermedésults or raises an alarm.

In CCLP, concurrently executing processes communicata gtezared constraint store.
The processes are defined by predicates and are egjéads because they are defined by
logical rules and often implement some kind of artificialiyglligent behavior. Constraints
take the role of (partial) messages and variables take thef@ommunication channels.
Usually, communication is asynchronous. Running procease CCLP goals that place
and check constraints on shared variables.

This communication mechanism is basedasi-and-tellof constraints that reside in
the common constraint storeTell refers to imposing a constraint (as in CLP). Ask is
an inquiry whether a constraint already holdsskis realized by arentailmenttest. It
checks whether a constraint is implied by the current candtstore. Ask and tell can be
seen as generalizations of read and write from values tdrednts. The ask operation is a
consumenf constraints (even though the constraint will not be reeaythe tell operation
is aproducerof constraints.

For a process, decisions that have been communicated tatsid®and actions that
have affected the environment cannot be undone anynfidwat-know non-determinism
(Search) must be encapsulated in this context. Also, faghould be avoided. Failure of
a goal atom (i.e., a single process) always entails theréadtithe entire computation (i.e.,
all participating processes). In applications such asaijyey or monitoring systems this
would be fatal.

Thom Fiihwirth, Laurent Michel, Christian Schulte 17

1.2.2 The CC Language Framework

We concentrate on the committed-choice fragment of SatssW& language frame-
work [82, 83, 80]. The abstract syntax of CC is given by théofeing EBNF grammar:

Declarations D ::= p(t) «— A | D,D
Agents A= true|tell(c) | Y0 ask(e;) — A; | A||A | 3zp(2) | p(?)

wheret stands for a sequence of termsfor a variable, and where and thec;’s are
constraints. Instead of using existential quantificatié frojection is usually implicit in
implemented CC languages by using local variables as in CLP.

Each predicate symbolis defined by exactly one declaration.@C programpP is a
finite set of declarations.

The operational model of CC is described by a transitionesyst States are pairs
consisting of agents and the common constraint store. Hmsitron relation is given by
the transition rules in Fig. 1.10.

Tell (tell(c),d) — (true,c A d)
Ask O ask(ci) — Ai dy — (Aj,d) fCT =d— ¢; (1<j<n)

(A c) = (A)

Composition =gy o) — (4| B).<)
(B A).c) — (B || A).¢)
Unfold (p(t),c) — (A | tell(t = 5),c) if (p(3) «— A) in programpP

Figure 1.10: CC transition rules

Tell telli(c) adds the constraint to the common constraint store. The constraioe
always holds.

Ask Don't care non-determinisrhetween choices is expressedy@$_, ask(c;) — A;.
One nondeterministically chooses anevhich is implied by the current constraint
stored, and continues computation with.

Composition The || operator enables parallel composition of agents. Logicils inter-
preted as conjunction.

Unfold Unfolding replaces an ageptt) by its definition according to its declaration.

A finite CC derivation (computation) can be successfulefhbr deadlocked depending
on its final state. If the derivation ends in a state with usfiable constraints it is called
failed. Otherwise, the constraints of the final state are satigfidbits agents have reduced
totrue, then it issuccessfulelse it isdeadlockedi.e., the first component contains at least
one suspended agent). Deadlocks come with concurrency dreeusually considered
programming errors or indicate a lack of sufficient inforiroato continue computation.

18 1. Constraints in Procedural and Concurrent Languages

1.2.3 0Oz and AKL as Concurrent Constraint Programming Languages

The concurrent constraint programming model establishgdsan and simple model for
synchronizing concurrent computations based on congtrai®n the other hand, CLP
(see Chapter 12, “Constraint Logic Programming”) providapport for modeling and
solving combinatorial problems based on constraints. Tdwoais idea to integrate both
models to yield a single and uniform model for concurrent padillel programming and
problem solving however has proven itself as challengingsies merging concurrency
and problem solving aspects, the CCP model only captureshsynization based on a
single shared constraint store. Other common aspects suctnérolling the amount of
concurrency in program execution and exchanging messat@s®n concurrently running
computations are not dealt with.

These challenges and issues have been one main motivatitimefdevelopment of
AKL and Oz as uniform programming models taking inspirasifnom both CCP and CLP.
The development of AKL started before that of Oz, and nalyi@t has been inspired by
many ideas comning from AKL. Later, the two development tegoined forces to further
develop Oz and its accompanying programming system MoZéit [As Oz integrates
all essential ideas but parallel execution from AKL, thistg®n puts its focus on Oz and
mentions where important ideas have been integrated from. A¢hieving parallelism
has been an additional motivation in AKL, this resulted inaagel implementation of
AKL [75, 74].

Currently Oz and Mozart are used in many different applicatireas where the tight
combination of concurrency and problem solving capabdithas shown great potential.
Education is one particular area where many different @mgning paradigms can be
studied in a single language [114]. Oz as a multi-paradigrguage is discussed in [116].

1.2.4 Expressive Concurrent Programming

The concurrent constraint programming model does not §pediich amount of con-
currency is necessary or useful for program execution. iBhidearly not practical: the
amount of concurrency used in program execution makes a ditfgeence in efficiency.
The rationale is to use as little concurrency as possibleagmduch concurrency as neces-
sary.

Experiments with Oz for the right amount of concurrency &frgm an early ultra-
concurrent model [52], over a model with implicit concurcgrcontrol [99] to the final
model with explicit concurrency control. Explicit concancy control means that execu-
tion is organized into threads that are explicitly creatgdh® programmer. Synchroniza-
tion then is performed on the level of threads rather tharherigvel of agents as in the
CCP model.

Many-to-one communication. Variables in concurrent constraint programming offer an
elegant mechanism for one-to-many communication: a vierEdrves as a communication
channel. Providing more information on that variable bylbaeounts to message send-
ing on that variable. The variable then can be read by mangtagéth synchronization
through entailment on the arrival of the message.

With constraints that can express lists (such as consiraier trees) programs can
easily construct streams (often referred to as open-enstsyl |A stream is defined by a

Thom Fiihwirth, Laurent Michel, Christian Schulte 19

current tail being a yet unconstrained variabl&ending a message tells the constraint

t = cons(m, t') (expressing that the messagas the first element of the strearfollowed
by elements on the streatf) wheret’ is a new variable for the new current tail of the
stream.

This idea for stream-based communication is very usefubfogramming concurrent
applications [96, 81]. However, it has a serious shortcgmitndoes not support many-to-
one communication situations where more than a single sexass. The tail can be only
constrained at most once by a tell. Hence all potential ssnuked to know and update
the current tail of a stream.

AKL introduced ports to solve this problem and allow for general message-passing
communication [61]. The importance of supporting genemésage-passing communica-
tion is witnessed by concurrent programming languages evb@mmunication is entirely
based on message passing, for example Erlang [13].

A port provides a single point of reference to a stream of agss. It stores the current
tail of the stream that is associated with a port. Ports jg@ei send operation. The send
operation takes a port and a message, appends the mesdag¢atibdf the port’s stream,
and updates the stream'’s tail as described above.

Naming entities. Ports in AKL require that they can be referred to for a sendagmn.
Modeling a port as a constraint in the concurrent constpmgramming framework is im-
possible. The very idea of a port is that its associatedhaihges with each send operation.
Changing the tail is in conflict with a monotonically growingnstraint store.

A generic solution to this problem has been conceived in Othbyintroduction of
nameg99]. A name can be used similar to a constant in a constréidtitionally, the
state of a computation now also has an additional compatttm@nmaps names to entities
(such as ports). For example, using a narfer a port means that constraints can be used
to refer to the port by using the name The additional compartment then stores that
refers to a port and the current tail associated with that péames are provided in a way
that they cannot be forged and are unique, more details arabhe in [99].

Mutable state. Ports are not primitive in Oz. Ports are reduced to cells asmaitive
that captures mutable state. As discussed above, a cefeisa® to by a name and the
only operation on a cell is to exchange its content. Fromscglbrts can be obtained
straightforwardly [100].

More expressive programming. Oz incorporates extensions to the concurrent constraint
model to increase its expressive power for programmingddsdirst-class procedures by
using names to refer to procedural abstractions (closuigg)this, the aspect of giving
procedures first-class status is separated from treatarg th the underlying constraint
system. The constraint system is only concerned with naefesring to procedural ab-
stractions but not with their denotation. This approacb algports functional computa-
tion by simple syntactic transformations [100].

The combination of names, first-class procedures, andfoelfsutable state constitute
the ingredients necessary for object-oriented computligre names are used as refer-
ences to objects, mutable object state is expressed frds) aall classes are composed

20 1. Constraints in Procedural and Concurrent Languages

toplevel (\
-

Figure 1.11: Nested propagation and encapsulation forespac

nested propagation encapsulation

from first-class procedures. This setup allows for full-fed concurrent object-oriented
programming including object-based synchronization dasiscbased inheritance [51].

Distributed programming. The basic idea of distribution in Oz is to abstract away the
network as much as possible. This means that all networlatipas are invoked implicitly
by the system as an incidental result of using particulaglage operations. Distributed
Oz has the same language semantics as Oz by defining a distkrisemantics for all
language entities such as variables or objects based @n cell

Network transparency means that computations behave the salependent of the
site they compute on, and that the possible interconnecti@tween two computations
do not depend on whether they execute on the same or on diffétes. Network trans-
parency is guaranteed in Distributed Oz for most entities.

An overview on the design of Distributed Oz is [48]. The dmited semantics of
variables is reported in [49]; the distributed semanticshjécts is discussed in [115].

1.2.5 Encapsulation and Search

The main challenge in combining concurrency with problenviag is that constraint-
based computations used for problem solvingsgreculativan nature: their failure is a
regular event. Using backtracking for undoing the effeca déiled speculative compu-
tation is impossible in a concurrent context. Most compaitest including interoperating
with the external world cannot backtrack. The essentia idedeal with speculative com-
putations in a concurrent context is émcapsulatespeculative computation so that the
failure of an encapsulated computation has no effect orr athreputations.

Computation spaces. The idea of encapsulation has been pioneered by AKL, where en
capsulation has been achieved by delegating computatiasts talled deep guards (to be
discussed later in more detail). Oz generalizes this idéallasvs. Computations (roughly
consisting of threads of statements and a constraint stoeejontained in aomputation
space Encapsulation in Oz then is achieved by delegating sptesleomputations to
local computation spaces. The failure of a local space leaves splaees unaffected.

Computation spaces can then be nested freely resultingrigeaof nested computa-
tion spaces as sketched in Figure 1.11. Encapsulation qisetieat constraints told by
computations in local computation spaces are visible isaspaigher up in the space tree.
Nested propagation makes sure that constraints told in atatipn spaces are propagated
to nested spaces.

Thom Fiihwirth, Laurent Michel, Christian Schulte 21

NewSpace : Script— Space

Ask : Space— Status
Access : Space— Solution
Clone . Space— Space
Commit : Spacex Int — Unit
Inject . Spacex Script— Unit

Figure 1.12: Operations on first-class computation spaces.

Stability. Given a setup with local spaces for encapsulation, it isrgisdeo have a crite-
ria when a computation is not any longer speculative. A gdsbreaking idea introduced
by Janson and Haridi in the context of AKL s¢ability [60, 47, 59]. A speculative com-
putation becomestablg if it has entirely reduced to constraints and that thesetraimts
are entailed or disentailed (that is, the constraints dorradte any speculative assumptions
themselves) by the constraints from computation spacéehigp in the space tree.

Stability naturally generalizes the notion of entailmegtdapturing when arbitrary
computations are not any longer speculative. In partichlath entailment and stability
are monotonic conditions: a stable computation space rensdable regardless of other
computations.

Deep guards. Stability has been first used as a control criteria for comtairs using
so-calleddeep guardsA combinator can be disjunction, negation, or conditiof@l ex-
ample. In the concurrent constraint programming modeldgi@hat is, ask statements) are
flat as they are restricted to constraints. Deep guards alloivampstatements (agents) of
the programming language. Similar to how entailment defiviesn and how computation
can proceed for a flat guard, stability defines when and howpatation can proceed for
a deep guard.

First-class computation spaces. Local computation spaces together with stability as
control regime serve as the foundation for both search anmbowtors in Oz. A general
idea in Oz is that important abstractions such as procegdelesses, and objects are avail-
able as first-class citizens in the language. As discuss8eédtion 1.2.4, this is achieved
by names that separate reference to entities from theesnitbper.

Similarly, local computation spaces are available as fii@ts computation spaces.
Having spaces available first-class, search and combglémome programmable within
Oz as programming language.

The operations on first-class computation spaces are listéidure 1.12 NewSpace
takes a script (a procedure that defines the constraintgarotul be solved) and returns a
space that executes the scrifggk synchronizes until computation in the space has reached
a stable state. It then returns the status of the spacesthalhéther the spacefailed
solved , or hasalternatives . Alternatives are then resolved by seardccess
returns the solution stored in a spa€done returns a copy of a spac€ommit selects
an alternative of a choice poinnject adds constraints to a space. How the operations
are employed for programming search becomes is sketchefti/drelow.

22 1. Constraints in Procedural and Concurrent Languages

fun {All S}

case {Ask S}

of failed then nil

[] solved then [{Access S}]

[] alternatives then C={Clone S} in
{Commit S 1} {Commit C 2}
{Append {All S} {All C}}

end

end

Figure 1.13: Depth-first exploration for all solutions.

Programming search. Most constraint programming systems (see Chapter 14, t&ini
Domain Constraint Programming Systems”) have in commontttey offer a fixed and
small set of search strategies. The strategies coveregicalty limited to single, all,
and best-solution search. Search cannot be programmezh mavents users to construct
new search strategies. Search hard-wires depth-firstetjmo, which prevents even sys-
tem developers to construct new search strategies. Withcfass computation spaces,
Oz provides a mechanism to easily program arbitrary seangines featuring arbitrary
exploration strategies.

Figure 1.13 conveys that programming search based on fas$-computation spaces
is easy. The figure contains a formulation of depth-first esgiion that returns all solu-
tions. All takes a spac8 containing the problem to be solved as input. It returnseeith
the empty list, if no solution is found, or a singleton lishtaining the solution. If a space
needs to be resolved by search, the space is copied (by appliof Clone) and explo-
ration follows the left alternativeommit S 1) and later the right alternativ€pmmit
C 2). Append then appends the solutions obtained from exploring SahdC.

The complete search engine is obtained by adding spacéxreatording to the prob-
lem P (specified by a proceduf® to be solved:

fun {SearchAll P}
{All {NewSpace P}}
end

First-class computation spaces not only cover many stdrskarch engines but have
been applied to interactive visual search [93], parallaerde [91], and recomputation-
based search [94]. A complete treatment of search withdiasts computation spaces
is [92]. Abstractions similar to first-class computatioracps are also used in the+C
based libraries Figaro [53] and Gecode [44].

Programming combinators. First-class computations spaces can also be used to pro-
gram deep-guard combinators such as disjunction, negétiocking implication, for ex-
ample. Here the motivation is the same as for programmingkeahe user is not re-
stricted to a fixed set of combinators but can devise apjicatpecific combinators when
needed. By this they generalize the idea of deep-guard ewatdys introduced in AKL.
Programming combinators is covered in [90] and more extehsin [92].

Thom Fiihwirth, Laurent Michel, Christian Schulte 23

1.3 Rule-Based Languages

Rule-based formalisms are ubiquitous in computer scienag theory to practice, from
modelling to implementation, from inference rules and $ion rules to business rules.
Executable rules are used in declarative programming kgpes) in program transforma-
tion and analysis, and for reasoning in artificial inteltige applications. Rules consist of
a data description (pattern) and a replacement statemedtfa matching that descrip-
tion. Rule applications cause localized transformatioha shared data structure (e.g.,
constraint store, term, graph, database). Applicatioagepeated until no more change
happens.

Constraint Handling Rules (CHR) is a rule-based progrargrtanguage in the tra-
dition of constraint logic programming, the only one speailly developed for the im-
plementation of constraint solvers. It is traditionally extension to other programming
languages but has been used increasingly as a generalspymgramming language, be-
cause it can embed many rule-based formalisms and destgitvitlams in a declarative
way.

The next section discusses design objectives and relatéd Moen we give an overview
of syntax and semantics of CHR [35, 42] as well as of propeftie program analysis
such as confluence and operational equivalence. Then weanstraint solvers written in
CHR, for Booleans, minima, arithmetic equations, finite aridrval domains and lexico-
graphic orders.

1.3.1 Design Obijectives

Constraint solver programming. In the beginning of CLP, constraint solving was hard-
wired in a built-in constraint solver written in a low-levptocedural language. While
efficient, this so-calledblack-boxapproach makes it hard to modify a solver or build a
solver over a new domain, let alone debug, reason about alygsarit. Several proposals
have been made to allow more for flexibility and costumizatibconstraint solvers (called
glass-boxsometimesvhite-boxor evenno-boxapproaches):

e Demons, forward rules and conditionals of the CLP languagéP(29], allow
defining propagation of constraints in limited ways.

e Indexicals, clp(FD) [25], allow implementing constraimger finite domains at a
medium level of abstraction.

e Given constraints connected to a Boolean variable thaesemts their truth [16, 97]
allow expressing any logical formula over primitive coastts.

e Constraint combinators, cc(FD) [109], allow building maremplex constraints
from simpler constraints.

All approaches extend a solver over a given, specific canstd@main, typically finite
domains. The goal then was to design a programming languzsegefisally for writing
constraint solvers. Constraint Handling Rules (CHR) [33, 41, 86] is a concurrent
committed-choice constraint logic programming languawesésting of guarded rules that
transform multi-sets of relations called constraintslurdimore change happens.

24 1. Constraints in Procedural and Concurrent Languages

Underlying concepts. CHR was motivated by the inference rules that are traditipna
used in computer science to define logical relationshipsfemgdint computation in the
most abstract way.

In CHR, one distinguishes two main kinds of rul&mplification rulegeplace con-
straints by simpler constraints while preserving logicpligalence, e.gX<YAY<X & X=Y.
Propagation rulesadd new constraints that are logically redundant but mageéurther
simplification, e.g.X<YAY<Z = X<Z. Obviously, conjunctions in the head of a rule and
propagation rules are essential in expressing constraliving succinctly.

Given a logical calculus and its transformation rules fodutgion, its (conditional)
inference rules directly map to propagation rules and itofiditional) replacement rules
to simplification rules. Also, the objects of logic, the (straint) theories, are usually
specified by implications or logical equivalences, coroggjing to propagation and simpl-
ficiation rules.

Given a state transition system, its transition rules cadihgbe expressed with simpli-
fication rules. In this way, dynamics and changes (e.g.,tegdlaan be modelled, possibly
triggered by events and handled by actions. This justifiesude of CHR as a general
purpose programming language.

Design influences. The design of CHR has many roots and combines their atteactiv
features in a novel way. Logic programming (LP), constrégic programming (CLP)
[65, 42] and concurrent committed-choice logic prograngr(i@CP) [95, 80] are direct
ancestors of CHR. Like automated theorem proving, CHR usesflae to derive new
information, but only in a restricted syntax (e.g., ho neggtand in a directional way
(e.g., no contrapositives) that makes the difference betwlee art of proof search and an
efficient programming language.

CHR adapts concepts from term rewriting systems [14] fogpm analysis, but goes
beyond term rewriting by working on conjunctions of relaoinstead of nested terms,
and by providing in the language design propagation rutgscal variables, built-in con-
straints, implicit constraint stores, and more. Extensiofirewriting, such as rewriting
Logic [68] and its implementation in Maude [24] and Elan [h8}ve similar limitations as
standard rewriting systems for writing constraints. Thectional language Bertrand [63]
uses augmented term rewriting to implement constrainednguages.

Executable rules with multiple head atoms were proposetaniterature to model
parallelism and distributed agent processing as well asctbj15, 12], but not for con-
straint solving. Other influences for the design of CHR wére Gamma computation
model and the chemical abstract machine [15], and, of copreduction rule systems like
OPS5 [20].

Independent developments related to the concepts behifti@die the multi-paradigm
programming languages CLAIRE [22], andz@98] as well as database research: con-
straint and deductive databases, integrity constraintsegent-condition-action rules.

Expressiveness. The paper [101] introduces CHR machines, analogous to RAM an
Turing machines. It shows that these machines can simwdateather in polynomial time,
thus establishing that CHR is Turing-complete and, moreirigmtly, that every algorithm
can be implemented in CHR with best known time and space aitpl something that
is not known to be possible in other pure declarative prognarg languages like Prolog.

Thom Fiihwirth, Laurent Michel, Christian Schulte 25

Applications. Recent CHR libraries exist for most Prolog systems, e.4,,98], Java [10,
118, 117, 66], Haskell [23] and Curry. Standard constraiatesns as well as novel ones
such as temporal, spatial or description logic constrdiate been implemented in CHR.
Over time CHR has proven useful outside its original field pplecation in constraint
reasoning and computational logide it agent programming, multi-set rewriting or pro-
duction rule systems: Recent applications of CHR range tygra systems [31] and time
tabling [5] to ray tracing and cancer diagnosis [11, 86].dme of these applications, con-
junctions of constraints are best regarded as interactiigations of concurrent agents
or processes. We will not discuss CHR as a general-purpagggmming language for
space reasons.

Abstract Syntax

We distinguish between two different kinds of constrainksiilt-in (pre-defined) con-
straints which are solved by a built-in constraint solver, and CllRer-defined) con-
straintswhich are defined by the rules in a CHR program. Built-in caists include
syntactic equality=, true, andfalse This distinction allows to embed and utilize existing
constraint solvers as well as side-effect-free host laggsatements. Built-in constraint
solvers are considered as black-boxes in whose behavinsigtl and that do not need to
be modified or inspected. The solvers for the built-in caists can be written in CHR
itself, giving rise to a hierarchy of solvers [87].
A CHR programis a finite set of rules. There are three kinds of rules:

Simplificationrule: Name@Q H < C|B
Propagation rule: NameQ H = C| B
Simpagationrule: Namea H\ H' < CI|B

Nameis an optional, unique identifier of a rule, theadH, H’ is a non-empty con-
junction of CHR constraints, thguard C is a conjunction of built-in constraints, and the
bodyB is a goal. Agoalis a conjunction of built-in and CHR constraints. A trivialayd
expressiontrud’ can be omitted from a rule.

Simpagation rules abbreviate simplification rules of theifé/ A H' < C| H A B, so
there is no further need to discuss them separately.

Operational Semantics

At runtime, a CHR program is provided with an initial statedamill be executed until
either no more rules are applicable or a contradiction accur

The operational semantics of CHR is given by a transitiotnesggFig. 1.14). LetP
be a CHR program. We define the transition relatierby two computation steps (tran-
sitions), one for each kind of CHR rul&tatesare goals, i.e., conjunctions of built-in and
CHR constraints. States are also calleghstraint) storesin the figure, all upper case let-
ters are meta-variables that stand for conjunctions oftcaings. The constraint theoyT’
defines the semantics of the built-in constraidts; denotes the built-in constraints 6f.

2Integrating deduction and abduction, bottom-up and taprdexecution, forward and backward chaining,
tabulation and integrity constraints.

26 1. Constraints in Procedural and Concurrent Languages

Simplify
If (r@QH < C'| B) is a fresh variant with variablesof a rule named in P
and CT EV (Gy — Iz(H=H'N(C))
then (H'AG)w—, (BAGANH=H'NC)

Propagate

If (r@H = C'| B) is a fresh variant with variablesof a rule named in P
and CT VY (Gy — 3z(H=H'AC))
then (H'AG)+—, (HH ABANGANH=H'AC)

Figure 1.14: Computation steps of Constraint Handling Rule

Starting from an arbitrary initial goal, CHR rules are applexhaustively, until a fix-
point is reached. A simplification rul& < C | B replacesinstances of the CHR con-
straintsH by B provided the guard’ holds. A propagation rulé/ = C' | B insteadadds
B to H. If new constraints arrive, rule applications are resthrt@omputation stops in a
failed final state if the built-in constraints become indstent. Trivial non-termination of
the Propagatecomputation step is avoided by applying a propagation ruheast once to
the same constraints (see the more concrete semantic$.in [1]

In more detail, a rule igipplicable if its head constraints are matched by constraints
in the current goal one-by-one and if, under this matching guard of the rule is implied
by the built-in constraints in the goal. Any of the applicabliles can be applied, and the
application cannot be undone, it is committed-choice.

A computation (derivationdf a goalG is a sequencé), Sy, . .. of states withS; —
Si+1 beginning with thenitial state (query, problemy, = G and ending in a final state
or not terminating. Ainal state (answer, solutiofi one where either no computation step
is possible anymore or where the built-in constraints acensistent.

Example 1. We define & HR constraint for a partial order relatior<:

reflexivity @ X<X & true
antisymetry @XSYAY<X & X=Y
transitivity @XSYAY<Z = XZ

The CHR program implements reflexivity, antisymmetry, trandiieind redundancy
in a straightforward way.

Operationally the ruler ef | exi vi t y removes occurrences of constraints that match
X<X. Theruleant i synmmet r y means that if we find<Y as well asY<Xin the current
goal, we can replace them by the logically equival¥aty. The ruletransitivity
propagates constraints. It adds the logical consequet<g as a redundant constraint,
but does not remove any constraints.

A computation of the goah<B A C<A A B<C proceeds as follows (rules are applied
to underlined constraints):

A<B A C<A N B<C —transitivity
A<B A C<A A BKC A C<B —antisymetry
A<B AN C<A AB=C Fanti symmetry

A=B N B=C

Thom Fiihwirth, Laurent Michel, Christian Schulte 27

Starting from a circular relationship, we have found outttktze three variables must
be the same.

Refined, parallel and compositional semantics. The high-level description of the op-
erational semantics of CHR given here does not explicitiyrasls termination at failure
and of propagation rules, and leaves two main sources ofdeterminism: the order in
which constraints of a query are processed and the orderichwhles are applied (rule
scheduling). As in Prolog, almost all CHR implementatiorsaite queries from left to
right and apply rules top-down in the textual order of thegpamn. This behavior has been
formalized in the so-calledefined semanticf32] that was proven to be a concretization
of the standard operational semantics given in [1]. In [4ppeallel execution model for
CHR is presented.

Search. Search in CHR is usally provided by the host language, eygthé built-in
backtracking of Prolog or by search libraries in Java. Initaald in all Prolog implemen-
tations of CHR, the disjunction of Prolog can be used in thdybaf CHR rules. This
was formalized in the language CHR?, 8]. An early implementation of CHR in Eclipse
Prolog also featured so-called labeling declarations, [8&t allowed Prolog clauses for
CHR constraints. These can be directly translated into CHihich we will use to define
labeling procedures.

Pragmatics. When writing CHR programs, manuals such as [54] suggesktiepsim-
plification rules and to avoid propagation rules and mudtibads (although indexing often
helps to find partner constraints in constant time [84]). @itleoften modify and compose
existing CHR and other programs. Some possibilities ara ¢dmposition by taking the
union of all rules [4]; hierarchical composition by turnisgme CHR constraints into built-
in constraints of another constraint solver [89]; extegdirbitrary solvers with CHR [30].
CHR are usually combined with a host language. In the hoguage, CHR constraints
can be posted; in the CHR rules, host language statementsecartluded as built-in
constraints.

Declarative Semantics

Owing to the tradition of logic and constraint logic progmaimg, CHR features — besides
an operational semantics —declarative semanticd.e., a direct translation of a CHR
program into a first-order theory. In the case of constraites's, this strongly facilitates
proofs of a program’s faithful handling of constraints.

Thelogical reading (meaning) of simplification and propagatiwulesis given below.

H<CIB VY(C — (H « 3y B))
H=CIB VY(C— (H— 3JyB))

The sequencg are the variables that appear only in the ba@igf a rule.

The logical reading of aCHR programis the conjunction of the logical readings of
its rules united with the constraint theo@T" that defines the built-in constraints. The
logical reading of a statés just the conjunction of its constraints. State transiipreserve
logical equivalence, i.e., all states in a computationagéhlly the same. From this result,

28 1. Constraints in Procedural and Concurrent Languages

soundness and completeness theorems follow that shovhéhdétlarative and operational
semantics coincide strongly, in particular if the programaénfluent [9].

Linear-logic semantics. The classical-logic declarative semantics, however, dmgs
suffice when CHR is used as a general-purpose concurrengonoging language. Many
algorithms do not have a correct first-order logic readirspeeially when they crucially
rely on change through updates. This problem has been démimusin [41, 85] and led
to the development of an alternative declarative semariticsbased on a subset lifiear
logic [45] that can model resource consumption. It therefore raocarately describes the
operational behavior of simplification rules [18].

Program Properties and Their Analysis

One advantage of a declarative programming language is®eead program analysis. The
paper [27] introduces a fix-point semantics which charasrthe input/output behavior
of a CHR program and which iand-compositional. It allows to retrieve the semantics
of a conjunctive query from the semantics of its conjuncischsa semantics can be used
as a basis to define incremental and modular program analydigerification tools. An
abstract interpretation framework for CHR is introduced88]. The basic properties
of termination, confluence and operational equivalencetraditionally analysed using
specific techniques as discussed below. Time complexitlysisas discussed in [36], but
details often rely on problem specific techniques.

Minimal states. When analysing properties of CHR programs that involve tffiaitely
many possible states, we can sometimes restrict oursehaefinite number of so-called
minimal states. For each rule, there is a minimal, most gérstate to which it is appli-
cable. This state is the conjunction of the head and the gofaite rule. Removing any
constraint from the state would make the rule inapplicaBlesry other state to which the
rule is applicable contains the minimal state. Adding caists to the state cannot inhibit
the applicability of a rule because of thenotonicity propertpf CHR [9].

Termination. A CHR program is callederminating if there are no infinite computa-
tions. Since CHR is Turing-complete, termination is undabie. For CHR programs that
mainly use simplification rules, simple well-founded oiidgs are often sufficient to prove
termination [37, 36]. For CHR programs that mainly use pgatin rules, results from

bottom-up logic programming [43] as well as deductive anast@int databases apply. In
general, termination analysis is difficult for non-triviateractions between simplification
and propagation rules.

Confluence. Ina CHR program, the result of computations from a given galhblways
have the same meaning. However the answer may not be sygathcthe same. The
confluence property of a program guarantees that any cotigrufar a goal results in the
same final state no matter which of the applicable rules gvbeah

The papers [1, 9] give a decidable, sufficient and necessargition for confluence:
A terminating CHR program is confluent if and only if all itsitaral pairs are joinable.
For checking confluence, one takes two rules (not necegsiiffirent) from the program.

Thom Fiihwirth, Laurent Michel, Christian Schulte 29

The minimal states of the rules are overlapped by equatingaat one head constraint
from one rule with one from the other rule. For eamterlap we consider the two states
resulting from applying one or the other rule. These twoestdibrm a so-calledritical
pair. One tries tgoin the states in the critical pair by finding two computatiorestitg
from the states that reach a common state. If the criticalipant joinable, we have found
a counterexample for confluence of the program.

Example 2. Recall the program fox of Example 1. Consider the rules for reflexivity and
antisymmetry and overlap them to get the following critistalte and computations.

A<ANA<LA
reflexivit \wmetry
A<A A=A
reflexivit /m
true

The resulting critical pair is obviously joinable. The exalmalso shows that multiplicities
matter inCHR.

Any terminating and confluent CHR program has a consistegitdd reading [9, 1]
and will automatically implement a concurrent any-timeggximation) and on-line (in-
cremental) algorithm.

Completion. Completion is the process of adding rules to a hon-conflusgrpm until
it becomes confluent. Rules are built from a non-joinablioeti pair to allow a transition
from one of the states into the other while maintaining teation.

Example 3. Given the< solver, assume we want to introduce<aconstraint by adding
just one rule about the interaction between these two typegequalities.

X<YAY<X & X=Y (antisymmetry)
X<YANY<X <& false (inconsistency)

The resulting program is not confluent.

A<B AN B<ANAB<A
antisymm%y/ Nconsistency
A=B AN B<A B<A Afalse
A=B N A<A false

Completion uses the two non-joinable states to derive amésting new rule, discovering
irreflexivity of <.

X< X < false

In contrast to other completion methods, in CHR we generadisd more than one rule
to make a critical pair joinable: a simplification rule andragmgation rule [3].

30 1. Constraints in Procedural and Concurrent Languages

Operational equivalence. A fundamental and hard question in programming language
semantics is when two programs should be considered equoiv&lor example correctness
of program transformation can be studied only with respedt hotion of equivalence.
Also, if modules or libraries with similar functionality@aused together, one may be inter-
ested in finding out if program parts in different modulesilordries are equivalent. In the
context of CHR, this case arises frequently when constsgitvers written in CHR are
combined. Typically, a constraint is only partially definadh constraint solver. We want
to make sure that the operational semantics of the commairaimts of two programs do
not differ.

Two programs are operationally equivalent if for each gakiffinal states in one pro-
gram are the same as the final states in the other program.],Ithf2authors gave a
decidable, sufficient and necessary syntactic conditiooperational equivalence of ter-
minating and confluent CHR prografndhe minimal states of all rules in both programs
are simply run as goals in both programs, and they must reacimanon state. An ex-
ample for operational equivalence checking can be founl thié¢ minimum example in
Section 1.3.2.

1.3.2 Constraint Solvers

We introduce some constraint solvers written in CHR, foadetind more solvers see [38,
42]. We will use the concrete ASCII syntax of CHR implemeiatas in Prolog: Conjunc-
tion A is written as comma,”. DisjunctionV is written as semi-colon ”. Let '=<"and
'<’ be built-in constraints now.

Boolean Constraint Solver

Boolean algebra (propositional logic) constraints cardbeesl by differenttechniques [67].
The logical connectives are represented as Boolean contstiiee., in relational form. For
example, conjunction is written as the constrand(X,Y,Z) , whereZ is the result of
andingX andY. In the following terminating and confluent Boolean conistraolver [42],
alocal consistency algorithm is used. It simplifies one Baalconstraint at a time into one
or more syntactic equalities whenever possible. The rolegrbpositional conjunction are
as follows.

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,z) <=> Y=0 | Z=0.
and(X,Y,zZ) <=> X=1 | Y=2Z.
and(X,Y,zZ) <=> Y=1 | X=2Z.
and(X,Y,z) <=> X=Y | Y=Z.
and(X,Y,Z) <=> Z=1 | X=1,Y=1.

The above rules are based on the idea that, given a value épbthe variables in a

constraint, we try to determine values for other variabldswever, the Boolean solver
goes beyond propagating values, since it also propagateditees between variables. For
exampleand(1,Y,Z),neg(Y,Z) will reduce tofalse , and this cannot be achieved
by value propagation alone.

3To the best of our knowledge, CHR is the only programming lsmyg in practical use that admits decidable
operational equivalence.

Thom Fiihwirth, Laurent Michel, Christian Schulte 31

Search. The above solver is incomplete. For example, the solveraasetect inconsis-
tency ofand(X,Y,Z),and(X,Y,W),neg(Z,W) . For completeness, constraint solv-
ing has to be interleaved with search. For Boolean conss;aaarch can be done by trying
the valued) or 1 for a variable. The generic labeling procederaum traverses a list of
variables.

enum([]) <=> true.
enum([X|L]) <=> indomain(X), enum(L).

indomain(X) <=> (X=0 ; X=1).

Minimum Constraint

The CHR constrainnin(X,Y,Z) means thak is the minimum ofX andY.

rl @ min(X,Y,Z) <=> X=<Y | Z=X.
r2 @ min(X,Y,z) <=> Y=<X | Z=Y.
r3 @ min(X,Y,Z) <=> Z<X | Y=Z
rd @ min(X,Y,Z) <=> Z<Y | X=Z
r5 @ min(X,Y,Z2) ==> Z=<X, Z=<Y.

The first two rulesl andr2 correspond to the usual definition ofin. But we also
want to be able to compute backwards. So the two mBesandr4 simplify min if the
order between the result and one of the input variables is known. The last nie
ensures thanin(X,Y,Z) unconditionally implieZ=<X,Z=<Y . Rules such as these can
be automatically generated from logical specifications [6]

Example 4. Redundancy from a propagation rule is useful, as the goai(A, 2, 2)
shows. To this goal only the propagation rule is applicablg, to the resulting state the
second rule becomes applicable:

m n(A 2,2)
s Mn(A 2, 2),2=<A
—r2 2:<A

In this way, we find out that fari n(A, 2, 2) to hold,2=<A must hold.
Another interesting derivation involving the propagatiote is:

mi n(A B, M), A=<M
5 Mon(A B, M,A=M M:=<B
.1 A=MME<B

It can be shown that the program is terminating and confluemt.example, the only

overlap of the minimal states for the first two rulels,andr2 ismin(X,Y,Z),X=Y . For
both rules, their application leads to logically equivaleuilt-in constraintsX=Y,Y=2.

Operational equivalence. We would like to know if these two CHR rules defining the
user-defined constraintin with differing guards

min(X,Y,Z) <=> X=<Y | Z=X.
min(X,Y,Z) <=> Y<X | Z=V.

32 1. Constraints in Procedural and Concurrent Languages
are operationally equivalent with these two rules

min(X,Y,Z) <=> X<Y | Z=X.
min(X,Y,Z) <=> Y=<X | Z=V.

or if the union of the rules results in a better constraingaofor min .

Already the minimal state of the first rule of the first progranin(X,Y,Z),X=<Y
shows that the two programs are not operationally equivasémce it can reduce td=Xx
in the first program, but is a final state for the second progsameeX=<Y does not apply
any of the guards in the second program. Thus the union ofabgtograms allows for
more constraint simplification. In the union, the two ruleifhwthe strict guards can be
removed as another operational equivalence test showththaare redundant.

Linear Polynomial Equation Solving

Typically, in arithmetic constraint solvers, incrementatiants of classical variable elim-
ination algorithms [58] like Gaussian elimination for etjoas and Dantzig’'s Simplex
algorithm for equations are implemented.

A conjunction of equations im solved formif the left-most variable of each equation
does not appear in any other equation. We compute the saweddy eliminating multiple
occurrences of variables. In this solved form, all deteedinariables (those that take a
unique value) are discovered.

eliminate @ A1 *X+P1 eq 0 \ P2X eq 0 <=>
find(A2 *X,P2X,P2) |
normalize(A2 *(-P1/A1)+P2,P3),
P3 eq 0.

constant @ B eq O <=> number(B) | zero(B).

Theconstant rule says that if the polynomial contains no more variaktes) the num-
berB must be zero. Theliminate rule performs variable elimination. It takes any pair
of equations with a common occurrence of a variaileln the first equation, the vari-
able appears left-most. This equation is used to elimirreeotcurrence of the variable
in the second equation. The first equation is left unchandedhe guard, the built-in
find(A2 *X,P2X,P2) tries to find the expressioh2+ X in the polynomP2X, whereX

is the common variable. The polynoR?® is P2X with A2* X removed. The constraint
normalize(E,P) transforms an arithmetic expressi@iinto a linear polynomiab.

The solver is complete, so no search is necessary. It istatmg but not confluent
due to theeliminate rule: Consider two equations with the same left-most véeiab
then the rule can be applied in two different ways. The sopreduces the solved form
as can be shown by contradiction: If a set of equations ismablved form, then the
eliminate rule is applicable. The solver is concurrent by nature of CHRan reduce
pairs of equations in parallel or eliminate the occurencewdriable in all other equations
at once.

Thom Fiihwirth, Laurent Michel, Christian Schulte 33

Finite Domains

Here, variables are constrained to take their value fronvangifinite set. Choosing inte-
gers for values allows for arithmetic expressions as caimgs. Influential CLP languages
with finite domains are CHIP [29], clp(FD) [25] and cc(FD) H0

Thedomain constrainX in D means that the variabl€ takes its value from the given
finite domainD. For simplicity, we start with thbounds consisten@fgorithm for interval
constraints [108, 17]. The implementation is based on vatarithmetic. In the solver,
in ,le ,eq, ne, andadd are CHR constraints, the inequalities>, =<, >=, and<> are
built-in arithmetic constraints, amdin , max, +, and- are built-in arithmetic functions
in A.B constrainsX to be in the intervaA..B . The rules for local consistency affect
the interval constraintsr() only, the other constraints remain unaffected.

inconsistency @ X in A.B <=> A>B | false.
intersect@ X in A.B, X in C..D <=> X in max(A,C)..min(B,D).

le @ XleY, Xin A.B, Y in C.D <=> B>D |
XleY, Xin A.D, Y in C..D.

le @ XleY, Xin AB, Yin C.D <=> C<A |
XleY, Xin A.B, Y in A.D

eg @ Xeq VY, Xin A.B, Y in C.D <=> A<>C |
X eq Y, X in max(A,C)..B, Y in max(C,A)..D.
eg @ X eq VY, Xin A.B, Y in C.D <=> B<>D |
X eq Y, X in A.min(B,D), Y in C..min(D,B).

The CHR constraink le Y means thaXis less than or equal 8. Hence X cannot
be larger than the upper boubdf Y. Therefore, if the upper bourlof Xis larger than
D, we can replacB by Dwithout removing any solutions. Analogously, one can reaso
the lower bounds to tighten the interval fér Theeq constraint causes the intersection of
the interval domains of its variables provided the boundswat yet the same.

Example 5. Here is a sample computation involvihg:

Uin2..3, Vin1..2, Ule V
—1e Vinl .2 UleV, Uin 2..2
—le UleV, Uin 2..2, Vin 2..2.

Finally, X+Y =7 is represented asld(X,Y,Z)

add @ add(X,Y,Z), X in A.B, Y in C.D, Z in E..F <=>
not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D) |
add(X,Y,z2),
X in max(A,E-D)..min(B,F-C),
Y in max(C,E-B)..min(D,F-A),
Z in max(E,A+C)..min(F,B+D).

For addition, we use interval addition and subtraction tmpaote the interval of one vari-
able from the intervals of the other two variables. The gwmslires that at least one inter-
val becomes smaller whenever the rule is applied. Here impleacomputation involving
add:

34 1. Constraints in Procedural and Concurrent Languages

Uin 1.3, Vin 2.4, W in 0.4, add(U,V,W) — add
add(U,v,wW), U in 1.2, V in 2.3, W in 3.4
For termination, consider that the ruiesonsistency andintersection from

above remove one interval constraint each. We assume #haghaining rules deal with

non-empty intervals only. This holds under the refined seditmand can be enforced by
additional guard constraints on the interval bounds. Thezach rule, at least one interval
in the body is strictly smaller than the corresponding veéin the head, while the other
intervals remain unaffected. The solver is confluent, ptedithe intervals are given. The
solver also works with intervals of real numbers of a chogganularity, so that to ensure
termination rules are not applied anymore to domains whietcansidered too small.

Enumeration domains. Besides intervals, finite domains can be explicit enumenati
of possible values. The rules for enumeration domains aa®gaus to the ones for inter-
val domains and implement arc consistency [73], for example

inconsistency @ X in [] <=> false.
intersect@ X in L1,X in L2 <=> intersect(L1,L2,L3) | X in L3.

Search. We implement the search routine analogous to the one fordamatonstraints.
For interval domains, search is usually done by splittingrivals in two halves. This
splitting is repeated until the bounds of the interval aregame.

indomain(X), X in A..B <=> A<B |
(X in A..(A+B)//2, indomain(X) ;
X in (A+B)//2+1..B, indomain(X)).

The guard ensures termination. For enumeration domaioh,\&due in the domain (im-
plemented as a list) is tried =V is expressed as in [V]

indomain(X), X in [V|L] <=> L=[_|_] |
(X in [V] ; X in L, indomain(X)).

The guard ensures termination. Callimglomain(X) in the second disjunct ensures
that subsequently, the next value ¥from the listL will be tried.

N-queens. The famous-queens problem asks to placgueensy, ..., g, Onann xn
chess board, such that they do not attack each other. Théepraan be solved with a
CHR program, wherdl is the size of the chess board ad is a list of N queen position
variables.

solve(N,Qs) <=> makedomains(N,Qs), queens(Qs), enum(Qs)

queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).
safe(X,[Y|Qs],N) <=> noattack(X,Y,N), safe(X,Qs,N+1).

Instead of implementingoattack with the usual three finite domain inequality con-
straints, we can useoattack directly:

noattack(X,Y,N), X in [V], Y in D <=>
remove(D,[V,V+N,V-N],D1) | Y in D1.

noattack(Y,X,N), X in [V], Y in D <=>
remove(D,[V,V+N,V-N],D1) | Y in D1.

Thom Fiihwirth, Laurent Michel, Christian Schulte 35

The constraint between three lisessnove(D,L,D1) holds ifD1is Dwithout the values
in L and at least one value has been removed.

Lexicographic Order Global Constraint

A lexicographic order,,, (lex) allows to compare sequences by comparing the elements
of the sequences proceeding from start to end. Given twoesegs; andi, of variables

of the same length, [z1,...,z,] and[ys, ..., y.], thenl; <., 1> if and only if n=0 or
T1<y1 Orr1=Yy1 and[l‘Q; s 7xn]jlex [92; s ayn]-

The solver [40] consists of three pairs of rules, the firstteresponding to base cases
of the recursion (garbage collection), then two rules penfog forward reasoning (recur-
sive traversal and implied inequality), and finally two fadikward reasoning, covering a
not so obvious special case when the lexicographic constras a unique solution.

I1 @ [] lex [] <=> true.

2 @ [X|L1] lex [Y|L2] <=> X<Y | true.

I3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
4 @ [X|L1] lex [Y[L2] ==> X=<Y.

I5 @ [X,UIL1] lex [Y,V|L2] <=> U>V | X<Y.
6 @ [X,UIL1] lex [Y,V|L2] <=> U>=V, L1=[|] |
[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The implementation is short and concise without giving ugioear time worst case
time complexity. It is incremental and concurrent by nanfrf€HR. It is provably correct
and confluent. It is independent of the underlying constraystem. In [40], also com-
pleteness of constraint propagation is shown, i.e., giler aconstraint and an inequality,
all implied inequalities are generated by the solver.

1.4 Challenges and Opportunities

The integration of constraint technology in more traditibor hybrid paradigms has been
a source of significant progress. Nonetheless, it is stil aha comprehensive solution
that addresses all the motivating objectives. It has, hewewreated flexible platforms
particularly well-suited for experimenting with novel essch ideas and directions. This
section considers some of these opportunities.

1.4.1 Cooperative Solvers

Cooperative solvers are already a reality. Linear Prograngmand Integer Programming
solvers have been used in conjunction with constraint sslaad the combination often
proved quite effective. New solvers are developed regukither for domain specific
needs or as vertical extensions. In all cases, hybridizatizes many issues: How should
solvers communicate? How do solvers compose? What is theasite's architecture
(side-by-side, master-slave, concurrent,...)? What laeesynchronization triggers and
events (variable bounds, heuristic information, objexfiunction, impacts,...)? Should
the solvers operate on redundant statements of the samlembr on disjoint subset of

36 1. Constraints in Procedural and Concurrent Languages

constraints they are better suited for? Can solver-spdoifiaulations be derived from a
unigue master statement? Can the formulations be autaatigtiefined over time?

1.4.2 Orthogonal Computation Models

Recent developmentsin Constraint-Based Local Search 141y indicate that constraint-
based solvers can be developed for radically different egatfpn models. From a declara-
tive standpoint, local search solvers rely on constramngpecify the properties of solutions
and write elegant, high-level, and reusable search praesduvhich automatically exploit
the constraints to guide the search. From a computaticeradipbint, the solver incremen-
tally maintains properties (e.g. truth value, violatiomrke, variable and value based vio-
lations) under non-monotonic changes to the decisionbimsahat always have a tentative
value assignment. This organization is a fundamental deqgefirom classic domain-based
consistency and filtering techniques found in traditiondtdi domain solvers.

The fundamental differences are related to the nature afitlderlying computational
models. How can these solvers be effectively hybridizedaMgteps are required for an
efficient integration of the computation models that dogsresult in severe performance
degradation for either? Once the two technologies cogxist, can the solvers be com-
posed? How can each solver benefit from results producedshppoitnter-part? Which
form of collaboration is most effective?

1.4.3 Orthogonal Concerns

As solvers sophistication increases, it becomes difficulanticipate the behavior of a
solver on a given problem formulation. The advances in sdeehnology (efficiency,
flexibility, openness) should be matched with equal progiesupporting abstractions for
model designers. For Rapid application development, issestial to assist the develop-
ers of optimization models. Improvements should includiebelebugging tools (where
debugging occurs at the abstraction level of the model)aggion tools for post-mortem
analysis, but also tracing tools for live analysis of theveds behavior during the search
process. Tools like the DExplorer [93] or the tree visualizer of OplStudio [113] pide
initial insights into the dynamics of the search but fail éate this behavior to modeling
abstractions (constraints) and their interplay. Novelg@hould also support the explo-
ration of alternative model formulation and search heiegsgb quickly identify successful
strategies, a task which becomes increasingly burdensome the large number of po-
tential heuristics that ought to be considered.

1.5 Conclusion

Constraint solving and handling has moved from logic progréng into more common
programming paradigms and faced the challenges that itfthare.

e Generalizing search from built-in backtracking of Prolodlexible search routines
asin CrL, Oz and SALSA.

e User friendliness by providing well-known metaphors réaglin modelling lan-
guages such asm@ and Comet.

Thom Fiihwirth, Laurent Michel, Christian Schulte 37

e Integration into advanced multi-paradigm languages ssdblaAIRE and Q.

e The move from black-box solvers to glass-box solvers, thatle customized and
analysed more easily, with constraint handling rules (CldRthe extreme end of
the spectrum.

These issues will remain a topic of research and developmeoinstraint programming
for the near future, but impressive first steps have been.done

Acknowledgments

Christian Schulte is partially funded by the Swedish Rege@ouncil (VR) under grant 621-
2004-4953.

Bibliography

[1] S. Abdennadher. Operational semantics and confluencertdtraint propagation
rules. In3rd International Conference on Principles and PracticeCGdnstraint
Programming LNCS 1330. Springer, 1997.

[2] S. Abdennadher and T. Frihwirth. Operational equivedeof constraint handling
rules. InFifth International Conference on Principles and PracticEConstraint
Programming, CPO9LNCS 1713. Springer, 1999.

[3] S. Abdennadher and T. Fruhwirth. On completion of coaist handling rules. In
4th International Conference on Principles and PracticeGafnstraint Program-
ming, CP98LNCS 1520. Springer, 1998.

[4] S. Abdennadher and T. Frihwirth. Integration and optation of rule-based con-
straint solvers. In M. Bruynooghe, editdrpgic Based Program Synthesis and
Transformation - LOPSTR 2003, Revised Selected PapBI€S 3018. Springer,
2004.

[5] S.Abdennadherand M. Marte. University course timeataglising Constraint Han-
dling Rules.Journal of Applied Artificial Intelligencel4(4):311-326, 2000.

[6] S. Abdennadher and C. Rigotti. Automatic generation lof constraint solvers.
Theory Pract. Log. Program5(4-5):403—-418, 2005. ISSN 1471-0684. doi: http:
//dx.doi.org/10.1017/S1471068405002371.

[7]1 S.Abdennadherand H. Schiitz. Model generation witktexitially quantified vari-
ables and constraints. Bth International Conference on Algebraic and Logic Pro-
gramming LNCS 1298. Springer, 1997.

[8] S. Abdennadher and H. Schiitz. CHRA flexible query language. IFlexible
Query Answering SystemaNAI 1495. Springer, 1998.

[9] S. Abdennadher, T. Frihwirth, and H. Meuss. Confluenw semantics of con-
straint simplification rules.Constraints Journal, Special Issue on the 2nd Inter-
national Conference on Principles and Practice of Constr&rogramming 4(2):
133-165, 1999.

[10] S. Abdennadher, E. Kramer, M. Saft, and M. Schmauss: Jajava constraint kit.
In Electronic Notes in Theoretical Computer Scienadume 64, 2000.

[11] S. Abdennadher, T. Fruhwirth, and C. Holzbaur. EdifoiSpecial Issue
on Constraint Handling Rules. Theory and Practice of Logic Programming

38

(12]

(13]
(14]

(15]

(16]
(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

1. Constraints in Procedural and Concurrent Languages

(TPLP), 5(4-5), 2005. URLhttp://www.informatik.uni-ulm.de/pm/
mitarbeiter/fruehwirth/tplp-chr/ind%ex.html

J.-M. Andreoli and R. Pareschi. Linear objects: Iogp:a)cesses with built-in in-
heritance. In7th International Conference on Logic programming (ICLPages
495-510, Cambridge, MA, USA, 1990. MIT Press. ISBN 0-26D9(B 1.

J. Armstrong, R. Virding, and M. WilliamsConcurrent Programming in Erlang
Prentice-Hall International, Englewood Cliffs, NY, USAQ43.

F. Baader and T. NipkowTerm Rewriting and All That Cambridge Univ. Press,
1998.

J.-P. Banatre, A. Coutant, and D. L. Metayer. A parathelchine for multiset trans-
formation and its programming styleFuture Generation Computer Systerds
133-144,1988.

F. Benhamou. Interval constraint logic programming.Al. Podelski, editorCon-
straint Programming: Basics and TrendsNCS 910, pages 1-21. Springer, 1995.
F. Benhamou and W. J. Older. Applying interval arithinéb real, integer, and
boolean constraintd he Journal of Logic Programmin@2(1), 1997.

H. Betz and T. Frahwirth. A linear-logic semantics fonstraint handling rules.
In P. van Beek, editorl 1th Conference on Principles and Practice of Constraint
Programming CP 2005/0lume 3709 of ecture Notes in Computer Scienpages
137-151. Springer, Oct. 2005. URittp://www.informatik.uni-ulm.
de/pm/mitarbeiter/fruehwirth/Papers/lichr%-final0.p df .

P. Borovansky, C. Kirchner, H. Kirchner, P. E. MoreandaM. Vittek. ELAN:
A logical framework based on computational systems. Phoc. of the First
Int. Workshop on Rewriting Logiovolume ENTCS 4(1). Elsevier, 2004. URL
citeseer.ist.psu.edu/borovansky97elan.html

L. Brownston, R. Farrell, E. Kant, and N. Marterrogrammlng expert systems
in OPS5: an introduction to rule-based programmingddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1985. ISBN 0-201-4@67.

Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive &fgect-Oriented Ap-
proach to a Complex Scheduling Problem. Aroc. of DOOD’93 Phoenix, AZ,
December 1989.

Y. Caseau, F.-X. Josset, and F. Laburthe. Claire: cambisets, search and rules to
better express algorithm$heory Pract. Log. Program2(6):769—-805, 2002. ISSN
1471-0684. doi: http://dx.doi.org/10.1017/S147106IB63.

W.-N. Chin, M. Sulzmann, and M. Wang. A type-safe embedaf constraint han-
dling rules into haskell. Technical report, School of Corttipy, National University
of Singapore, Singapore, 2003.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-@tj J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewritgg. Theor. Com-
put. Sci, 285(2):187-243, 2002. ISSN 0304-3975. doi: http://dikatg/10.1016/
S0304-3975(01)00359-0.

P. Codognet and D. Diaz. Compiling constraints in cIp(F Journal of Logic
Programming 27(3):185-226, 1996.

Mosel: An Overview Dash Optimization White Paper, 2004.
http://www.dashoptimization.com/home/products/prdimosel.html.

G. Delzanno, M. Gabbrielli, and M. C. Meo. A compositidrsemantics for chr.
In PPDP '05: Proceedings of the 7th ACM SIGPLAN internationathierence on

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

Thom Fiihwirth, Laurent Michel, Christian Schulte 39

Principles and practice of declarative programmijngages 209-217, New York,
NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. doi: httpoildcm.org/10.
1145/1069774.1069794.

D. Diaz and P. Codognet. A minimal extension of $\&AMor CLP(FD) . In
Proceedings of the Tenth International Conference on L&gagramming (ICLP-
93), pages 774-792, Budapest (Hungary), June 1993.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. AggounGrFaf, and F. Berthier.
The constraint logic programming language CHIPIrternational Conference on
Fifth Generation Computer Systenpages 693—-702. Institute for New Generation
Computer Technology, 1988.

G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbdtxtending ar-
bitrary solvers with constraint handling rules. RPDP '03: Proceedings of the
5th ACM SIGPLAN international conference on Principles anactice of declar-
itive programming pages 79-90, New York, NY, USA, 2003. ACM Press. ISBN
1-58113-705-2. doi: http://doi.acm.org/10.1145/888888260.

G. J. Duck, S. L. P. Jones, P. J. Stuckey, and M. Sulzm&uound and decidable
type inference for functional dependenciesEROR pages 49—-63, 2004.

G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbathe Refined
Operational Semantics of Constraint Handling Rules. In Bmben and V. Lifs-
chitz, editors20th International Conference on Logic Programming (ICLUENICS.
Springer, 2004.

R. Fourer, K. Martin, and J. Ma. Modeling systems & optiation services. Book
in preparation.

R. Fourer, D. Gay, and B. KernighaAMPL: A Modeling Language for Mathemat-
ical Programming The Scientific Press, San Francisco, CA, 1993.

T. Fruhwirth. Theory and Practice of Constraint HandlRules, Special Issue
on Constraint Logic ProgrammingJournal of Logic Programming37(1-3):95—
138, 1998. URLhttp://www.pst.informatik.uni-muenchen.de/
personen/fruehwir/drafts/jlp-%chrl.ps.Z

T. Fruhwirth. As Time Goes By: Automatic CompIeX|ty Alysis of Simplification
Rules. In8th International Conference on Principles of Knowledg@i@sentation
and Reasoningloulouse, France, 2002.

T. Fruhwirth. Proving termination of constraint sehprograms. In E. M. K.R. Apt,
A.C. Kakas and F. Rossi, editofdew Trends in Constraintt NAI 1865. Springer,
2000.

T. Fruhwirth. Constraint systems and solvers for ¢@ist programming Special
Issue of Archives of Control Sciences (ACS) on Constraioggmming for De-
cision and Contrgl 2006. URLhttp://www.informatik.uni-ulm.de/
pm/mitarbeiter/fruehwirth/Papers/acs-s%ystems3.pdf . To ap-
pear.

T. Frihwirth. Constraint handling rules. In A. Podé]®ditor,Constraint Program-
ming: Basics and Trend&NCS 910. Springer, March 1995.

T. Fruhwirth. Complete propagation rules for lexicaghic order constraints
over arbitrary domains. IRecent Advances in Constraints, CSCLP 2Q0%Al.
Springer, 2006. To appear.

T. Fruhwirth. Parallelizing union-find in constraimandling rules using confluence.
In M. Gabbrielli and G. G., editord,ogic Programming: 21st International Con-

40

[42]

(43]

[44]
[45]
[46]
[47]
(48]

[49]

(50]

[51]

[52]

(53]

(54]

[55]
[56]
[57]
(58]

[59]

1. Constraints in Procedural and Concurrent Languages

ference, ICLP 2005volume 3668 ofLecture Notes in Computer Sciengeages
113-127. Springer, Oct. 2005. URittp://www.informatik.uni-ulm.
de/pm/mitarbeiter/fruehwirth/Papers/puf0.%pdf

T. Frihwirth and S. Abdennadhétssentials of Constraint Programmm@prlnger
2003.

H. Ganzinger and D. McAllester. A new meta-complexitgdorem for bottom-up
logic programs. Innternational Joint Conference on Automated ReasofiNCS
2083, pages 514-528. Springer, 2001.

Gecode Team. Gecode (generic constraint developmeitbement), 2005. Avail-
able fromwww.gecode.org

J.-Y. Girard. Linear logic: Its syntax and semanti€aeoretical Computer Science
50:1-102, 1987.

C. Guéret, C. Prins, M. Sevaux, and S. Heipckpplications of Optimization with
XpressMP Dash Optimization Ltd., 2002.

S. Haridi, S. Janson, and C. Palamidessi. Structuralagjpnal semantics for AKL.
Future Generation Computer Syster@109-421, 1992.

S. Haridi, P. Van Roy, P. Brand, and C. Schulte. Programgrtanguages for dis-
tributed applicationsNew Generation Computing6(3):223-261, 1998.

S. Haridi, P. Van Roy, P. Brand, M. Mehl, R. Scheidhaaerd G. Smolka. Effi-
cient logic variables for distributed computingCM Transactions on Programming
Languages and Systen24(3):569-626, May 1999.

W. Harvey and M. Ginsberg. Limited Discrepancy SearthProceedings of the
14th International Joint Conference on Artificial Intekigce Montreal, Canada,
August 1995.

M. Henz.Objects for Concurrent Constraint Programminglume 426 ointerna-
tional Series in Engineering and Computer Scien€riwer Academic Publishers,
Boston, MA, USA, Oct. 1997.

M. Henz, G. Smolka, and J. Wiirtz. Oz—A programming laage for multi-agent
systems. IrL3th International Joint Conference on Atrtificial Intekigce volume 1,
pages 404-409, Chambéry, France, 1993. Morgan KaufmablisRers. Revised
version appeared a8 |.

M. Henz, T. Muller, and K. B. Ng. Figaro: Yet another cbraint programming
library. In I. de Castro Dutra, V. S. Costa, G. Gupta, E. Piintd. Carro, and
P. Kacsuk, editorsParallelism and Implementation Technology for (Consttain
Logic Programmingpages 86—96, Las Cruces, NM, USA, Dec. 1999. New Mexico
State University.

C. Holzbaur and T. FrihwirthConstraint Handling Rules Reference Manual for
Sicstus PrologVienna, Austria, July 1998. URhttp://www.sics.se/isl/
sicstus/sicstus_34.html

llog CPLEX 6.0. Reference Manual. llog SA, Gentillygfce, 1998.

llog OPL Studio 3.0. Reference Manual. llog SA, Gewtifrance, 2000.

llog Solver 4.4. Reference Manual. llog SA, GentillyaRce, 1998.

J.-L. J. Imbert. Linear constraint solving in clp-larages. In A. Podelski, editor,
Constraint Programming: Basics and TrendNCS 910. Springer, 1995.

S. Janson.AKL - A Multiparadigm Programming LanguagePhD thesis, SICS
Swedish Institute of Computer Science, SICS Box 1263, SZBKista, Sweden,
1994. SICS Dissertation Series 14.

Thom Fiihwirth, Laurent Michel, Christian Schulte 41

[60] S.Janson and S. Haridi. Programming paradigms of thdoAma kernel language.
In V. Saraswat and K. Ueda, editotsygic Programming, Proceedings of the 1991
International Symposiunrpages 167-186, San Diego, CA, USA, Oct. 1991. The
MIT Press.

[61] S.Janson, J. Montelius, and S. Haridi. Ports for olsjebrt Research Directions in
Concurrent Object-Oriented Programminbhe MIT Press, Cambridge, MA, USA,
1993.

[62] F. Laburthe and Y. Caseau. SALSA: A Language for Seaigothms. InFourth
International Conference on the Principles and PracticeCafnstraint Program-
ming (CP’98) Pisa, Italy, October 1998.

[63] W. Leler. Constraint programming languages: their specification getheration
Addison-Wesley Longman Publishing Co., Inc., Boston, MAAJ 1988. ISBN
0-201-06243-7.

[64] M. J. Maher. Logic semantics for a class of committedich programs. In J.-L.
Lassez, editordth International Conference on Logic Programminzpages 858—
876, Cambridge, Mass., 1987. MIT Press.

[65] K. Marriottand P. J. Stuckeyrogramming with Constraints: An IntroductioNlIT
Press, Cambridge, Mass., 1998.

[66] L. Menezes, J. Vitorino, and M. Aurelio. A High Perform@e CHRv Execution
Engine. InSecond Workshop on Constraint Handling Rules, at ICLFRifes,
Spain, October 2005.

[67] S.Menju, K. Sakai, Y. Sato, and A. Aiba. A study on boaleanstraint solvers. In
F. Benhamou and A. Colmerauer, editaZgnstraint Logic Programming: Selected
Researchpages 253-268. MIT Press, Cambridge, Mass., 1993.

[68] J. Meseguer. Conditional rewriting logic as a unifieddelof concurrencyTheor.
Comput. Scj.96(1):73-155, 1992. ISSN 0304-3975. doi: http://dx @igj/10.1016/
0304-3975(92)90182-F.

[69] P. Meseguer. Interleaved Depth-First SearchPioceedings of the 15th Interna-
tional Joint Conference on Atrtificial Intelligencagoya, Japan, August 1997.

[70] L. Michel and P. Van Hentenryck. A Constraint-Based Witecture for Local
Search. InConference on Object-Oriented Programming Systems, Lageg) and
Applications, pages 101-110, Seattle, WA, USA, November 4-8 2002. ACM.

[71] L. Michel and P. Van Hentenryck. A Modeling Layer for Giraint-Programming
Libraries.INFORMS Journal on Computing004. in press.

[72] L. Michel and P. Van Hentenryck. Non-deterministic tmhfor hybrid search. In
CPAIOR’05: Proceedings of the 2nd International Conferenn the Integration of
Constraint Programming, Artificial Intelligence and Opéoms Research’pages
1-15, Prague, Czech Republic, 2005. Springer-Verlag.

[73] R. Mohrand G. Masini. Good old discrete relaxation8th European Conference
on Artificial Intelligence pages 651-656, Munich, Germany, 1988.

[74] J. Montelius. Exploiting Fine-grain Parallelism in Concurrent ConstrdilLan-
guages PhD thesis, SICS Swedish Institute of Computer Scienc@S3ox 1263,
S-164 28 Kista, Sweden, Apr. 1997. SICS Dissertation S@6es

[75] J. Montelius and K. A. M. Ali. An And/Or-parallel impleentation of AKL. New
Generation Computingl3—-14, Aug. 1995.

[76] Mozart Consortium. The Mozart programming system, d9%vailable from
www.mozart-0z.org

42

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

1. Constraints in Procedural and Concurrent Languages

L. Perron. Search procedures and parallelism in caimgtprogramming. Ir'CP
'99: Proceedings of the 5th International Conference onmEiples and Practice
of Constraint Programmingpages 346-360, London, UK, 1999. Springer-Verlag.
ISBN 3-540-66626-5.

J.-F. Puget. A C++ Implementation of CLP. Rtoceedings of SPICIS’94&inga-
pore, November 1994.

J.-F. Puget and M. Leconte. Beyond the Glass Box: Camgf as Objects. IRro-
ceedings of the International Symposium on Logic Programgr{iLPS-95) pages
513-527, Portland, OR, November 1995.

V. Saraswat.Concurrent Constraint ProgrammindIT Press, Cambridge, Mass.,
1993.

V. A. Saraswat.Concurrent Constraint ProgrammingdACM Doctoral Dissertation
Awards: Logic Programming. The MIT Press, Cambridge, MAAJ$993.

V. A. Saraswat and M. Rinard. Concurrent constraintgpamming. InPOPL
'90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposiurociples of
programming languagepages 232-245, New York, NY, USA, 1990. ACM Press.
ISBN 0-89791-343-4. doi: http://doi.acm.org/10.1145798.96733.

V. A. Saraswat, M. Rinard, and P. Panangaden. The séerfanihdations of con-
current constraint programming. ROPL '91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programminguages pages
333-352, New York, NY, USA, 1991. ACM Press. ISBN 0-89798B-8L doi:
http://doi.acm.org/10.1145/99583.99627.

T. Schrijvers. Analyses, optimizations and extensioficonstraint handling rules,
Ph.D. Thesis. Technical report, Department of Computeer#®a, K.U.Leuven,
Belgium, June 2005.

T. Schrijvers and T. Frihwirth. Optimal union-find inmstraint handling rules, pro-
gramming pearl.Theory and Practice of Logic Programming (TPL.B)1), 2006.
URL http://arxiv.org/abs/cs.PL/0501073

T. Schrijvers and T. Frihwirth. CHR Websma/ww cs.kuleuven.ac.be/
“dtai/projects/CHR/ , 2006.

T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and Tuhiwirth. Automatic
implication checking for chr constraints. &th International Workshop on Rule-
Based ProgrammingApr. 2005. URLhttp://www.cs.kuleuven.ac.be/
“dtai/publications/files/41606.pdf

T. Schrijvers, P. J. Stuckey, and G. J. Duck. Abstrat&rpretatlon for constraint
handling rules. IlPPDP '05: Proceedings of the 7th ACM SIGPLAN international
conference on Principles and practice of declarative pasgming pages 218-229,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. dutip://doi.acm.
0rg/10.1145/1069774.1069795.

T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and Tihwiith. Automatic Im-
plication Checking for CHR ConstraintElectronic Notes in Theoretical Computer
Science, Proceedings of 6th International Workshop on-Baksed Programming,
Nara, Japan, 2005147(1):93-111, January 2006.

C. Schulte. Programming deep concurrent constraimixdnators. In E. Pontelli and
V. S. Costa, editorsRractical Aspects of Declarative Languages, Second liatern
tional Workshop, PADL 20Q@olume 1753 of_ecture Notes in Computer Science
pages 215-229, Boston, MA, USA, Jan. 2000. Springer-Verlag

(91]

[92]

(93]

(94]

[95]
[96]
[97]
(98]

[99]

[100]

[101]

[102]
[103]
[104]

[105]

[106]

[107]

Thom Fiihwirth, Laurent Michel, Christian Schulte 43

C. Schulte. Parallel search made simple. In N. Beldice&V. Harvey, M. Henz,
F. Laburthe, E. Monfroy, T. Muller, L. Perron, and C. SceukditorsProceedings
of TRICS: Techniques foR Implementing Constraint prograngr8ystems, a post-
conference workshop of CP 20@@mber TRA9/00, pages 41-57, 55 Science Drive
2, Singapore 117599, Sept. 2000.

C. Schulte. Programming Constraint Servicesolume 2302 ofLecture Notes in
Artificial Intelligence Springer-Verlag, Berlin, Germany, 2002.

C. Schulte. Oz Explorer: A visual constraint programgiiool. In L. Naish, editor,
Proceedings of the Fourteenth International ConferenceLogic Programming
pages 286-300, Leuven, Belgium, July 1997. The MIT Press.

C. Schulte. Programming constraint inference engihess. Smolka, editorPro-
ceedings of the Third International Conference on Prinegphnd Practice of Con-
straint Programmingvolume 1330 ofLecture Notes in Computer Sciengages
519-533, Schlo3 Hagenberg, Linz, Austria, Oct. 1997. $eritVerlag.

E. Shapiro. The family of concurrent logic programmiagguagesACM Comput-
ing Surveys21(3):413-510, 1989.

E. Shapiro. The family of concurrent logic programmiagguagesACM Comput-
ing Surveys21(3):413-510, 1989.

G. A. Sidebottom. A language for optimizing constrginbpagation, Ph.D. Thesis.
Technical report, Simon Fraser University, Canada, 1993.

G. Smolka. The Oz programming model. In J. van Leeuweitpe Computer
Science Todayt NCS 1000, Berlin, Heidelberg, New York, 1995. Springer.

G. Smolka. A foundation for higher-order concurremstaint programming. In J.-
P. Jouannaud, editdkst International Conference on Constraints in Computzdio
Logics volume 845 ol ecture Notes in Computer Scienpages 50-72, Munchen,
Germany, Sept. 1994. Springer-Verlag.

G. Smolka. The Oz programming model. In J. van Leeuveelitor, Computer
Science Todaywolume 1000 of ecture Notes in Computer Scienpages 324—343.
Springer-Verlag, Berlin, 1995.

J. Sneyers, T. Schrijvers, and B. Demoen. The Comipuiat Power and Com-
plexity of Constraint Handling Rules. Becond Workshop on Constraint Handling
Rules, at ICLPO5Sitges, Spain, October 2005.

K. Ueda. Guarded horn clauses.Goncurrent Prologpages 140-156, Cambridge,
MA, USA, 1988. MIT Press. ISBN 0-262-19255-1.

P. Van Hentenryck. Constraint and Integer PrograngnmrOPL. Informs Journal
on Computing14(4):345-372, 2002.

P. Van HentenrycklThe OPL Optimization Programming Languadée MIT Press,
Cambridge, Mass., 1999.

P. Van Hentenryck and L. Michel. Nondeterministic @ohFor Hybrid Search. In
Proceedings of the Second International Conference omtiegitation of Al and OR
Techniques in Constraint Programming for Combinatorialti@ysation Problems
(CP-AI-OR’04) Prague, Czech Republic, 2005. Springer-Verlag.

P. Van Hentenryck and L. MicheConstraint-Based Local Searciihe MIT Press,
Cambridge, Mass., 2005.

P. Van Hentenryck and L. MicheNew Trends in Constraintshapter OPL Script:
Composing and Controlling Models. Lecture Note in Artifidiatelligence (LNAI
1865). Springer Verlag, 2000.

44 1. Constraints in Procedural and Concurrent Languages

[108] P.van Hentenryck, Y. Deville, and C.-M. Teng. A geretic-consistency algorithm
and its specializationdrtificial Intelligence 57:291-321, 1992.

[109] P.van Hentenryck, V. A. Saraswat, and Y. Deville. Qoaiat processing in cc(FD).
In A. Podelski, editorConstraint Programming: Basics and TrendsNCS 910.
Springer, 1995.

[110] P.Van Hentenryck, L. Michel, and Y. Devilldlumerica: a Modeling Language for
Global Optimization The MIT Press, Cambridge, Mass., 1997.

[111] P.Van Hentenryck, L. Michel, and F. Benhamou. NewiBanstraint programming
over nonlinear constraintsSci. Comput. Program30(1-2):83-118, 1998. ISSN
0167-6423. doi: http://dx.doi.org/10.1016/S0167-6487300008-7.

[112] P. Van Hentenryck, L. Perron, and J.-F. Puget. Searditarategies in OPLACM
Transactions on Computational Logit(2):1-36, October 2000.

[113] P. Van Hentenryck, L. Michel, F. Paulin, and J. Pug&todeling Languages in
Mathematical Optimizationchapter The OPL Studio Modeling System. Kluwer
Academic Publishers, 2003.

[114] P.Van Roy and S. HaridConcepts, Techniques, and Models of Computer Program-
ming The MIT Press, Cambridge, MA, USA, 2004.

[115] P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, andSRheidhauer. Mo-
bile objects in Distributed OZACM Transactions on Programming Languages and
Systemsl9(5):804-851, Sept. 1997.

[116] P. Van Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, &dSchulte. Logic pro-
gramming in the context of multiparadigm programming: trre®periencelTheory
and Practice of Logic Programmin@(6):715—-763, Nov. 2003.

[117] P. V. Weert, T. Schrijvers, and B. Demoen. The K.U.LemJCHR System. In
Second Workshop on Constraint Handling Rules, at ICLBges, Spain, October
2005.

[118] A.Wolf. Adaptive Constraint Handling with CHR in Java 7th International Con-
ference on Principles and Practice of Constraint Programgn{CP 2001) LNCS
2239. Springer, 2001.

Appendices

