
Handbook of Constraint Programming

Francesca Rossi, Peter van Beek, Toby Walsh

Elsevier

Contents

Contents v

I First part 1

1 Constraints in Procedural and Concurrent Languages 3
Thom Frühwirth, Laurent Michel, Christian Schulte

1.1 Procedural and Object-Oriented Languages 4
1.2 Concurrent Constraint Programming 15
1.3 Rule-Based Languages . 23
1.4 Challenges and Opportunities .. . 35
1.5 Conclusion . 36

Appendices 45

v

Part I

First part

Handbook of Constraint Programming 3
Francesca Rossi, Peter van Beek, Toby Walsh
c© 2006 Elsevier All rights reserved

Chapter 1

Constraints in Procedural and
Concurrent Languages

Thom Frühwirth, Laurent Michel, Christian Schulte

This chapter addresses the integration of constraints and search into programming lan-
guages from three different points of views. It first focuseson the use of constraints to
model combinatorial optimization problem and to easily implement search procedures,
then it considers the use of constraints for supporting concurrent computations and finally
turns to the use of constraints to enable open implementations of constraints solvers.

The idea of approaching hard combinatorial optimization problems through a combi-
nation of search and constraint solving appeared first in logic programming. The genesis
and growth of constraint programming within logic programming is not surprising as it
catered to two fundamental needs: a declarative style and non-determinism.

Despite the continued support of logic programming for constraint programmers, re-
search efforts were initiated to import constraint technologies into other paradigms (in par-
ticular procedural and object-oriented paradigms) to cater to a broader audience and lever-
age constraint-based techniques in novel areas. The first motivation behind a transition is a
desire to ease the adoption of a successful technology. Moving constraints to a platform and
paradigm widely accepted would facilitate their adoption within existing software systems
by reducing resistance to the introduction of technologiesand tools perceived as radically
different. A second motivation is that constraints are versatile abstractions equally well
suited for modeling and supporting concurrency. In particular, concurrent computation
can be seen as agents that communicate and coordinate through a shared constraint store.
Third, constraint-based techniques can leverage the semantics of a target application do-
main to design specialized constraints or search procedures that are more effective than
off-the-shelves constraints. The ability, for domain specialists, toeasilycreate, customize
and extend both constraints solvers and search is thereforea necessity for adaptability.

The continued success and growth of constraints depends on the availability of flexible,
extensible, versatile and easy to use solvers. It is contingent on retaining performance that
rival or exceed the ad-hoc methods they supplant. Therefore, efficiency remains a key
objective, often at odds with flexibility and ease of use.

4 1. Constraints in Procedural and Concurrent Languages

Meeting these broad objectives, namely ubiquity, flexibility, versatility and efficiency
within traditional paradigms that lack support for declarative programming creates unique
challenges. First, a flexible tool must support mechanisms to let users define new con-
straints either through combinators or from first principles. The mechanisms should focus
on the specification ofwhat each constraint computes (its declarative semantics) rather
thanhow it computes it (operational semantics) to retain simplicity without sacrificing ef-
ficiency. Second, search procedures directly supported by language abstractions, i.e., non-
determinism in logic programming, must be available in traditional languages and remain
under end-user control. Also, search procedures should retain their declarative nature and
style to preserve simplicity and appeal. Finally, a constraint tool must bridge the semantic
gaps that exists between a high-level model, its implementation and the native abstractions
of the host language to preserve clarity and simplicity while offering a natural embedding
in the target language that does not force its users to becomelogic programming experts.

Many answers to these challenges have been offered and strike different trade-offs.
Each answer can be characterized by features that address a subset of the objectives. Some
constraint tools favored ease of adoption and efficiency over preserving declarativeness and
flexibility. Others focused on the creation of newhybrid, multi-paradigm languages and
platforms that preserved declarative constructions, adopt constraints and concurrency as
first class citizens in the design, and preserve efficiency with a lesser emphasis on targeting
existing platforms. A third option focusing on flexibility and declarative constructions
brought rule-based systems where new solvers over entirelynew domains can be easily
constructed, extended, modified and composed.

This chapter provides insights into the strengths, weaknesses and capabilities of sys-
tems that fall in one of these three classes: toolkits for procedural and object-oriented
languages, hybrid systems and rule-based systems.

1.1 Procedural and Object-Oriented Languages

Over the last decade, constraint programming tools have progressively found their way into
mainstream paradigms and languages, most notably C++. Thistransformation, however,
is not obvious and creates many challenges. To understand the nature of the difficulty, it
is useful to step back and consider the initial motivations.To apprehend the interactions
between constraint toolkits and their procedural or object-oriented host languages, it is
useful to separate two key components of constraint programming, i.e., modeling with
constraintsandprogramming the search. Each component brings its own challenges that
vary with the nature of the host language. Section 1.1.1 reviews the design objectives
and inherent challenges before turning to the issue of constraint-based modeling in section
1.1.2, and search programming in section 1.1.3. Finally, section 1.1.4 discusses pragmatic
issues that permeate throughout all integration attempts.

1.1.1 Design Objectives

Modern constraint-based languages strive to simplify the task of writing models that are
readable, flexible and easy to maintain. This is naturally challenging as programs for
complex problems often requires ingenuity on the part of thedeveloper to express multiple
orthogonal concerns and encode them efficiently within a language that imposes its own

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 5

limitations. Logic programming is the cradle of constraintprogramming for good reasons
as it offers two important supports: a declarative framework on which to build constraints
as generalizations of unification; and non-determinism to support search procedures, and,
in particular, depth-first search.

The Challenges

Nonetheless, logic programming imposes a few limitations.First, it does not lend itself
to the efficient implementation of extensible toolkits. Early on, efficiency considerations
as well as simplicity pushed logic programming systems to implement all constraints as
“built-ins” of the language giving rise to closedblack-boxsolvers. Second, it does not eas-
ily accommodate search procedures that deviate from the depth-first strategy. It therefore
raises significant challenges for potential users of strategies like BFS, IDFS [69] or LDS
[50] to name a few. Third, its target audience comprises almost exclusively computer-savvy
programmers, who feel comfortable writing recursive predicates for tasks as mundane as
generating constraints and constraint expressions. This relative difficulty does not appeal to
a much larger group of potential users of the technology: themathematical programming
community. Mathematical solvers (LP, IP, MIP [55, 46]) and their modeling languages
[34, 26, 103] indeed offer facilities that focus on modelingand, to a large extent, relieve
their users from most (all) programming efforts.

The past two decades saw improvements on one or more of these fronts. The next
paragraphs briefly review two trendsrelated toprocedural and object-oriented languages.

Libraries and glass-box extensibility. Ilog Solver [57] is a C++ library implementing
a finite domain solver and is thus a natural example of an object-oriented embodiment.
The embedding of a solver within a C++ library offers opportunities to address the ex-
tensibility issues as both decision variables and constraints can be represented with object
hierarchies that can be refined and extended. However the move to C++, a language that
does not support non-deterministic computation, has increased the challenges one faces
to write, debug and maintain search procedures. Note that CHR [39] supports glass-box
extensibility through user-definable rules and is the subject of Section 1.3.

From programming to modeling. Numerica [110] is a modeling language for highly
non-linear global optimization. It was designed to addressthe third limitation and make
the technology of Newton [111] (a constraint logic programming language) available to
a much broader audience of mathematical programmers. The objective behind Numerica
was to improve the modeling language to a point where executable models were expressed
at the level of abstraction of their formal counterparts typically found in scientific papers.
The approach was further broadened with novel modeling languages for finite domain
solvers supporting not only the statement of constraints but also the specification of ad-
vanced search procedures and strategies. OPL [104, 103, 113] embodies those ideas in a
rich declarative language while OplScript [107] implements a procedural language for the
composition of multiple OPL models. Note that OPL is an interpreted language whose vir-
tual machine is implemented in terms of ILOG SOLVER constructions. The virtual machine
itself is non trivial given the semantic gap between OPL and ILOG SOLVER.

At the same time, a finite domain solver was implemented in LAURE [21] and then
moved to CLAIRE [62], a language compiled to C++ that simplified LAURE’s construc-

6 1. Constraints in Procedural and Concurrent Languages

tions to make it accessible to a broader class of potential users. CLAIRE was later en-
hanced with SALSA [62], a declarative and algebraic extension that focused on the im-
plementation of search procedures.

1.1.2 Constraint Modeling

Constraint modeling raises two concerns: the ease of use andexpressiveness of the toolkit
and its underlying extensibility. Each concern is intrinsically linked to the host language
and has a direct impact on potential end users. This section discusses each one in turn.

Ease of Use and Expressiveness

The constraint modeling task within a procedural or an object-oriented language presents
interesting challenges. It is desirable to obtain adeclarativereading of ahigh-levelmodel
statement that exploits the facilities of the host language(e.g., static and strong typing
in C++). The difficulty is to leverage the language to simplify programs and raise their
modeling profile to a sufficient level of abstraction. Note that modeling languages (e.g.,
OPL) tightly couple the toolkit and the language to obtain the finest level of integration that
preserves a complete declarative reading of models despitean apparent procedural style.
Indeed, OPL looks procedural but is actually declarative as it is side effect free (i.e., it has
no destructive assignments).

Aggregation and combinators. Consider the classic magic series puzzle. The problem
consists of finding a sequence of numbersS = (s0, s1, · · · , sn−1) such thatsi represents
the number of occurrences ofi within the sequenceS. For instance,(6, 2, 1, 0, 0, 0, 1, 0, 0, 0)
is a sequence of length10 with 6 occurrences of0, 2 occurrences of1, 1 occurrence of2
and finally1 occurrence of6. Clearly, any solution must satisfy the following property

n−1∑

k=0

(sk = i) = si ∀i ∈ {0, 1, 2, · · · , n− 1}

To solve the problem with a constraint programming toolkit,it is first necessary to state
then constraints shown above. Each constraint is a linear combination of the truth value
(interpreted as0 or 1) of elementary constraints of the formsk = i. The difficulty is
therefore to construct a toolkit with automatic reificationof constraints and with seamless
aggregation primitives, i.e., summations, products, conjunctions or disjunctions to name a
few that facilitate the combination of elementary primitives.

Figure 1.1 illustrates the differences between the OPL and ILOG SOLVER statements for
the magic series problem. The ILOG SOLVER model constructs an expression iteratively
to build the cardinality constraint for each possible value. It also relies on convenience
functions likeIloScalProd to create the linear redundant constraint. The OPL model
is comparatively simpler as the mathematical statement maps directly to the model. It is
worth noting that the level of abstraction shown by the OPL model is achievable within
C++ libraries with the same level of typing safety as demonstrated in [71]. Finally, both
systems implement constraint combinators (e.g., cardinality) and offer global constraints
that capture common substructures, simplify some of the modeling effort, and can exploit
the semantics of constraints for better performance.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 7

I LOG SOLVER

1. int main(int argc,char * argv[]) {
2. IloEnv env;int n;cin>>n;
3. try {
4. IloModel m(env);
5. IloIntVarArray s(env,n,0,n);
6. IloIntArray c(env,n);
7. for(int i=0;i<n;i++) {
8. IlcIntExp e = s[0] == i;
9. for(int k=1;k<n;k++)
10. e += s[k] == i;
11. m.add(s[i] == e);
12. }
13. for(int i=0;i<n;i++) c[i]=i;
14. m.add(IloScalProd(s,c) == n);
15. solve(m,env,vars);
16. } catch(IloException& ex) ...
17. }

OPL

1. int n<<"Number of Variables:";
2. range Dom 0..n-1;
3. var Range s[Dom];
4. solve {
5. forall(i in Dom)
6. s[i] = sum(j in Dom) (s[j]=i);
7. sum(j in Dom) s[j] * j = n;
8. };

Figure 1.1: The Magic Series statements.

Typing. A seamless toolkit integration depends on the adherence to the precepts and
conventions of the host language. For instance, C++ programmers often expect static and
strong typing for their programs and rely on the C++ compilerto catch mistakes through
type checking. From a modeling point of view the ability to rely on types and, in particular,
on finite domain variables defined over domains of specific types is instrumental is writing
clean and simple models. Consider the stable marriage problem. The problem is to pair
up men and women such that the pairings form marriages and satisfy stability constraints
based on the preferences of all individuals. A marriage betweenm andw is stable if and
only if wheneverm prefers a womank over his wifew, k also happens to prefer her own
husband overm so thatm andw have no reason to part. The OPL model is shown in Figure
1.2. The fragmenthusband[wife[m]] = m illustrates that the type of values in the
domain ofwife[m] is an enumerated typeWomenthat happens to be equal to the type of
the index for the arrayhusband . Similarly, the type of each entry of the husband array is
Menand therefore equal to the type of the right hand side of the equality constraint. To the
modeler, the result is a program that can be statically type checked.

Matrices. From an expressiveness point of view, the ability to index arrays with finite
domain variables is invaluable to write concise and elegantmodels. It is equally useful on
matrices, especially when its absence implies a non trivialreformulation effort to derive
for an expressionm[x, y] a tight reformulation based on an element constraint. The refor-
mulation introduces a ternary relationR(i, j, k) = {〈i, j, k〉 | i ∈ D(x) ∧ j ∈ D(y) ∧ k ∈
0..|D(x)| · |D(y)| − 1} that, for each pair of indicesi ∈ D(x) andj ∈ D(y), maps the
entrym[i, j] to its locationk in an arraya. Then,m[x, y] can be rewritten asa[z] with the
addition of the constraint(x, y, z) ∈ R wherez is a fresh variable.

Note that if the language supports a rich parametric type system (e.g., C++), it is pos-
sible to write templated libraries that offer both automatic reformulations and static/strong
typing as shown in [71].

8 1. Constraints in Procedural and Concurrent Languages

1. enum Women ...;
2. enum Men ...;
3. int rankW[Women,Men] = ...
4. int rankM[Men,Women] = ...
5. var Women wife[Men];
6. var Men husband[Women];
7. solve {
8. forall(m in Men) husband[wife[m]] = m;
9. forall(w in Women) wife[husband[w]] = w;
10. forall(m in Men & o in Women)
11. rankM[m,o] < rankM[m,wife[m]] => rankW[o,husband[o]] < rankW[o,m];
12. forall(w in Women & o in Men)
13. rankW[w,o] < rankW[w,husband[w]] => rankM[o,wife[o]] < rankM[o,w];
14. }

Figure 1.2: The OPL model for Stable Marriage.

Extensibility

Extensibility is crucial to the success of toolkits and libraries alike. It affects them in at
least two respects. First, the toolkit or library itself should be extensible and support the
addition of user-defined constraints and user-defined search procedures. This requirement
is vital to easily develop domain specific or application specific constraints and blend them
seamlessly with other pre-defined constraints. Given that constraints are compositional and
implemented in terms of filtering algorithms that task should be easily handled. Second,
it is often desirable to embed the entire constraint programwithin a larger application to
facilitate its deployment.

1. class MyEqual : public IlcConstraintI {
2. IlcIntVar x, y;
3. public:
4. MyEqual(IloSolver s,IlcIntVar x,IlcIntVar y)
5. : IlcConstraintI(s), x(x), y(y) {}
6. void post() {
7. x.whenValue(equalDemon(getSolver(),this, x));
8. y.whenValue(equalDemon(getSolver(),this, y));
9. }
10. void demon(IlcIntVar x) {
11. IlcIntVar other = (x == x) ? y : x;
12. other.setMin(x.getMin());
13. other.setMax(x.getMax());
14. }
15. };
16. ILCCTDEMON1(equalDemon,MyEqual,demon,IlcIntVar,v ar);

Figure 1.3: ILOG SOLVER custom constraint.

Solver extensibility. Object orientation is a paradigm for writing extensible software
through a combination of polymorphism, inheritance, and delegation. In the mid 90s, the
first version of ILOG SOLVER [78, 79] was developed to deliver an extensible C++ library.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 9

The extensibility of its modeling component stems from a reliance on abstract classes
(interfaces) for constraints to specify the API that must besupported to react to events
produced by variables. For instance an ILOG SOLVER integer variable can expose notifi-
cations for three eventswhenDomain, whenRange, whenValue to report a change
in the domain, the bounds, or the loss of a value. A constraintsubscribes to notifications
from specific variables to respond with itsdemon method. Figure 1.3 illustrates a user-
defined equality constraint implementing bound consistency. Itspost method creates two
demons and attaches them to the variables. Both demons are implemented with a macro
(last line) that delegates the event back to the constraint.Thedemon method propagates
the constraint by updating the bound of the other variable. The extension mechanism heav-
ily depends on the specification of afiltering algorithmrather than a set ofindexicals(e.g.,
clp(FD) [28]) or inference rules(e.g., CHR [39]) and therefore follows a far more pro-
cedural mind-set that requires a fair level of understanding to identify relevant events and
variables and produce a filtering procedure.

Solver embedding. Extensibility also matters for the deployment of constraint-based
technology. In this respect, the integration of a CP toolkitwithin a mainstream object-
oriented language is a clear advantage as models can easily be encapsulated within reusable
classes linked within larger applications. Modeling languages present an additional diffi-
culty but can nonetheless be integrated through component technology (COM or CORBA)
[56] or even as web-services as illustrated by the OSiL efforts [33].

1.1.3 Programming the Search

The second component of a constraint programming model is concerned with the search.
The search usually addresses two orthogonal concerns. First, what is the topology of the
search tree that is to be explored. Second,howdoes one select the next node of the search
tree to be explored. Or, given a search tree, what is the orderused to visit its nodes? Both
can be thought of as declarative specifications but are oftenmixed to accommodate the
implementation language. The integration of the two elements in procedural and object-
oriented languages is particularly challenging, given thelack of language abstractions to
manipulate the search control flow.

Search Tree Specification

OPL is a classic example of declarative specification of the search tree. It supports state-
ments that specify the order in which variables and values must be considered. OPL pro-
vides default strategies and does not require the user to implement his own. However, as
problems become more complex, it is critical to provide thisability. Figure 1.4 illustrates
on the left-hand side the naive formulation for then−queens model. The constraints are
stated for all pairs of indicesi andj in Domsuch thati < j. The right-hand side shows
the search procedure. Lines 10-14 specify the search tree with a variable and a value or-
dering . It simply scans the variables in the order indicatedby Dom(ascending) and, for
each variablei, it non-deterministically chooses a valuesv from Domand attempts to im-
pose the additional constraintqueen[i] = v . On failure, the non-deterministic choice
is reconsidered and the next value fromDomis selected.

10 1. Constraints in Procedural and Concurrent Languages

1. int n = ...; range Dom 1..n;
2. var Dom queen[Dom];
3. solve {
4. forall(ordered i,j in Dom) {
5. queen[i] <> queen[j];
6. queen[i]+i <> queen[j]+j;
7. queen[i]-i <> queen[j]-j;
8. }
9. }

10. search {
11. forall(i in Dom)
12. tryall(v in Dom)
13. queen[i] = v;
14. }

Figure 1.4: The OPL queens model.

Implementing a search facility in an object-oriented language like C++ or Java is hard
for a simple reason: the underlying language has no support for non-determinism and
therefore no control abstractions for making choices liketryall . To date, all libraries
have used some form of embeddedgoal interpreterwhose purpose is to evaluate anand-or
tree data structure reminiscent of logic programming predicates where non-determinism
is expressed with or-nodes and conjunction with and-nodes.The approach was used in
ILOG SOLVER and more recently in CHOCO, a Java-based toolkit. Figure 1.5 shows a
goal-based implementation of then−queens search tree. ILOG SOLVER also provides pre-
defined search tree specifications for the often-used methods.

1. ILCGOAL4(Forall,IloIntVarArray,x,IloInt,i,IloInt, low,IloInt,up) {
2. if (i <= up)
3. return IlcAnd(Tryall(getSolver(),x[i],low,up),
4. Forall(getSolver(),x,i+1,low,up));
5. else return IlcGoalTrue(getSolver());
6. }
7. ILCGOAL3(Tryall,IloIntVar,x,IloInt,v,IloInt up) {
8. if (x.isBound()) return 0;
9. else if (v > up) fail();
10. else return IlcOr(x=v,IlcAnd(x!=v,Tryall(getSolver (),x,v+1)));
11. }
12. ...
13. solver.solve(Forall(queens,1,1,n));

Figure 1.5: An ILOG SOLVER implementation of a search tree specification.

Lines 1 through 6 define a goal that performs the same variableselection as line 11
of the OPL model. Lines 7-11 define a goal to try all the possible values for the chosen
variable and correspond to lines 12 and 13 of the OPL model. The two macrosILCGOAL4
andILCGOAL3 define two classes (ForallI andTryallI) together with convenience
functions (Forall andTryall) to instantiate them1. The block that follows each macro
is the body of the goal whose purpose is to construct the And-Or tree on the fly.

Observe that the implementation of the search procedure is now broken down into
several small elements that are not textually close. A few observation are in order

• A goal-based solution relies on an embedded goal interpreter and is therefore in-
compatible with C++ development tools like a debugger. For instance, tracing the

1Observe that the code in Figure 1.5 always uses the convenience functions and never directly refer to the
underlying implementation class

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 11

execution is hard as there is no access to the state of the interpreter (e.g., current in-
struction, parameters’ value, etc..). To compensate, recent versions of ILOG SOLVER

provide debugging support through instrumented librariesto inspect and visualize
the state of the search tree.

• Every single operation that must occur during the search (e.g., printing, statistic
gathering, visualizations) must be wrapped up in user-defined goals that are inserted
into the search tree description.

• It is non-trivial to modularize entire search procedures inactual C++ functions or
classesto reuse search fragments. Again, the only option is to writea function or
class that willinline a goal data structure representing the search procedure to insert.
Note that a deep copy of the entire goal (the entire function)is required each time to
simulate the parameter passing as there is no call mechanismper se.

• The body of a goal’s implementation is both delicate and subtle as there is a temporal
disconnection between the execution of its various components. For instance, one
may be tempted to optimize theForall goal shown in Figure 1.5 to eliminate the
creation of a fresh goal instance for each recursive goal andfavor a purely recursive
solution as in

ILCGOAL4(Forall,IloIntVarArray,x,IloInt,i,IloInt,lo w,IloInt,up) {
if (i <= up) {

IloInt i0 = i; i = i + 1;
return IlcAnd(Tryall(getSolver(),x[i0],low,up),this) ;

} else return IlcGoalTrue(getSolver());
}

However, this would be wrong. Indeed,i is an instance variable of the goal that is
merely re-inserting itself back into the query resulting inmakingi = i + 1 visible
to the next invocation. However, on backtracki is not restored to its original value.
Consequently, one must compensate wit areversibleinteger (IlcRevInt). Yet,
this is insufficient as the modification (i = i + 1) should occurinsidetheTryall
choice point and it is thus necessary to add a goal to increment i as in

ILCGOAL4(Forall,IloIntVarArray,x,IlcRevInt&,i,IloIn t,low,IloInt,up) {
if (i <= up) {

return IlcAnd(IlcAnd(Tryall(getSolver(),x[i],low,up) ,
IncrementIt(i)),this);

} else return IlcGoalTrue(getSolver());
}

Finally, note how the arguments to goal instantiations are evaluated when the parent
goal executes,not when the goal itself is about to execute. For instance, a goalthat
follows IncrementIt(i) should not expecti to be incremented yet.

Standard search procedures are not limited to static variable/value ordering but often rely
on dynamic heuristics in order to select the next variable/value to branch on. Such heuris-
tics can be implemented both within modeling languages and libraries.

Variable selection heuristic. In OPL, the variable selection heuristic is specified with
a clause in theforall statement that associates with the selection a measure of how
desirable the choice is. For instance, the fragment

12 1. Constraints in Procedural and Concurrent Languages

forall(i in Dom ordered by increasing dsize(queens[i])) .. .

indicates that the queens should be tried in increasing order of domain size. Note that
OPL supports more advanced criteria based on lexicographic ordering of tuple-values to
automate a useful but tedious task. For instance, the fragment

forall(i in Dom ordered by increasing <dsize(queens[i]),a bs(i - n/2)>)
tryall(v in Dom)

queen[i] = v;

implements a middle variable selection heuristic that considers first the variable with the
smallest domain and breaks ties by choosing the variable closest to the middle of the board.

ILOG SOLVER is equally capable at the expense of a few small additions to user-defined
goals. Indeed, the key change is that the index of the next variable to consider is no longer
a static expression (thei of theForall goal in Figure 1.5), but is instead computed at the
beginning of the goal. Note that the selection is re-done at each invocation of theForall
and can skip over bound variables.

Value selection heuristic. OPL provides an ordering clause for itstryall that matches
the variable ordering clause of theforall both in syntax and semantics. For instance the
statement

tryall(v in Domain ordered by increasing abs(v - n/2)) ...

would consider the values fromDomain in order of increasing distance from the middle of
the board. ILOG SOLVER goals for the value selection operate similarly with one caveat:
The value selection goal must track (with an additional datastructure) the already tried
values to focus on only the remaining values, a task hidden byOPL’s implementation.

Control flow primitives. For the search, the most significant difference between a mod-
eling language and a library is, perhaps, the availability of traditional control statements.
As pointed out earlier, ILOG SOLVER’s level of abstraction for programming the search is
the underlying and-or tree. OPL, provides traditional control primitives such as iterations
(while loops), selections (select), local bindings (let expressions) and branchings
(if-then-else). Consider for instance the simple OPL fragment shown in Figure 1.6
which, upon failure, adds the negation of the failed constraint. The distance between a
goal-based specification and a high-level procedure is significant.

1. search {
2. forall(in in Dom)
3. while (not bound(queens[i])) do
4. let v = dmin(queens[i]) in
5. try
6. queens[i] = v | queens[i] <> v
7. endtry;
8. }

Figure 1.6: Traditional Control Abstractions Example in OPL.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 13

Exploration Strategies

The specification of the search tree was concerned withwhat was going to be explored.
Exploration strategies are concerned withhow the dynamic search tree is going to be ex-
plored. Many strategies are possible, ranging from the standard depth first search to com-
plex combination of iterated limited searches. Even thoughan exploration strategy sounds
like a very algorithmic endeavor, it is both possible and desirable to produce a declarative
specification and let the search engine implement it automatically. This is especially true
in the context of a procedural (or object-oriented) language as a procedural specification
would force programmers to explicitly address the issue of non-determinism (and its im-
plementation). This section briefly reviews two approachesbased on OPL [112] (or ILOG

SOLVER [77]) and COMET [72].

OPL and ILOG SOLVER strategy specifications. The key ingredient to specify an ex-
ploration strategy is to provide a search node management policy. Each time a choice is
considered during the search, it creates search nodes corresponding to the various alterna-
tives. Once created, the exploration mustselectthe node to explore next andpostponethe
less attractive ones. Theevaluationof a node’s attractiveness is, of course, strategy depen-
dent. But once the attractiveness function and the postponement rules are encaspulated in a
strategy object, the exploration algorithm becomes completely generic with respect to the
strategy.

1.SearchStrategy dfs() {
2. evaluated to - OplSystem.getDepth();
3. postponed when OplSystem.getEvaluation()>OplSystem. getBestEvaluation();
4. }

5.applyStrategy dfs()
6. forall(i in Dom)
7. tryall(v in Dom)
8. queen[i] = v;

Figure 1.7: Exploration Strategy in OPL.

Consider the statement in Figure 1.7. It first defines a DFS strategy and uses it to
explore the search tree. The specification contains two elements: the evaluation function
that defines the node’s attractiveness and the postponementrule that states when to delay.
Each time the exploration produces a node, it is subjected tothe strategy to evaluate its
attractiveness and decide its fate. To obtain DFS, it suffices to use the opposite of the
node’s depth as its attractiveness and to postpone a node whenever it is shallower than
the “best node” available in the queue. The system object (OplSystem gives access
to enough statistic about the depth, right depth, number of failures, etc..) to implement
advanced strategies like LDS or IDS to name a few. When the strategy is expressed as a
node management policy, one can implement the same mechanism in a library.

COMET strategy specifications. COMET [70] is an object-oriented programming lan-
guage for constraint-based local search offering control abstractions for non-determinism [105].

14 1. Constraints in Procedural and Concurrent Languages

These abstractions are equally suitable for local search methods (low overhead) and com-
plete methods.

COMET uses first-class continuations to represent and manipulatethe state of the pro-
gram’s control flow. COMET’s tryall is semantically equivalent to OPL’s tryall .
Search strategies can be expressed via policies for the management of the captured contin-
uations and embedded inSearch Controllers that parameterize the search.

1. DFS sc();
2. exploreall<sc> {
3. forall(i in Dom) {
4. tryall<sc>(v in Dom) {
5. queen[i] = v;
6. }
7. }
8. }

1. class DFS implements SearchController {
2. Stack s; Continuation exit;
3. DFS() { s = new Stack(); }
4. void start(Continuation c) { exit = c; }
5. void exit() { call(exit); }
6. void addChoice(Continuation c) {
7. s.push(c);
8. }
9. void fail() {
10. if (s.empty()) exit();
11. else call(cont.pop());
12. }
13. }

Figure 1.8: Exploration strategies with COMET.

The code fragment on the left hand side of Figure 1.8 is a COMET procedure whose
semantics are identical to the OPL statement from Figure 1.7. The key difference is the
search controller (sc) of type DFS whose implementation is shown on the right hand
side. The statements parameterized bysc (exploreall andtryall) delegate to the
search controller the management of the continuations thatrepresent search nodes. To
derive DFS, it suffices to store in a stack the continuations produced by the branches in the
tryall . When a failure occurs (e.g., at an inconsistent node), the fail method transfers
the control to the popped continuation. If there is none left, the execution resumes after the
exploreall thanks to a call to theexit continuation.

COMET completely decouples the node management policy from the exploration algo-
rithm, allows both a declarative and an operational readingof the search specification and
provides a representation of the control flow’s state that isindependent of the underlying
computation model.

1.1.4 Pragmatics

The integration of a constraint programming toolkit withina purely procedural or object-
oriented language presents challenges for the modeling andimplementation of the search.

Constraint Modeling

Constraint modeling is relatively easyif the host language supports first-class expressions
or syntactic sugar to simulate them. If operators cannot be overloaded (like in Java), the
expression of arithmetic and set-based constraint is heavier. See Figure 1.9 for a Java
fragment setting up the queens problem in the CHOCO solver.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 15

1. Problem p = new Problem();
2. IntVar[] queens = new IntVar[n];
3. for(int i = 0; i < n; i++)
4. queens[i] = p.makeEnumIntVar("queen" + i, 1, n);
5. for (int i=0; i<n; i++) {
6. for (int j=i+1; j<n; j++) {
7. p.post(p.neq(queens[i], queens[j]));
8. p.post(p.neq(queens[i],p.plus(queens[j], j-i)));
9. p.post(p.neq(queens[i],p.minus(queens[j], j-i)));
10. }
11. }

Figure 1.9: Then−queens problem in CHOCO.

Search Implementation

The lack of support for non-determinism is far more disruptive. One extreme solution
is to close the specification of the search and only offer pre-defined procedures. The clear
advantage is an implementation of non-determinism that canbe specialized to deliver good
performance.

A second option, used with ILOG SOLVER [57], is to embed in the library a goal ori-
ented interpreter. With a carefully crafted API addressingthe issues listed below, it is
possible to open the interface to support user-defined extensions.

Control transfer. The interface between the goal-based search and the rest of the pro-
gram must be as seamless as possible.

Mixed memory models. Multiple memory models must coexist peacefully (traditional
C Heap, logical variables Heap, traditional execution stack, search stack or trail to name a
few) to avoid leaks or dangling pointer issues.

Debugging support. A significant part of the program runs inside an embedded inter-
preter which renders the native debugging facilities virtually useless. This must be mit-
igated with the inclusion of dedicated and orthogonal debugging tools to instrument the
goal interpreter.

Control abstractions. The native control abstraction tend to be ineffective to express
search procedures and underscore the importance of hiding or isolating the semantic sub-
tleties associated with the goal interpreter. Note that thelevel of abstraction of search pro-
cedures can be lifted closer to OPL as demonstrated in [71]. However, this implementation
retains a goal-like interpreter that also fails to integrate with existing tools.

1.2 Concurrent Constraint Programming

At the end of the 1980s, concurrent constraint logic programming (CCLP) integrated ideas
from concurrent logic programming [96] and constraint logic programming (CLP):

• Maher [64] proposed the ALPS class of committed-choice languages.

16 1. Constraints in Procedural and Concurrent Languages

• The ambitious Japanese Fifth-Generation Computing Project relied on a concurrent
logic language based on Ueda’s GHC [102].

• The seminal work of Saraswat [81] introduced theask-and-tellmetaphor for con-
straint operations and the concurrent constraints (CC) language framework that per-
mits both don’t-care and don’t-know non-determinism.

• Smolka proposed a concurrent programming model Oz that subsumes functional and
object-oriented programming [100].

Implemented concurrent constraint logic programming languages include AKL, CIAO,
CHR, and Mozart (as an implementation of Oz).

1.2.1 Design Objectives

Processes are the main notion in concurrent and distributedprogramming. They are build-
ing blocks ofdistributed systems, where data and computations are physically distributed
over a network of computers.Processesare programs that are executed concurrently and
that can interact with each other. Processes can either execute local actions orcommunicate
andsynchronizeby sending and receiving messages. The communicating processes build
aprocess networkwhich can change dynamically. For concurrency it does not matter if the
processes are executed physically in parallel or if they areinterleaved sequentially. Pro-
cesses can intentionally be non-terminating. Consider an operating system which should
keep on running or a monitoring and control program which continuously processes in-
coming measurements and periodically returns intermediate results or raises an alarm.

In CCLP, concurrently executing processes communicate viaa shared constraint store.
The processes are defined by predicates and are calledagents, because they are defined by
logical rules and often implement some kind of artificially intelligent behavior. Constraints
take the role of (partial) messages and variables take the role of communication channels.
Usually, communication is asynchronous. Running processes are CCLP goals that place
and check constraints on shared variables.

This communication mechanism is based onask-and-tellof constraints that reside in
the common constraint store.Tell refers to imposing a constraint (as in CLP). Ask is
an inquiry whether a constraint already holds.Ask is realized by anentailmenttest. It
checks whether a constraint is implied by the current constraint store. Ask and tell can be
seen as generalizations of read and write from values to constraints. The ask operation is a
consumerof constraints (even though the constraint will not be removed), the tell operation
is aproducerof constraints.

For a process, decisions that have been communicated to the outside and actions that
have affected the environment cannot be undone anymore.Don’t-know non-determinism
(Search) must be encapsulated in this context. Also, failure should be avoided. Failure of
a goal atom (i.e., a single process) always entails the failure of the entire computation (i.e.,
all participating processes). In applications such as operating or monitoring systems this
would be fatal.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 17

1.2.2 The CC Language Framework

We concentrate on the committed-choice fragment of Saraswat’s CC language frame-
work [82, 83, 80]. The abstract syntax of CC is given by the following EBNF grammar:

Declarations D ::= p(t̃)← A | D, D

Agents A ::= true | tell(c) |
∑n

i=1
ask(ci)→ Ai | A‖A | ∃xp(t̃) | p(t̃)

where t̃ stands for a sequence of terms,x for a variable, and wherec and theci’s are
constraints. Instead of using existential quantification (∃), projection is usually implicit in
implemented CC languages by using local variables as in CLP.

Each predicate symbolp is defined by exactly one declaration. ACC programP is a
finite set of declarations.

The operational model of CC is described by a transition system. States are pairs
consisting of agents and the common constraint store. The transition relation is given by
the transition rules in Fig. 1.10.

Tell 〈tell(c), d〉 → 〈true, c ∧ d〉

Ask 〈
∑n

i=1
ask(ci)→ Ai, d〉 → 〈Aj , d〉 if CT |= d→ cj (1≤j≤n)

Composition 〈A, c〉 → 〈A′, c′〉
〈(A ‖ B), c〉 → 〈(A′ ‖ B), c′〉
〈(B ‖ A), c〉 → 〈(B ‖ A′), c′〉

Unfold 〈p(t̃), c〉 → 〈A ‖ tell(t̃ = s̃), c〉 if (p(s̃)← A) in programP

Figure 1.10: CC transition rules

Tell tell(c) adds the constraintc to the common constraint store. The constrainttrue
always holds.

Ask Don’t care non-determinismbetween choices is expressed as
∑n

i=1
ask(ci) → Ai.

One nondeterministically chooses oneci which is implied by the current constraint
stored, and continues computation withAi.

Composition The‖ operator enables parallel composition of agents. Logically, it is inter-
preted as conjunction.

Unfold Unfolding replaces an agentp(t̃) by its definition according to its declaration.

A finite CC derivation (computation) can be successful, failed or deadlocked depending
on its final state. If the derivation ends in a state with unsatisfiable constraints it is called
failed. Otherwise, the constraints of the final state are satisfiable. If its agents have reduced
to true, then it issuccessful, else it isdeadlocked(i.e., the first component contains at least
one suspended agent). Deadlocks come with concurrency. They are usually considered
programming errors or indicate a lack of sufficient information to continue computation.

18 1. Constraints in Procedural and Concurrent Languages

1.2.3 Oz and AKL as Concurrent Constraint Programming Languages

The concurrent constraint programming model establishes aclean and simple model for
synchronizing concurrent computations based on constraints. On the other hand, CLP
(see Chapter 12, “Constraint Logic Programming”) providessupport for modeling and
solving combinatorial problems based on constraints. The obvious idea to integrate both
models to yield a single and uniform model for concurrent andparallel programming and
problem solving however has proven itself as challenging. Besides merging concurrency
and problem solving aspects, the CCP model only captures synchronization based on a
single shared constraint store. Other common aspects such as controlling the amount of
concurrency in program execution and exchanging messages between concurrently running
computations are not dealt with.

These challenges and issues have been one main motivation for the development of
AKL and Oz as uniform programming models taking inspirations from both CCP and CLP.
The development of AKL started before that of Oz, and naturally Oz has been inspired by
many ideas comning from AKL. Later, the two development teams joined forces to further
develop Oz and its accompanying programming system Mozart [76]. As Oz integrates
all essential ideas but parallel execution from AKL, this section puts its focus on Oz and
mentions where important ideas have been integrated from AKL. Achieving parallelism
has been an additional motivation in AKL, this resulted in a parallel implementation of
AKL [75, 74].

Currently Oz and Mozart are used in many different application areas where the tight
combination of concurrency and problem solving capabilities has shown great potential.
Education is one particular area where many different programming paradigms can be
studied in a single language [114]. Oz as a multi-paradigm language is discussed in [116].

1.2.4 Expressive Concurrent Programming

The concurrent constraint programming model does not specify which amount of con-
currency is necessary or useful for program execution. Thisis clearly not practical: the
amount of concurrency used in program execution makes a hugedifference in efficiency.
The rationale is to use as little concurrency as possible andas much concurrency as neces-
sary.

Experiments with Oz for the right amount of concurrency range from an early ultra-
concurrent model [52], over a model with implicit concurrency control [99] to the final
model with explicit concurrency control. Explicit concurrency control means that execu-
tion is organized into threads that are explicitly created by the programmer. Synchroniza-
tion then is performed on the level of threads rather than on the level of agents as in the
CCP model.

Many-to-one communication. Variables in concurrent constraint programming offer an
elegant mechanism for one-to-many communication: a variable serves as a communication
channel. Providing more information on that variable by a tell amounts to message send-
ing on that variable. The variable then can be read by many agents with synchronization
through entailment on the arrival of the message.

With constraints that can express lists (such as constraints over trees) programs can
easily construct streams (often referred to as open-ended lists). A stream is defined by a

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 19

current tail being a yet unconstrained variablet. Sending a messagem tells the constraint
t = cons(m, t′) (expressing that the messagem is the first element of the streamt followed
by elements on the streamt′) wheret′ is a new variable for the new current tail of the
stream.

This idea for stream-based communication is very useful forprogramming concurrent
applications [96, 81]. However, it has a serious shortcoming: it does not support many-to-
one communication situations where more than a single sender exists. The tail can be only
constrained at most once by a tell. Hence all potential senders need to know and update
the current tail of a stream.

AKL introducedports to solve this problem and allow for general message-passing
communication [61]. The importance of supporting general message-passing communica-
tion is witnessed by concurrent programming languages where communication is entirely
based on message passing, for example Erlang [13].

A port provides a single point of reference to a stream of messages. It stores the current
tail of the stream that is associated with a port. Ports provide a send operation. The send
operation takes a port and a message, appends the message to the tail of the port’s stream,
and updates the stream’s tail as described above.

Naming entities. Ports in AKL require that they can be referred to for a send operation.
Modeling a port as a constraint in the concurrent constraintprogramming framework is im-
possible. The very idea of a port is that its associated tail changes with each send operation.
Changing the tail is in conflict with a monotonically growingconstraint store.

A generic solution to this problem has been conceived in Oz bythe introduction of
names[99]. A name can be used similar to a constant in a constraint.Additionally, the
state of a computation now also has an additional compartment that maps names to entities
(such as ports). For example, using a namen for a port means that constraints can be used
to refer to the port by using the namen. The additional compartment then stores thatn

refers to a port and the current tail associated with that port. Names are provided in a way
that they cannot be forged and are unique, more details are available in [99].

Mutable state. Ports are not primitive in Oz. Ports are reduced to cells as a primitive
that captures mutable state. As discussed above, a cell is referred to by a name and the
only operation on a cell is to exchange its content. From cells, ports can be obtained
straightforwardly [100].

More expressive programming. Oz incorporates extensions to the concurrent constraint
model to increase its expressive power for programming. It adds first-class procedures by
using names to refer to procedural abstractions (closures). By this, the aspect of giving
procedures first-class status is separated from treating them in the underlying constraint
system. The constraint system is only concerned with names referring to procedural ab-
stractions but not with their denotation. This approach also supports functional computa-
tion by simple syntactic transformations [100].

The combination of names, first-class procedures, and cellsfor mutable state constitute
the ingredients necessary for object-oriented computing.Here names are used as refer-
ences to objects, mutable object state is expressed from cells, and classes are composed

20 1. Constraints in Procedural and Concurrent Languages

toplevel

nested propagation encapsulation

local space

Figure 1.11: Nested propagation and encapsulation for spaces.

from first-class procedures. This setup allows for full-fledged concurrent object-oriented
programming including object-based synchronization and class-based inheritance [51].

Distributed programming. The basic idea of distribution in Oz is to abstract away the
network as much as possible. This means that all network operations are invoked implicitly
by the system as an incidental result of using particular language operations. Distributed
Oz has the same language semantics as Oz by defining a distributed semantics for all
language entities such as variables or objects based on cells.

Network transparency means that computations behave the same independent of the
site they compute on, and that the possible interconnections between two computations
do not depend on whether they execute on the same or on different sites. Network trans-
parency is guaranteed in Distributed Oz for most entities.

An overview on the design of Distributed Oz is [48]. The distributed semantics of
variables is reported in [49]; the distributed semantics ofobjects is discussed in [115].

1.2.5 Encapsulation and Search

The main challenge in combining concurrency with problem solving is that constraint-
based computations used for problem solving arespeculativein nature: their failure is a
regular event. Using backtracking for undoing the effect ofa failed speculative compu-
tation is impossible in a concurrent context. Most computations including interoperating
with the external world cannot backtrack. The essential idea to deal with speculative com-
putations in a concurrent context is toencapsulatespeculative computation so that the
failure of an encapsulated computation has no effect on other computations.

Computation spaces. The idea of encapsulation has been pioneered by AKL, where en-
capsulation has been achieved by delegating computations to so-called deep guards (to be
discussed later in more detail). Oz generalizes this idea asfollows. Computations (roughly
consisting of threads of statements and a constraint store)are contained in acomputation
space. Encapsulation in Oz then is achieved by delegating speculative computations to
local computation spaces. The failure of a local space leaves other spaces unaffected.

Computation spaces can then be nested freely resulting in a tree of nested computa-
tion spaces as sketched in Figure 1.11. Encapsulation prevents that constraints told by
computations in local computation spaces are visible in spaces higher up in the space tree.
Nested propagation makes sure that constraints told in computation spaces are propagated
to nested spaces.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 21

NewSpace : Script→ Space
Ask : Space→ Status
Access : Space→ Solution
Clone : Space→ Space
Commit : Space× Int→ Unit
Inject : Space× Script→ Unit

Figure 1.12: Operations on first-class computation spaces.

Stability. Given a setup with local spaces for encapsulation, it is essential to have a crite-
ria when a computation is not any longer speculative. A ground-breaking idea introduced
by Janson and Haridi in the context of AKL isstability [60, 47, 59]. A speculative com-
putation becomesstable, if it has entirely reduced to constraints and that these constraints
are entailed or disentailed (that is, the constraints do notmake any speculative assumptions
themselves) by the constraints from computation spaces higher up in the space tree.

Stability naturally generalizes the notion of entailment by capturing when arbitrary
computations are not any longer speculative. In particular, both entailment and stability
are monotonic conditions: a stable computation space remains stable regardless of other
computations.

Deep guards. Stability has been first used as a control criteria for combinators using
so-calleddeep guards. A combinator can be disjunction, negation, or conditional, for ex-
ample. In the concurrent constraint programming model guards (that is, ask statements) are
flat as they are restricted to constraints. Deep guards allow arbitrary statements (agents) of
the programming language. Similar to how entailment defineswhen and how computation
can proceed for a flat guard, stability defines when and how computation can proceed for
a deep guard.

First-class computation spaces. Local computation spaces together with stability as
control regime serve as the foundation for both search and combinators in Oz. A general
idea in Oz is that important abstractions such as procedures, classes, and objects are avail-
able as first-class citizens in the language. As discussed inSection 1.2.4, this is achieved
by names that separate reference to entities from the entities proper.

Similarly, local computation spaces are available as first-class computation spaces.
Having spaces available first-class, search and combinators become programmable within
Oz as programming language.

The operations on first-class computation spaces are listedin Figure 1.12.NewSpace
takes a script (a procedure that defines the constraint problem to be solved) and returns a
space that executes the script.Ask synchronizes until computation in the space has reached
a stable state. It then returns the status of the space, that is, whether the space isfailed ,
solved , or hasalternatives . Alternatives are then resolved by search.Access
returns the solution stored in a space.Clone returns a copy of a space.Commit selects
an alternative of a choice point.Inject adds constraints to a space. How the operations
are employed for programming search becomes is sketched briefly below.

22 1. Constraints in Procedural and Concurrent Languages

fun {All S}
case {Ask S}
of failed then nil
[] solved then [{Access S}]
[] alternatives then C={Clone S} in

{Commit S 1} {Commit C 2}
{Append {All S} {All C}}

end
end

Figure 1.13: Depth-first exploration for all solutions.

Programming search. Most constraint programming systems (see Chapter 14, “Finite
Domain Constraint Programming Systems”) have in common that they offer a fixed and
small set of search strategies. The strategies covered are typically limited to single, all,
and best-solution search. Search cannot be programmed, which prevents users to construct
new search strategies. Search hard-wires depth-first exploration, which prevents even sys-
tem developers to construct new search strategies. With first-class computation spaces,
Oz provides a mechanism to easily program arbitrary search engines featuring arbitrary
exploration strategies.

Figure 1.13 conveys that programming search based on first-class computation spaces
is easy. The figure contains a formulation of depth-first exploration that returns all solu-
tions. All takes a spaceS containing the problem to be solved as input. It returns either
the empty list, if no solution is found, or a singleton list containing the solution. If a space
needs to be resolved by search, the space is copied (by application ofClone) and explo-
ration follows the left alternative (Commit S 1) and later the right alternative (Commit
C 2). Append then appends the solutions obtained from exploring bothS andC.

The complete search engine is obtained by adding space creation according to the prob-
lem P (specified by a procedureP) to be solved:

fun {SearchAll P}
{All {NewSpace P}}

end

First-class computation spaces not only cover many standard search engines but have
been applied to interactive visual search [93], parallel search [91], and recomputation-
based search [94]. A complete treatment of search with first-class computation spaces
is [92]. Abstractions similar to first-class computation spaces are also used in the C++-
based libraries Figaro [53] and Gecode [44].

Programming combinators. First-class computations spaces can also be used to pro-
gram deep-guard combinators such as disjunction, negation, blocking implication, for ex-
ample. Here the motivation is the same as for programming search: the user is not re-
stricted to a fixed set of combinators but can devise application-specific combinators when
needed. By this they generalize the idea of deep-guard combinators introduced in AKL.
Programming combinators is covered in [90] and more extensively in [92].

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 23

1.3 Rule-Based Languages

Rule-based formalisms are ubiquitous in computer science,from theory to practice, from
modelling to implementation, from inference rules and transition rules to business rules.
Executable rules are used in declarative programming languages, in program transforma-
tion and analysis, and for reasoning in artificial intelligence applications. Rules consist of
a data description (pattern) and a replacement statement for data matching that descrip-
tion. Rule applications cause localized transformations of a shared data structure (e.g.,
constraint store, term, graph, database). Applications are repeated until no more change
happens.

Constraint Handling Rules (CHR) is a rule-based programming language in the tra-
dition of constraint logic programming, the only one specifically developed for the im-
plementation of constraint solvers. It is traditionally anextension to other programming
languages but has been used increasingly as a general-purpose programming language, be-
cause it can embed many rule-based formalisms and describe algorithms in a declarative
way.

The next section discusses design objectives and related work. Then we give an overview
of syntax and semantics of CHR [35, 42] as well as of properties for program analysis
such as confluence and operational equivalence. Then we giveconstraint solvers written in
CHR, for Booleans, minima, arithmetic equations, finite andinterval domains and lexico-
graphic orders.

1.3.1 Design Objectives

Constraint solver programming. In the beginning of CLP, constraint solving was hard-
wired in a built-in constraint solver written in a low-levelprocedural language. While
efficient, this so-calledblack-boxapproach makes it hard to modify a solver or build a
solver over a new domain, let alone debug, reason about and analyse it. Several proposals
have been made to allow more for flexibility and costumization of constraint solvers (called
glass-box, sometimeswhite-boxor evenno-boxapproaches):

• Demons, forward rules and conditionals of the CLP language CHIP [29], allow
defining propagation of constraints in limited ways.

• Indexicals, clp(FD) [25], allow implementing constraintsover finite domains at a
medium level of abstraction.

• Given constraints connected to a Boolean variable that represents their truth [16, 97]
allow expressing any logical formula over primitive constraints.

• Constraint combinators, cc(FD) [109], allow building morecomplex constraints
from simpler constraints.

All approaches extend a solver over a given, specific constraint domain, typically finite
domains. The goal then was to design a programming language specifically for writing
constraint solvers. Constraint Handling Rules (CHR) [35, 42, 11, 86] is a concurrent
committed-choice constraint logic programming language consisting of guarded rules that
transform multi-sets of relations called constraints until no more change happens.

24 1. Constraints in Procedural and Concurrent Languages

Underlying concepts. CHR was motivated by the inference rules that are traditionally
used in computer science to define logical relationships andfixpoint computation in the
most abstract way.

In CHR, one distinguishes two main kinds of rules:Simplification rulesreplace con-
straints by simpler constraints while preserving logical equivalence, e.g.,X≤Y∧Y≤X⇔ X=Y.
Propagation rulesadd new constraints that are logically redundant but may cause further
simplification, e.g.,X≤Y∧Y≤Z⇒ X≤Z. Obviously, conjunctions in the head of a rule and
propagation rules are essential in expressing constraint solving succinctly.

Given a logical calculus and its transformation rules for deduction, its (conditional)
inference rules directly map to propagation rules and its (biconditional) replacement rules
to simplification rules. Also, the objects of logic, the (constraint) theories, are usually
specified by implications or logical equivalences, corresponding to propagation and simpl-
ficiation rules.

Given a state transition system, its transition rules can readily be expressed with simpli-
fication rules. In this way, dynamics and changes (e.g., updates) can be modelled, possibly
triggered by events and handled by actions. This justifies the use of CHR as a general
purpose programming language.

Design influences. The design of CHR has many roots and combines their attractive
features in a novel way. Logic programming (LP), constraintlogic programming (CLP)
[65, 42] and concurrent committed-choice logic programming (CCP) [95, 80] are direct
ancestors of CHR. Like automated theorem proving, CHR uses formulae to derive new
information, but only in a restricted syntax (e.g., no negation) and in a directional way
(e.g., no contrapositives) that makes the difference between the art of proof search and an
efficient programming language.

CHR adapts concepts from term rewriting systems [14] for program analysis, but goes
beyond term rewriting by working on conjunctions of relations instead of nested terms,
and by providing in the language design propagation rules, logical variables, built-in con-
straints, implicit constraint stores, and more. Extensions of rewriting, such as rewriting
Logic [68] and its implementation in Maude [24] and Elan [19]have similar limitations as
standard rewriting systems for writing constraints. The functional language Bertrand [63]
uses augmented term rewriting to implement constraint-based languages.

Executable rules with multiple head atoms were proposed in the literature to model
parallelism and distributed agent processing as well as objects [15, 12], but not for con-
straint solving. Other influences for the design of CHR were the Gamma computation
model and the chemical abstract machine [15], and, of course, production rule systems like
OPS5 [20].

Independent developments related to the concepts behind CHR were the multi-paradigm
programming languages CLAIRE [22], and OZ [98] as well as database research: con-
straint and deductive databases, integrity constraints, and event-condition-action rules.

Expressiveness. The paper [101] introduces CHR machines, analogous to RAM and
Turing machines. It shows that these machines can simulate each other in polynomial time,
thus establishing that CHR is Turing-complete and, more importantly, that every algorithm
can be implemented in CHR with best known time and space complexity, something that
is not known to be possible in other pure declarative programming languages like Prolog.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 25

Applications. Recent CHR libraries exist for most Prolog systems, e.g., [54, 84], Java [10,
118, 117, 66], Haskell [23] and Curry. Standard constraint systems as well as novel ones
such as temporal, spatial or description logic constraintshave been implemented in CHR.
Over time CHR has proven useful outside its original field of application in constraint
reasoning and computational logic2, be it agent programming, multi-set rewriting or pro-
duction rule systems: Recent applications of CHR range fromtype systems [31] and time
tabling [5] to ray tracing and cancer diagnosis [11, 86]. In some of these applications, con-
junctions of constraints are best regarded as interacting collections of concurrent agents
or processes. We will not discuss CHR as a general-purpose programming language for
space reasons.

Abstract Syntax

We distinguish between two different kinds of constraints:built-in (pre-defined) con-
straints which are solved by a built-in constraint solver, and CHR(user-defined) con-
straintswhich are defined by the rules in a CHR program. Built-in constraints include
syntactic equality=, true, andfalse. This distinction allows to embed and utilize existing
constraint solvers as well as side-effect-free host language statements. Built-in constraint
solvers are considered as black-boxes in whose behavior is trusted and that do not need to
be modified or inspected. The solvers for the built-in constraints can be written in CHR
itself, giving rise to a hierarchy of solvers [87].

A CHR programis a finite set of rules. There are three kinds of rules:

Simplification rule: Name@ H ⇔ C B

Propagation rule: Name@ H ⇒ C B

Simpagation rule: Name@ H \H ′ ⇔ C B

Nameis an optional, unique identifier of a rule, theheadH , H ′ is a non-empty con-
junction of CHR constraints, theguardC is a conjunction of built-in constraints, and the
bodyB is a goal. Agoal is a conjunction of built-in and CHR constraints. A trivial guard
expression “true” can be omitted from a rule.

Simpagation rules abbreviate simplification rules of the form H ∧H ′ ⇔ C H ∧B, so
there is no further need to discuss them separately.

Operational Semantics

At runtime, a CHR program is provided with an initial state and will be executed until
either no more rules are applicable or a contradiction occurs.

The operational semantics of CHR is given by a transition system (Fig. 1.14). LetP
be a CHR program. We define the transition relation7→ by two computation steps (tran-
sitions), one for each kind of CHR rule.Statesare goals, i.e., conjunctions of built-in and
CHR constraints. States are also called(constraint) stores. In the figure, all upper case let-
ters are meta-variables that stand for conjunctions of constraints. The constraint theoryCT

defines the semantics of the built-in constraints.Gbi denotes the built-in constraints ofG.

2Integrating deduction and abduction, bottom-up and top-down execution, forward and backward chaining,
tabulation and integrity constraints.

26 1. Constraints in Procedural and Concurrent Languages

Simplify

If (r@H ⇔ C B) is a fresh variant with variables̄x of a rule namedr in P

and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (B ∧G ∧H=H ′ ∧ C)

Propagate

If (r@H ⇒ C B) is a fresh variant with variables̄x of a rule namedr in P

and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (H ′ ∧B ∧G ∧H=H ′ ∧ C)

Figure 1.14: Computation steps of Constraint Handling Rules

Starting from an arbitrary initial goal, CHR rules are applied exhaustively, until a fix-
point is reached. A simplification ruleH ⇔ C B replacesinstances of the CHR con-
straintsH by B provided the guardC holds. A propagation ruleH ⇒ C B insteadadds
B to H . If new constraints arrive, rule applications are restarted. Computation stops in a
failed final state if the built-in constraints become inconsistent. Trivial non-termination of
thePropagatecomputation step is avoided by applying a propagation rule at most once to
the same constraints (see the more concrete semantics in [1]).

In more detail, a rule isapplicable, if its head constraints are matched by constraints
in the current goal one-by-one and if, under this matching, the guard of the rule is implied
by the built-in constraints in the goal. Any of the applicable rules can be applied, and the
application cannot be undone, it is committed-choice.

A computation (derivation)of a goalG is a sequenceS0, S1, . . . of states withSi 7→
Si+1 beginning with theinitial state (query, problem)S0 = G and ending in a final state
or not terminating. Afinal state (answer, solution)is one where either no computation step
is possible anymore or where the built-in constraints are inconsistent.

Example 1. We define aCHR constraint for a partial order relation≤:

reflexivity @X≤X⇔ true
antisymmetry @X≤Y ∧ Y≤X ⇔ X=Y
transitivity @X≤Y ∧ Y≤Z ⇒ X≤Z

TheCHR program implements reflexivity, antisymmetry, transitivity and redundancy
in a straightforward way.

Operationally the rulereflexivity removes occurrences of constraints that match
X≤X. The ruleantisymmetrymeans that if we findX≤Y as well asY≤X in the current
goal, we can replace them by the logically equivalentX=Y. The ruletransitivity
propagates constraints. It adds the logical consequenceX≤Z as a redundant constraint,
but does not remove any constraints.

A computation of the goalA≤B ∧ C≤A ∧ B≤C proceeds as follows (rules are applied
to underlined constraints):

A≤B ∧ C≤A ∧ B≤C 7→transitivity

A≤B ∧ C≤A ∧ B≤C ∧ C≤B 7→antisymmetry

A≤B ∧ C≤A ∧ B=C 7→antisymmetry

A=B ∧ B=C

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 27

Starting from a circular relationship, we have found out that the three variables must
be the same.

Refined, parallel and compositional semantics. The high-level description of the op-
erational semantics of CHR given here does not explicitly address termination at failure
and of propagation rules, and leaves two main sources of non-determinism: the order in
which constraints of a query are processed and the order in which rules are applied (rule
scheduling). As in Prolog, almost all CHR implementations execute queries from left to
right and apply rules top-down in the textual order of the program. This behavior has been
formalized in the so-calledrefined semantics[32] that was proven to be a concretization
of the standard operational semantics given in [1]. In [41] aparallel execution model for
CHR is presented.

Search. Search in CHR is usally provided by the host language, e.g., by the built-in
backtracking of Prolog or by search libraries in Java. In addition, in all Prolog implemen-
tations of CHR, the disjunction of Prolog can be used in the body of CHR rules. This
was formalized in the language CHR∨ [7, 8]. An early implementation of CHR in Eclipse
Prolog also featured so-called labeling declarations [35], that allowed Prolog clauses for
CHR constraints. These can be directly translated into CHR∨, which we will use to define
labeling procedures.

Pragmatics. When writing CHR programs, manuals such as [54] suggest to prefer sim-
plification rules and to avoid propagation rules and multiple heads (although indexing often
helps to find partner constraints in constant time [84]). Onewill often modify and compose
existing CHR and other programs. Some possibilities are: Flat composition by taking the
union of all rules [4]; hierarchical composition by turningsome CHR constraints into built-
in constraints of another constraint solver [89]; extending arbitrary solvers with CHR [30].
CHR are usually combined with a host language. In the host language, CHR constraints
can be posted; in the CHR rules, host language statements canbe included as built-in
constraints.

Declarative Semantics

Owing to the tradition of logic and constraint logic programming, CHR features – besides
an operational semantics – adeclarative semantics, i.e., a direct translation of a CHR
program into a first-order theory. In the case of constraint solvers, this strongly facilitates
proofs of a program’s faithful handling of constraints.

The logical reading (meaning) of simplification and propagation rulesis given below.

H ⇔ C B ∀(C → (H ↔ ∃ȳ B))
H ⇒ C B ∀(C → (H → ∃ȳ B))

The sequencēy are the variables that appear only in the bodyB of a rule.
The logical reading of aCHR program is the conjunction of the logical readings of

its rules united with the constraint theoryCT that defines the built-in constraints. The
logical reading of a stateis just the conjunction of its constraints. State transitions preserve
logical equivalence, i.e., all states in a computation are logically the same. From this result,

28 1. Constraints in Procedural and Concurrent Languages

soundness and completeness theorems follow that show that the declarative and operational
semantics coincide strongly, in particular if the program is confluent [9].

Linear-logic semantics. The classical-logic declarative semantics, however, doesnot
suffice when CHR is used as a general-purpose concurrent programming language. Many
algorithms do not have a correct first-order logic reading, especially when they crucially
rely on change through updates. This problem has been demonstrated in [41, 85] and led
to the development of an alternative declarative semantics. It is based on a subset oflinear
logic [45] that can model resource consumption. It therefore moreaccurately describes the
operational behavior of simplification rules [18].

Program Properties and Their Analysis

One advantage of a declarative programming language is the ease of program analysis. The
paper [27] introduces a fix-point semantics which characterizes the input/output behavior
of a CHR program and which isand-compositional. It allows to retrieve the semantics
of a conjunctive query from the semantics of its conjuncts. Such a semantics can be used
as a basis to define incremental and modular program analysisand verification tools. An
abstract interpretation framework for CHR is introduced in[88]. The basic properties
of termination, confluence and operational equivalence aretraditionally analysed using
specific techniques as discussed below. Time complexity analysis is discussed in [36], but
details often rely on problem specific techniques.

Minimal states. When analysing properties of CHR programs that involve the infinitely
many possible states, we can sometimes restrict ourselves to a finite number of so-called
minimal states. For each rule, there is a minimal, most general state to which it is appli-
cable. This state is the conjunction of the head and the guardof the rule. Removing any
constraint from the state would make the rule inapplicable.Every other state to which the
rule is applicable contains the minimal state. Adding constraints to the state cannot inhibit
the applicability of a rule because of themonotonicity propertyof CHR [9].

Termination. A CHR program is calledterminating, if there are no infinite computa-
tions. Since CHR is Turing-complete, termination is undecidable. For CHR programs that
mainly use simplification rules, simple well-founded orderings are often sufficient to prove
termination [37, 36]. For CHR programs that mainly use propagation rules, results from
bottom-up logic programming [43] as well as deductive and constraint databases apply. In
general, termination analysis is difficult for non-trivialinteractions between simplification
and propagation rules.

Confluence. In a CHR program, the result of computations from a given goalwill always
have the same meaning. However the answer may not be syntactically the same. The
confluence property of a program guarantees that any computation for a goal results in the
same final state no matter which of the applicable rules are applied.

The papers [1, 9] give a decidable, sufficient and necessary condition for confluence:
A terminating CHR program is confluent if and only if all its critical pairs are joinable.
For checking confluence, one takes two rules (not necessarily different) from the program.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 29

The minimal states of the rules are overlapped by equating atleast one head constraint
from one rule with one from the other rule. For eachoverlap, we consider the two states
resulting from applying one or the other rule. These two states form a so-calledcritical
pair. One tries tojoin the states in the critical pair by finding two computations starting
from the states that reach a common state. If the critical pair is not joinable, we have found
a counterexample for confluence of the program.

Example 2. Recall the program for≤ of Example 1. Consider the rules for reflexivity and
antisymmetry and overlap them to get the following criticalstate and computations.

A≤A ∧A≤A
reflexivity

xxqqqqqqqqqqq antisymmetry

&&MMMMMMMMMMM

A≤A

reflexivity
''NNNNNNNNNNN

A=A

built-in
xxppppppppppp

true

The resulting critical pair is obviously joinable. The example also shows that multiplicities
matter inCHR.

Any terminating and confluent CHR program has a consistent logical reading [9, 1]
and will automatically implement a concurrent any-time (approximation) and on-line (in-
cremental) algorithm.

Completion. Completion is the process of adding rules to a non-confluent program until
it becomes confluent. Rules are built from a non-joinable critical pair to allow a transition
from one of the states into the other while maintaining termination.

Example 3. Given the≤ solver, assume we want to introduce a< constraint by adding
just one rule about the interaction between these two types of inequalities.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

The resulting program is not confluent.

A≤B ∧B≤A ∧B<A

antisymmetry
yyssssssssss

inconsistency
%%JJJJJJJJJ

A=B ∧B<A

��

B≤A ∧ false

��

A=B ∧A<A false

Completion uses the two non-joinable states to derive an interesting new rule, discovering
irreflexivity of<.

X<X ⇔ false

In contrast to other completion methods, in CHR we generallyneed more than one rule
to make a critical pair joinable: a simplification rule and a propagation rule [3].

30 1. Constraints in Procedural and Concurrent Languages

Operational equivalence. A fundamental and hard question in programming language
semantics is when two programs should be considered equivalent. For example correctness
of program transformation can be studied only with respect to a notion of equivalence.
Also, if modules or libraries with similar functionality are used together, one may be inter-
ested in finding out if program parts in different modules or libraries are equivalent. In the
context of CHR, this case arises frequently when constraintsolvers written in CHR are
combined. Typically, a constraint is only partially definedin a constraint solver. We want
to make sure that the operational semantics of the common constraints of two programs do
not differ.

Two programs are operationally equivalent if for each goal,all final states in one pro-
gram are the same as the final states in the other program. In [2], the authors gave a
decidable, sufficient and necessary syntactic condition for operational equivalence of ter-
minating and confluent CHR programs3: The minimal states of all rules in both programs
are simply run as goals in both programs, and they must reach acommon state. An ex-
ample for operational equivalence checking can be found with the minimum example in
Section 1.3.2.

1.3.2 Constraint Solvers

We introduce some constraint solvers written in CHR, for details and more solvers see [38,
42]. We will use the concrete ASCII syntax of CHR implementations in Prolog: Conjunc-
tion ∧ is written as comma ’, ’. Disjunction∨ is written as semi-colon ’; ’. Let ’ =<’ and
’<’ be built-in constraints now.

Boolean Constraint Solver

Boolean algebra (propositional logic) constraints can be solved by different techniques [67].
The logical connectives are represented as Boolean constraints, i.e., in relational form. For
example, conjunction is written as the constraintand(X,Y,Z) , whereZ is the result of
andingX andY. In the following terminating and confluent Boolean constraint solver [42],
a local consistency algorithm is used. It simplifies one Boolean constraint at a time into one
or more syntactic equalities whenever possible. The rules for propositional conjunction are
as follows.

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and(X,Y,Z) <=> X=1 | Y=Z.
and(X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,Z) <=> X=Y | Y=Z.
and(X,Y,Z) <=> Z=1 | X=1,Y=1.

The above rules are based on the idea that, given a value for one of the variables in a
constraint, we try to determine values for other variables.However, the Boolean solver
goes beyond propagating values, since it also propagates equalities between variables. For
example,and(1,Y,Z),neg(Y,Z) will reduce tofalse , and this cannot be achieved
by value propagation alone.

3To the best of our knowledge, CHR is the only programming language in practical use that admits decidable
operational equivalence.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 31

Search. The above solver is incomplete. For example, the solver cannot detect inconsis-
tency ofand(X,Y,Z),and(X,Y,W),neg(Z,W) . For completeness, constraint solv-
ing has to be interleaved with search. For Boolean constraints, search can be done by trying
the values0 or 1 for a variable. The generic labeling procedureenum traverses a list of
variables.

enum([]) <=> true.
enum([X|L]) <=> indomain(X), enum(L).

indomain(X) <=> (X=0 ; X=1).

Minimum Constraint

The CHR constraintmin(X,Y,Z) means thatZ is the minimum ofX andY.

r1 @ min(X,Y,Z) <=> X=<Y | Z=X.
r2 @ min(X,Y,Z) <=> Y=<X | Z=Y.
r3 @ min(X,Y,Z) <=> Z<X | Y=Z.
r4 @ min(X,Y,Z) <=> Z<Y | X=Z.
r5 @ min(X,Y,Z) ==> Z=<X, Z=<Y.

The first two rulesr1 and r2 correspond to the usual definition ofmin . But we also
want to be able to compute backwards. So the two rulesr3 andr4 simplify min if the
order between the resultZ and one of the input variables is known. The last ruler5
ensures thatmin(X,Y,Z) unconditionally impliesZ=<X,Z=<Y . Rules such as these can
be automatically generated from logical specifications [6].

Example 4. Redundancy from a propagation rule is useful, as the goalmin(A,2,2)
shows. To this goal only the propagation rule is applicable,but to the resulting state the
second rule becomes applicable:

min(A,2,2)
7→r5 min(A,2,2),2=<A
7→r2 2=<A

In this way, we find out that formin(A,2,2) to hold,2=<A must hold.
Another interesting derivation involving the propagationrule is:

min(A,B,M),A=<M
7→r5 min(A,B,M),A=M,M=<B
7→r1 A=M,M=<B

It can be shown that the program is terminating and confluent.For example, the only
overlap of the minimal states for the first two rules,r1 andr2 is min(X,Y,Z),X=Y . For
both rules, their application leads to logically equivalent built-in constraintsX=Y,Y=Z .

Operational equivalence. We would like to know if these two CHR rules defining the
user-defined constraintmin with differing guards

min(X,Y,Z) <=> X=<Y | Z=X.
min(X,Y,Z) <=> Y<X | Z=Y.

32 1. Constraints in Procedural and Concurrent Languages

are operationally equivalent with these two rules

min(X,Y,Z) <=> X<Y | Z=X.
min(X,Y,Z) <=> Y=<X | Z=Y.

or if the union of the rules results in a better constraint solver formin .
Already the minimal state of the first rule of the first program, min(X,Y,Z),X=<Y ,

shows that the two programs are not operationally equivalent, since it can reduce toZ=X
in the first program, but is a final state for the second program, sinceX=<Y does not apply
any of the guards in the second program. Thus the union of the two programs allows for
more constraint simplification. In the union, the two rules with the strict guards can be
removed as another operational equivalence test shows thatthey are redundant.

Linear Polynomial Equation Solving

Typically, in arithmetic constraint solvers, incrementalvariants of classical variable elim-
ination algorithms [58] like Gaussian elimination for equations and Dantzig’s Simplex
algorithm for equations are implemented.

A conjunction of equations isin solved formif the left-most variable of each equation
does not appear in any other equation. We compute the solved form by eliminating multiple
occurrences of variables. In this solved form, all determined variables (those that take a
unique value) are discovered.

eliminate @ A1 * X+P1 eq 0 \ P2X eq 0 <=>
find(A2 * X,P2X,P2) |
normalize(A2 * (-P1/A1)+P2,P3),
P3 eq 0.

constant @ B eq 0 <=> number(B) | zero(B).

Theconstant rule says that if the polynomial contains no more variables,then the num-
berB must be zero. Theeliminate rule performs variable elimination. It takes any pair
of equations with a common occurrence of a variable,X. In the first equation, the vari-
able appears left-most. This equation is used to eliminate the occurrence of the variable
in the second equation. The first equation is left unchanged.In the guard, the built-in
find(A2 * X,P2X,P2) tries to find the expressionA2* X in the polynomP2X, whereX
is the common variable. The polynomP2 is P2X with A2* X removed. The constraint
normalize(E,P) transforms an arithmetic expressionE into a linear polynomialP.

The solver is complete, so no search is necessary. It is terminating but not confluent
due to theeliminate rule: Consider two equations with the same left-most variable,
then the rule can be applied in two different ways. The solverproduces the solved form
as can be shown by contradiction: If a set of equations is not in solved form, then the
eliminate rule is applicable. The solver is concurrent by nature of CHR: It can reduce
pairs of equations in parallel or eliminate the occurence ofa variable in all other equations
at once.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 33

Finite Domains

Here, variables are constrained to take their value from a given, finite set. Choosing inte-
gers for values allows for arithmetic expressions as constraints. Influential CLP languages
with finite domains are CHIP [29], clp(FD) [25] and cc(FD) [109].

Thedomain constraintX in D means that the variableX takes its value from the given
finite domainD. For simplicity, we start with thebounds consistencyalgorithm for interval
constraints [108, 17]. The implementation is based on interval arithmetic. In the solver,
in , le , eq , ne , andadd are CHR constraints, the inequalities<, >, =<, >=, and<> are
built-in arithmetic constraints, andmin , max, +, and- are built-in arithmetic functions.X
in A..B constrainsX to be in the intervalA..B . The rules for local consistency affect
the interval constraints (in) only, the other constraints remain unaffected.

inconsistency @ X in A..B <=> A>B | false.
intersect@ X in A..B, X in C..D <=> X in max(A,C)..min(B,D).

le @ X le Y, X in A..B, Y in C..D <=> B>D |
X le Y, X in A..D, Y in C..D.

le @ X le Y, X in A..B, Y in C..D <=> C<A |
X le Y, X in A..B, Y in A..D.

eq @ X eq Y, X in A..B, Y in C..D <=> A<>C |
X eq Y, X in max(A,C)..B, Y in max(C,A)..D.

eq @ X eq Y, X in A..B, Y in C..D <=> B<>D |
X eq Y, X in A..min(B,D), Y in C..min(D,B).

The CHR constraintX le Y means thatX is less than or equal toY. Hence,X cannot
be larger than the upper boundD of Y. Therefore, if the upper boundB of X is larger than
D, we can replaceB by Dwithout removing any solutions. Analogously, one can reason on
the lower bounds to tighten the interval forY. Theeq constraint causes the intersection of
the interval domains of its variables provided the bounds are not yet the same.

Example 5. Here is a sample computation involvingle:

U in 2..3, V in 1..2, U le V
7→le V in 1..2, U le V, U in 2..2
7→le U le V, U in 2..2, V in 2..2.

Finally,X+Y =Z is represented asadd(X,Y,Z) .

add @ add(X,Y,Z), X in A..B, Y in C..D, Z in E..F <=>
not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D) |

add(X,Y,Z),
X in max(A,E-D)..min(B,F-C),
Y in max(C,E-B)..min(D,F-A),
Z in max(E,A+C)..min(F,B+D).

For addition, we use interval addition and subtraction to compute the interval of one vari-
able from the intervals of the other two variables. The guardensures that at least one inter-
val becomes smaller whenever the rule is applied. Here is a sample computation involving
add :

34 1. Constraints in Procedural and Concurrent Languages

U in 1..3, V in 2..4, W in 0..4, add(U,V,W) 7→add

add(U,V,W), U in 1..2, V in 2..3, W in 3..4
For termination, consider that the rulesinconsistency andintersection from

above remove one interval constraint each. We assume that the remaining rules deal with
non-empty intervals only. This holds under the refined semantics and can be enforced by
additional guard constraints on the interval bounds. Then in each rule, at least one interval
in the body is strictly smaller than the corresponding interval in the head, while the other
intervals remain unaffected. The solver is confluent, provided the intervals are given. The
solver also works with intervals of real numbers of a choosengranularity, so that to ensure
termination rules are not applied anymore to domains which are considered too small.

Enumeration domains. Besides intervals, finite domains can be explicit enumerations
of possible values. The rules for enumeration domains are analogous to the ones for inter-
val domains and implement arc consistency [73], for example:

inconsistency @ X in [] <=> false.
intersect@ X in L1,X in L2 <=> intersect(L1,L2,L3) | X in L3.

Search. We implement the search routine analogous to the one for Boolean constraints.
For interval domains, search is usually done by splitting intervals in two halves. This
splitting is repeated until the bounds of the interval are the same.

indomain(X), X in A..B <=> A<B |
(X in A..(A+B)//2, indomain(X) ;

X in (A+B)//2+1..B, indomain(X)).

The guard ensures termination. For enumeration domains, each value in the domain (im-
plemented as a list) is tried.X=V is expressed asX in [V] .

indomain(X), X in [V|L] <=> L=[_|_] |
(X in [V] ; X in L, indomain(X)).

The guard ensures termination. Callingindomain(X) in the second disjunct ensures
that subsequently, the next value forX from the listL will be tried.

N-queens. The famousn-queens problem asks to placen queensq1, . . . , qn on ann ∗ n

chess board, such that they do not attack each other. The problem can be solved with a
CHR program, whereN is the size of the chess board andQs is a list ofN queen position
variables.

solve(N,Qs) <=> makedomains(N,Qs), queens(Qs), enum(Qs) .
queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).
safe(X,[Y|Qs],N) <=> noattack(X,Y,N), safe(X,Qs,N+1).

Instead of implementingnoattack with the usual three finite domain inequality con-
straints, we can usenoattack directly:

noattack(X,Y,N), X in [V], Y in D <=>
remove(D,[V,V+N,V-N],D1) | Y in D1.

noattack(Y,X,N), X in [V], Y in D <=>
remove(D,[V,V+N,V-N],D1) | Y in D1.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 35

The constraint between three listsremove(D,L,D1) holds ifD1 is Dwithout the values
in L and at least one value has been removed.

Lexicographic Order Global Constraint

A lexicographic order�lex (lex) allows to compare sequences by comparing the elements
of the sequences proceeding from start to end. Given two sequencesl1 andl2 of variables
of the same lengthn, [x1, . . . , xn] and[y1, . . . , yn], thenl1�lexl2 if and only if n=0 or
x1<y1 or x1=y1 and[x2, . . . , xn]�lex[y2, . . . , yn].

The solver [40] consists of three pairs of rules, the first twocorresponding to base cases
of the recursion (garbage collection), then two rules performing forward reasoning (recur-
sive traversal and implied inequality), and finally two for backward reasoning, covering a
not so obvious special case when the lexicographic constraint has a unique solution.

l1 @ [] lex [] <=> true.
l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.
l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.
l4 @ [X|L1] lex [Y|L2] ==> X=<Y.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.
l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The implementation is short and concise without giving up onlinear time worst case
time complexity. It is incremental and concurrent by natureof CHR. It is provably correct
and confluent. It is independent of the underlying constraint system. In [40], also com-
pleteness of constraint propagation is shown, i.e., given alex constraint and an inequality,
all implied inequalities are generated by the solver.

1.4 Challenges and Opportunities

The integration of constraint technology in more traditional or hybrid paradigms has been
a source of significant progress. Nonetheless, it is still shy of a comprehensive solution
that addresses all the motivating objectives. It has, however, created flexible platforms
particularly well-suited for experimenting with novel research ideas and directions. This
section considers some of these opportunities.

1.4.1 Cooperative Solvers

Cooperative solvers are already a reality. Linear Programming and Integer Programming
solvers have been used in conjunction with constraint solvers and the combination often
proved quite effective. New solvers are developed regularly either for domain specific
needs or as vertical extensions. In all cases, hybridization raises many issues: How should
solvers communicate? How do solvers compose? What is the composite’s architecture
(side-by-side, master-slave, concurrent,...)? What are the synchronization triggers and
events (variable bounds, heuristic information, objective function, impacts,...)? Should
the solvers operate on redundant statements of the same problems or on disjoint subset of

36 1. Constraints in Procedural and Concurrent Languages

constraints they are better suited for? Can solver-specificformulations be derived from a
unique master statement? Can the formulations be automatically refined over time?

1.4.2 Orthogonal Computation Models

Recent developments in Constraint-Based Local Search [106] clearly indicate that constraint-
based solvers can be developed for radically different computation models. From a declara-
tive standpoint, local search solvers rely on constraints to specify the properties of solutions
and write elegant, high-level, and reusable search procedures which automatically exploit
the constraints to guide the search. From a computational standpoint, the solver incremen-
tally maintains properties (e.g. truth value, violation degree, variable and value based vio-
lations) under non-monotonic changes to the decision variables that always have a tentative
value assignment. This organization is a fundamental departure from classic domain-based
consistency and filtering techniques found in traditional finite domain solvers.

The fundamental differences are related to the nature of theunderlying computational
models. How can these solvers be effectively hybridized? What steps are required for an
efficient integration of the computation models that does not result in severe performance
degradation for either? Once the two technologies coexist,how can the solvers be com-
posed? How can each solver benefit from results produced by its counter-part? Which
form of collaboration is most effective?

1.4.3 Orthogonal Concerns

As solvers sophistication increases, it becomes difficult to anticipate the behavior of a
solver on a given problem formulation. The advances in solver technology (efficiency,
flexibility, openness) should be matched with equal progress in supporting abstractions for
model designers. For Rapid application development, it is essential to assist the develop-
ers of optimization models. Improvements should include better debugging tools (where
debugging occurs at the abstraction level of the model), explanation tools for post-mortem
analysis, but also tracing tools for live analysis of the solver’s behavior during the search
process. Tools like the OZ Explorer [93] or the tree visualizer of OplStudio [113] provide
initial insights into the dynamics of the search but fail to relate this behavior to modeling
abstractions (constraints) and their interplay. Novel tools should also support the explo-
ration of alternative model formulation and search heuristics to quickly identify successful
strategies, a task which becomes increasingly burdensome given the large number of po-
tential heuristics that ought to be considered.

1.5 Conclusion

Constraint solving and handling has moved from logic programming into more common
programming paradigms and faced the challenges that it found there.

• Generalizing search from built-in backtracking of Prolog to flexible search routines
as in OPL, OZ and SALSA.

• User friendliness by providing well-known metaphors resulting in modelling lan-
guages such as OPL and Comet.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 37

• Integration into advanced multi-paradigm languages such as CLAIRE and OZ.

• The move from black-box solvers to glass-box solvers, that can be customized and
analysed more easily, with constraint handling rules (CHR)at the extreme end of
the spectrum.

These issues will remain a topic of research and developmentin constraint programming
for the near future, but impressive first steps have been done.

Acknowledgments

Christian Schulte is partially funded by the Swedish Research Council (VR) under grant 621-
2004-4953.

Bibliography

[1] S. Abdennadher. Operational semantics and confluence ofconstraint propagation
rules. In3rd International Conference on Principles and Practice ofConstraint
Programming, LNCS 1330. Springer, 1997.

[2] S. Abdennadher and T. Frühwirth. Operational equivalence of constraint handling
rules. InFifth International Conference on Principles and Practiceof Constraint
Programming, CP99, LNCS 1713. Springer, 1999.

[3] S. Abdennadher and T. Frühwirth. On completion of constraint handling rules. In
4th International Conference on Principles and Practice ofConstraint Program-
ming, CP98, LNCS 1520. Springer, 1998.

[4] S. Abdennadher and T. Frühwirth. Integration and optimization of rule-based con-
straint solvers. In M. Bruynooghe, editor,Logic Based Program Synthesis and
Transformation - LOPSTR 2003, Revised Selected Papers, LNCS 3018. Springer,
2004.

[5] S. Abdennadher and M. Marte. University course timetabling using Constraint Han-
dling Rules.Journal of Applied Artificial Intelligence, 14(4):311–326, 2000.

[6] S. Abdennadher and C. Rigotti. Automatic generation of chr constraint solvers.
Theory Pract. Log. Program., 5(4-5):403–418, 2005. ISSN 1471-0684. doi: http:
//dx.doi.org/10.1017/S1471068405002371.

[7] S. Abdennadher and H. Schütz. Model generation with existentially quantified vari-
ables and constraints. In6th International Conference on Algebraic and Logic Pro-
gramming, LNCS 1298. Springer, 1997.

[8] S. Abdennadher and H. Schütz. CHR∨: A flexible query language. InFlexible
Query Answering Systems, LNAI 1495. Springer, 1998.

[9] S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and semantics of con-
straint simplification rules.Constraints Journal, Special Issue on the 2nd Inter-
national Conference on Principles and Practice of Constraint Programming, 4(2):
133–165, 1999.

[10] S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. Jack: A java constraint kit.
In Electronic Notes in Theoretical Computer Science, volume 64, 2000.

[11] S. Abdennadher, T. Frühwirth, and C. Holzbaur. Editors, Special Issue
on Constraint Handling Rules. Theory and Practice of Logic Programming

38 1. Constraints in Procedural and Concurrent Languages

(TPLP), 5(4–5), 2005. URLhttp://www.informatik.uni-ulm.de/pm/
mitarbeiter/fruehwirth/tplp-chr/ind%ex.html .

[12] J.-M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in in-
heritance. In7th International Conference on Logic programming (ICLP), pages
495–510, Cambridge, MA, USA, 1990. MIT Press. ISBN 0-262-73090-1.

[13] J. Armstrong, R. Virding, and M. Williams.Concurrent Programming in Erlang.
Prentice-Hall International, Englewood Cliffs, NY, USA, 1993.

[14] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge Univ. Press,
1998.

[15] J.-P. Banatre, A. Coutant, and D. L. Metayer. A parallelmachine for multiset trans-
formation and its programming style.Future Generation Computer Systems, 4:
133–144, 1988.

[16] F. Benhamou. Interval constraint logic programming. In A. Podelski, editor,Con-
straint Programming: Basics and Trends, LNCS 910, pages 1–21. Springer, 1995.

[17] F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer, and
boolean constraints.The Journal of Logic Programming, 32(1), 1997.

[18] H. Betz and T. Frühwirth. A linear-logic semantics forconstraint handling rules.
In P. van Beek, editor,11th Conference on Principles and Practice of Constraint
Programming CP 2005, volume 3709 ofLecture Notes in Computer Science, pages
137–151. Springer, Oct. 2005. URLhttp://www.informatik.uni-ulm.
de/pm/mitarbeiter/fruehwirth/Papers/llchr%-final0.p df .

[19] P. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN:
A logical framework based on computational systems. InProc. of the First
Int. Workshop on Rewriting Logic, volume ENTCS 4(1). Elsevier, 2004. URL
citeseer.ist.psu.edu/borovansky97elan.html .

[20] L. Brownston, R. Farrell, E. Kant, and N. Martin.Programming expert systems
in OPS5: an introduction to rule-based programming. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1985. ISBN 0-201-10647-7.

[21] Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive andObject-Oriented Ap-
proach to a Complex Scheduling Problem. InProc. of DOOD’93, Phoenix, AZ,
December 1989.

[22] Y. Caseau, F.-X. Josset, and F. Laburthe. Claire: combining sets, search and rules to
better express algorithms.Theory Pract. Log. Program., 2(6):769–805, 2002. ISSN
1471-0684. doi: http://dx.doi.org/10.1017/S1471068401001363.

[23] W.-N. Chin, M. Sulzmann, and M. Wang. A type-safe embedding of constraint han-
dling rules into haskell. Technical report, School of Computing, National University
of Singapore, Singapore, 2003.

[24] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewritinglogic. Theor. Com-
put. Sci., 285(2):187–243, 2002. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
S0304-3975(01)00359-0.

[25] P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic
Programming, 27(3):185–226, 1996.

[26] Mosel: An Overview. Dash Optimization White Paper, 2004.
http://www.dashoptimization.com/home/products/productsmosel.html.

[27] G. Delzanno, M. Gabbrielli, and M. C. Meo. A compositional semantics for chr.
In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 39

Principles and practice of declarative programming, pages 209–217, New York,
NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. doi: http://doi.acm.org/10.
1145/1069774.1069794.

[28] D. Diaz and P. Codognet. A minimal extension of theWAMfor CLP(FD) . In
Proceedings of the Tenth International Conference on LogicProgramming (ICLP-
93), pages 774–792, Budapest (Hungary), June 1993.

[29] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T.Graf, and F. Berthier.
The constraint logic programming language CHIP. InInternational Conference on
Fifth Generation Computer Systems, pages 693–702. Institute for New Generation
Computer Technology, 1988.

[30] G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. Extending ar-
bitrary solvers with constraint handling rules. InPPDP ’03: Proceedings of the
5th ACM SIGPLAN international conference on Principles andpractice of declar-
itive programming, pages 79–90, New York, NY, USA, 2003. ACM Press. ISBN
1-58113-705-2. doi: http://doi.acm.org/10.1145/888251.888260.

[31] G. J. Duck, S. L. P. Jones, P. J. Stuckey, and M. Sulzmann.Sound and decidable
type inference for functional dependencies. InESOP, pages 49–63, 2004.

[32] G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The Refined
Operational Semantics of Constraint Handling Rules. In B. Demoen and V. Lifs-
chitz, editors,20th International Conference on Logic Programming (ICLP), LNCS.
Springer, 2004.

[33] R. Fourer, K. Martin, and J. Ma. Modeling systems & optimization services. Book
in preparation.

[34] R. Fourer, D. Gay, and B. Kernighan.AMPL: A Modeling Language for Mathemat-
ical Programming. The Scientific Press, San Francisco, CA, 1993.

[35] T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming.Journal of Logic Programming, 37(1–3):95–
138, 1998. URLhttp://www.pst.informatik.uni-muenchen.de/
personen/fruehwir/drafts/jlp-%chr1.ps.Z .

[36] T. Frühwirth. As Time Goes By: Automatic Complexity Analysis of Simplification
Rules. In8th International Conference on Principles of Knowledge Representation
and Reasoning, Toulouse, France, 2002.

[37] T. Frühwirth. Proving termination of constraint solver programs. In E. M. K.R. Apt,
A.C. Kakas and F. Rossi, editors,New Trends in Constraints, LNAI 1865. Springer,
2000.

[38] T. Frühwirth. Constraint systems and solvers for constraint programming.Special
Issue of Archives of Control Sciences (ACS) on Constraint Programming for De-
cision and Control, 2006. URLhttp://www.informatik.uni-ulm.de/
pm/mitarbeiter/fruehwirth/Papers/acs-s%ystems3.pdf . To ap-
pear.

[39] T. Frühwirth. Constraint handling rules. In A. Podelski, editor,Constraint Program-
ming: Basics and Trends, LNCS 910. Springer, March 1995.

[40] T. Frühwirth. Complete propagation rules for lexicographic order constraints
over arbitrary domains. InRecent Advances in Constraints, CSCLP 2005, LNAI.
Springer, 2006. To appear.

[41] T. Frühwirth. Parallelizing union-find in constrainthandling rules using confluence.
In M. Gabbrielli and G. G., editors,Logic Programming: 21st International Con-

40 1. Constraints in Procedural and Concurrent Languages

ference, ICLP 2005, volume 3668 ofLecture Notes in Computer Science, pages
113–127. Springer, Oct. 2005. URLhttp://www.informatik.uni-ulm.
de/pm/mitarbeiter/fruehwirth/Papers/puf0.%pdf .

[42] T. Frühwirth and S. Abdennadher.Essentials of Constraint Programming. Springer,
2003.

[43] H. Ganzinger and D. McAllester. A new meta-complexity theorem for bottom-up
logic programs. InInternational Joint Conference on Automated Reasoning, LNCS
2083, pages 514–528. Springer, 2001.

[44] Gecode Team. Gecode (generic constraint development environment), 2005. Avail-
able fromwww.gecode.org .

[45] J.-Y. Girard. Linear logic: Its syntax and semantics.Theoretical Computer Science,
50:1–102, 1987.

[46] C. Guéret, C. Prins, M. Sevaux, and S. Heipcke.Applications of Optimization with
XpressMP. Dash Optimization Ltd., 2002.

[47] S. Haridi, S. Janson, and C. Palamidessi. Structural operational semantics for AKL.
Future Generation Computer Systems, 8:409–421, 1992.

[48] S. Haridi, P. Van Roy, P. Brand, and C. Schulte. Programming languages for dis-
tributed applications.New Generation Computing, 16(3):223–261, 1998.

[49] S. Haridi, P. Van Roy, P. Brand, M. Mehl, R. Scheidhauer,and G. Smolka. Effi-
cient logic variables for distributed computing.ACM Transactions on Programming
Languages and Systems, 21(3):569–626, May 1999.

[50] W. Harvey and M. Ginsberg. Limited Discrepancy Search.In Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, Canada,
August 1995.

[51] M. Henz.Objects for Concurrent Constraint Programming, volume 426 ofInterna-
tional Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston, MA, USA, Oct. 1997.

[52] M. Henz, G. Smolka, and J. Würtz. Oz—A programming language for multi-agent
systems. In13th International Joint Conference on Artificial Intelligence, volume 1,
pages 404–409, Chambéry, France, 1993. Morgan Kaufmann Publishers. Revised
version appeared as [?].

[53] M. Henz, T. Müller, and K. B. Ng. Figaro: Yet another constraint programming
library. In I. de Castro Dutra, V. S. Costa, G. Gupta, E. Pontelli, M. Carro, and
P. Kacsuk, editors,Parallelism and Implementation Technology for (Constraint)
Logic Programming, pages 86–96, Las Cruces, NM, USA, Dec. 1999. New Mexico
State University.

[54] C. Holzbaur and T. Frühwirth.Constraint Handling Rules Reference Manual for
Sicstus Prolog. Vienna, Austria, July 1998. URLhttp://www.sics.se/isl/
sicstus/sicstus_34.html .

[55] Ilog CPLEX 6.0. Reference Manual. Ilog SA, Gentilly, France, 1998.
[56] Ilog OPL Studio 3.0. Reference Manual. Ilog SA, Gentilly, France, 2000.
[57] Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France, 1998.
[58] J.-L. J. Imbert. Linear constraint solving in clp-languages. In A. Podelski, editor,

Constraint Programming: Basics and Trends, LNCS 910. Springer, 1995.
[59] S. Janson.AKL - A Multiparadigm Programming Language. PhD thesis, SICS

Swedish Institute of Computer Science, SICS Box 1263, S-16428 Kista, Sweden,
1994. SICS Dissertation Series 14.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 41

[60] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language.
In V. Saraswat and K. Ueda, editors,Logic Programming, Proceedings of the 1991
International Symposium, pages 167–186, San Diego, CA, USA, Oct. 1991. The
MIT Press.

[61] S. Janson, J. Montelius, and S. Haridi. Ports for objects. InResearch Directions in
Concurrent Object-Oriented Programming. The MIT Press, Cambridge, MA, USA,
1993.

[62] F. Laburthe and Y. Caseau. SALSA: A Language for Search Algorithms. InFourth
International Conference on the Principles and Practice ofConstraint Program-
ming (CP’98), Pisa, Italy, October 1998.

[63] W. Leler. Constraint programming languages: their specification andgeneration.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988. ISBN
0-201-06243-7.

[64] M. J. Maher. Logic semantics for a class of committed-choice programs. In J.-L.
Lassez, editor,4th International Conference on Logic Programming, pages 858–
876, Cambridge, Mass., 1987. MIT Press.

[65] K. Marriott and P. J. Stuckey.Programming with Constraints: An Introduction. MIT
Press, Cambridge, Mass., 1998.

[66] L. Menezes, J. Vitorino, and M. Aurelio. A High Performance CHRv Execution
Engine. InSecond Workshop on Constraint Handling Rules, at ICLP05, Sitges,
Spain, October 2005.

[67] S. Menju, K. Sakai, Y. Sato, and A. Aiba. A study on boolean constraint solvers. In
F. Benhamou and A. Colmerauer, editors,Constraint Logic Programming: Selected
Research, pages 253–268. MIT Press, Cambridge, Mass., 1993.

[68] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.Theor.
Comput. Sci., 96(1):73–155, 1992. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
0304-3975(92)90182-F.

[69] P. Meseguer. Interleaved Depth-First Search. InProceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, Nagoya, Japan, August 1997.

[70] L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Local
Search. InConference on Object-Oriented Programming Systems, Languages, and
Applications., pages 101–110, Seattle, WA, USA, November 4-8 2002. ACM.

[71] L. Michel and P. Van Hentenryck. A Modeling Layer for Constraint-Programming
Libraries. INFORMS Journal on Computing, 2004. in press.

[72] L. Michel and P. Van Hentenryck. Non-deterministic control for hybrid search. In
CPAIOR’05: Proceedings of the 2nd International Conference on the Integration of
Constraint Programming, Artificial Intelligence and Operations Research”, pages
1–15, Prague, Czech Republic, 2005. Springer-Verlag.

[73] R. Mohr and G. Masini. Good old discrete relaxation. In8th European Conference
on Artificial Intelligence, pages 651–656, Munich, Germany, 1988.

[74] J. Montelius. Exploiting Fine-grain Parallelism in Concurrent Constraint Lan-
guages. PhD thesis, SICS Swedish Institute of Computer Science, SICS Box 1263,
S-164 28 Kista, Sweden, Apr. 1997. SICS Dissertation Series25.

[75] J. Montelius and K. A. M. Ali. An And/Or-parallel implementation of AKL. New
Generation Computing, 13–14, Aug. 1995.

[76] Mozart Consortium. The Mozart programming system, 1999. Available from
www.mozart-oz.org .

42 1. Constraints in Procedural and Concurrent Languages

[77] L. Perron. Search procedures and parallelism in constraint programming. InCP
’99: Proceedings of the 5th International Conference on Principles and Practice
of Constraint Programming, pages 346–360, London, UK, 1999. Springer-Verlag.
ISBN 3-540-66626-5.

[78] J.-F. Puget. A C++ Implementation of CLP. InProceedings of SPICIS’94, Singa-
pore, November 1994.

[79] J.-F. Puget and M. Leconte. Beyond the Glass Box: Constraints as Objects. InPro-
ceedings of the International Symposium on Logic Programming (ILPS-95), pages
513–527, Portland, OR, November 1995.

[80] V. Saraswat.Concurrent Constraint Programming. MIT Press, Cambridge, Mass.,
1993.

[81] V. A. Saraswat.Concurrent Constraint Programming. ACM Doctoral Dissertation
Awards: Logic Programming. The MIT Press, Cambridge, MA, USA, 1993.

[82] V. A. Saraswat and M. Rinard. Concurrent constraint programming. InPOPL
’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 232–245, New York, NY, USA, 1990. ACM Press.
ISBN 0-89791-343-4. doi: http://doi.acm.org/10.1145/96709.96733.

[83] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of con-
current constraint programming. InPOPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
333–352, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-419-8. doi:
http://doi.acm.org/10.1145/99583.99627.

[84] T. Schrijvers. Analyses, optimizations and extensions of constraint handling rules,
Ph.D. Thesis. Technical report, Department of Computer Science, K.U.Leuven,
Belgium, June 2005.

[85] T. Schrijvers and T. Frühwirth. Optimal union-find in constraint handling rules, pro-
gramming pearl.Theory and Practice of Logic Programming (TPLP), 6(1), 2006.
URL http://arxiv.org/abs/cs.PL/0501073 .

[86] T. Schrijvers and T. Frühwirth. CHR Website,www.cs.kuleuven.ac.be/
˜dtai/projects/CHR/ , 2006.

[87] T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Fr¨uhwirth. Automatic
implication checking for chr constraints. In6th International Workshop on Rule-
Based Programming, Apr. 2005. URLhttp://www.cs.kuleuven.ac.be/
˜dtai/publications/files/41606.pdf .

[88] T. Schrijvers, P. J. Stuckey, and G. J. Duck. Abstract interpretation for constraint
handling rules. InPPDP ’05: Proceedings of the 7th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 218–229,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. doi:http://doi.acm.
org/10.1145/1069774.1069795.

[89] T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Fr¨uhwirth. Automatic Im-
plication Checking for CHR Constraints.Electronic Notes in Theoretical Computer
Science, Proceedings of 6th International Workshop on Rule-Based Programming,
Nara, Japan, 2005, 147(1):93–111, January 2006.

[90] C. Schulte. Programming deep concurrent constraint combinators. In E. Pontelli and
V. S. Costa, editors,Practical Aspects of Declarative Languages, Second Interna-
tional Workshop, PADL 2000, volume 1753 ofLecture Notes in Computer Science,
pages 215–229, Boston, MA, USA, Jan. 2000. Springer-Verlag.

Thom Fr̈uhwirth, Laurent Michel, Christian Schulte 43

[91] C. Schulte. Parallel search made simple. In N. Beldiceanu, W. Harvey, M. Henz,
F. Laburthe, E. Monfroy, T. Müller, L. Perron, and C. Schulte, editors,Proceedings
of TRICS: Techniques foR Implementing Constraint programming Systems, a post-
conference workshop of CP 2000, number TRA9/00, pages 41–57, 55 Science Drive
2, Singapore 117599, Sept. 2000.

[92] C. Schulte. Programming Constraint Services, volume 2302 ofLecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

[93] C. Schulte. Oz Explorer: A visual constraint programming tool. In L. Naish, editor,
Proceedings of the Fourteenth International Conference onLogic Programming,
pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[94] C. Schulte. Programming constraint inference engines. In G. Smolka, editor,Pro-
ceedings of the Third International Conference on Principles and Practice of Con-
straint Programming, volume 1330 ofLecture Notes in Computer Science, pages
519–533, Schloß Hagenberg, Linz, Austria, Oct. 1997. Springer-Verlag.

[95] E. Shapiro. The family of concurrent logic programminglanguages.ACM Comput-
ing Surveys, 21(3):413–510, 1989.

[96] E. Shapiro. The family of concurrent logic programminglanguages.ACM Comput-
ing Surveys, 21(3):413–510, 1989.

[97] G. A. Sidebottom. A language for optimizing constraintpropagation, Ph.D. Thesis.
Technical report, Simon Fraser University, Canada, 1993.

[98] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, LNCS 1000, Berlin, Heidelberg, New York, 1995. Springer.

[99] G. Smolka. A foundation for higher-order concurrent constraint programming. In J.-
P. Jouannaud, editor,1st International Conference on Constraints in Computational
Logics, volume 845 ofLecture Notes in Computer Science, pages 50–72, München,
Germany, Sept. 1994. Springer-Verlag.

[100] G. Smolka. The Oz programming model. In J. van Leeuwen,editor, Computer
Science Today, volume 1000 ofLecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, 1995.

[101] J. Sneyers, T. Schrijvers, and B. Demoen. The Computational Power and Com-
plexity of Constraint Handling Rules. InSecond Workshop on Constraint Handling
Rules, at ICLP05, Sitges, Spain, October 2005.

[102] K. Ueda. Guarded horn clauses. InConcurrent Prolog, pages 140–156, Cambridge,
MA, USA, 1988. MIT Press. ISBN 0-262-19255-1.

[103] P. Van Hentenryck. Constraint and Integer Programming in OPL. Informs Journal
on Computing, 14(4):345–372, 2002.

[104] P. Van Hentenryck.The OPL Optimization Programming Language. The MIT Press,
Cambridge, Mass., 1999.

[105] P. Van Hentenryck and L. Michel. Nondeterministic Control For Hybrid Search. In
Proceedings of the Second International Conference on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR’04), Prague, Czech Republic, 2005. Springer-Verlag.

[106] P. Van Hentenryck and L. Michel.Constraint-Based Local Search. The MIT Press,
Cambridge, Mass., 2005.

[107] P. Van Hentenryck and L. Michel.New Trends in Constraints, chapter OPL Script:
Composing and Controlling Models. Lecture Note in Artificial Intelligence (LNAI
1865). Springer Verlag, 2000.

44 1. Constraints in Procedural and Concurrent Languages

[108] P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm
and its specializations.Artificial Intelligence, 57:291–321, 1992.

[109] P. van Hentenryck, V. A. Saraswat, and Y. Deville. Constraint processing in cc(FD).
In A. Podelski, editor,Constraint Programming: Basics and Trends, LNCS 910.
Springer, 1995.

[110] P. Van Hentenryck, L. Michel, and Y. Deville.Numerica: a Modeling Language for
Global Optimization. The MIT Press, Cambridge, Mass., 1997.

[111] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton:Constraint programming
over nonlinear constraints.Sci. Comput. Program., 30(1-2):83–118, 1998. ISSN
0167-6423. doi: http://dx.doi.org/10.1016/S0167-6423(97)00008-7.

[112] P. Van Hentenryck, L. Perron, and J.-F. Puget. Search and Strategies in OPL.ACM
Transactions on Computational Logic, 1(2):1–36, October 2000.

[113] P. Van Hentenryck, L. Michel, F. Paulin, and J. Puget.Modeling Languages in
Mathematical Optimization, chapter The OPL Studio Modeling System. Kluwer
Academic Publishers, 2003.

[114] P. Van Roy and S. Haridi.Concepts, Techniques, and Models of Computer Program-
ming. The MIT Press, Cambridge, MA, USA, 2004.

[115] P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mo-
bile objects in Distributed Oz.ACM Transactions on Programming Languages and
Systems, 19(5):804–851, Sept. 1997.

[116] P. Van Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, andC. Schulte. Logic pro-
gramming in the context of multiparadigm programming: the Oz experience.Theory
and Practice of Logic Programming, 3(6):715–763, Nov. 2003.

[117] P. V. Weert, T. Schrijvers, and B. Demoen. The K.U.Leuven JCHR System. In
Second Workshop on Constraint Handling Rules, at ICLP05, Sitges, Spain, October
2005.

[118] A. Wolf. Adaptive Constraint Handling with CHR in Java. In 7th International Con-
ference on Principles and Practice of Constraint Programming (CP 2001), LNCS
2239. Springer, 2001.

Appendices

