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tClassi
al Constraint Handling Rules (CHR) provide a powerful tool for spe
ify-ing and implementing 
onstraint solvers and programs. The rules of CHR rewrite
onstraints (non-deterministi
ally) into simpler ones until they are solved.In this paper we introdu
e an extension of Constraint Handling Rules (CHR),namely Probabilisti
 CHRs (PCHR). These allow the probabilisti
 \weighting" ofrules, spe
ifying the probability of their appli
ation. In this way we are able toformalise various randomised algorithms su
h as for example Simulated Annealing.The implementation is based on sour
e-to-sour
e transformation (STS). Using are
ently developed prototype for STS for CHR, we 
ould implement probabilisti
CHR in a 
on
ise way with a few lines of 
ode in less than one hour.1 Introdu
tionConstraint Handling Rules (CHR) [7℄ are a 
ommitted-
hoi
e 
on
urrent 
on-straint logi
 programming language with ask and tell 
onsisting of guardedrules that rewrite 
onjun
tions of atomi
 formulas. CHR go beyond the CCPframework [24,25℄ in the sense that they allow for multiple atoms on the lefthand side (lhs) of a rule and for propagation rules.CHR are traditionally used to spe
ify and implement 
onstraint solversand programs. The rules of CHR rewrite 
onstraints (
onjun
tions of atomi
formulas) into simpler ones until they are solved. Simpli�
ation rules repla
e
onstraints by simpler 
onstraints. Propagation rules add new 
onstraintswhi
h may 
ause further simpli�
ation. Over time, CHR have been founduseful for implementing other 
lasses of algorithms, espe
ially in 
omputa-tional logi
: 
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Fr�uhwirth, Di Pierro, Wikli
ky� theorem proving with 
onstraints� 
ombining dedu
tion, abdu
tion and 
onstraints� 
ombining forward and ba
kward 
haining� bottom-up evaluation with integrity 
onstraints� top-down evaluation with tabulation� parsing with exe
utable grammars� manipulating attributed variables� in general, produ
tion rule systemsOur probabilisti
 extension of CHR [9℄ is modelled after the Probabilisti
Con
urrent Constraint Programming (PCCP) framework [4℄. The motivationbehind PCCP was the formalisation of randomised algorithms within the CCPframework [24,25℄. These algorithms are 
hara
terised by a \
oin 
ipping" de-vi
e (random 
hoi
e) whi
h determines the 
ow of information. In the lastde
ade randomised algorithms have found widespread appli
ation in many dif-ferent areas of 
omputer s
ien
e, for example as a tool in 
omputational geom-etry and number theory. The bene�ts of randomised algorithms are simpli
ityand speed. For this reason the best known algorithms for many problemsare nowaday randomised ones [15℄, e.g. simulated annealing in 
ombinatorialoptimisation [1℄, geneti
 algorithms [11℄, probabilisti
 primality tests in par-ti
ular for use in 
rypto-systems [21℄, and randomised proof pro
edures (e.g.for linear logi
 [18℄).In PCCP randomness is expressed in the form of a probabilisti
 
hoi
e,whi
h repla
es the non-deterministi
 
ommitted 
hoi
e of CCP and CHR andallows a program to make sto
hasti
 moves during its exe
ution. For prob-abilisti
 CHR (PCHR), this translates to probabilisti
 rule 
hoi
e. Amongthe rules that are appli
able, the 
ommitted 
hoi
e of the rule is performedrandomly by taking into a

ount the relative probability asso
iated with ea
hrule.Example 1.1 The following PCHR program implements tossing a 
oin. Weuse 
on
rete Prolog-style CHR syntax in the program examples. Synta
ti
ally,the probabilities (weights) are the argument of the pragma annotation that isused in normal CHR to give hints to the 
ompiler. Here it will initiate sour
eto sour
e transformation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Ea
h side of the 
oin has the same probability. This behaviour is modelledby two rules that have the same probability to apply to a query toss(Coin),either resulting in Coin=head or Coin=tail.Besides our 
onstraint-based approa
h towards the integration of probabil-ities into a de
larative setting there is a further, ri
h literature on probabilisti
logi
 programs, sto
hasti
 logi
 programs and Bayesian logi
 programs that2
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kyhas to be mentioned in this 
ontext, for example: [23℄, [22℄, [14℄, and [17℄.The paper is organised as follows. In Se
tion 2 we brie
y dis
uss the syntaxand semanti
s of 
lassi
al, non-deterministi
 CHRs. In Se
tion 3 probabilisti
CHRs are introdu
ed formally and dis
ussed via some examples. In Se
tion 4we des
ribe an implementation of PCHR whi
h is based on sour
e-to-sour
etransformation of CHR following [10℄. Finally we 
on
lude by dis
ussing sev-eral further possible developments and ongoing work.2 Syntax and Semanti
s of CHRWe �rst introdu
e syntax and semanti
s for CHR before extending it with aprobabilisti
 
onstru
t. We assume some familiarity with (
on
urrent) 
on-straint (logi
) programming [16,8,19℄. A 
onstraint is an atomi
 formula in�rst-order logi
. We distinguish between built-in (prede�ned) 
onstraints andCHR (user-de�ned) 
onstraints. Built-in 
onstraints are those handled by aprede�ned, given 
onstraint solver. CHR 
onstraints are those de�ned by aCHR program.2.1 Abstra
t SyntaxIn the following, upper 
ase letters stand for 
onjun
tions of 
onstraints.De�nition 2.1 A CHR program is a �nite set of CHR. There are two kindsof CHR. A simpli�
ation CHR is of the formH , G j Band a propagation CHR is of the formH ) G j Bwhere the left hand side (lhs) H is a 
onjun
tion of CHR 
onstraints. Theguard G followed by the symbol j is a 
onjun
tion of built-in 
onstraints. Atrivial guard of the form true j may be dropped. true is a built-in 
onstraintthat is always satis�ed. The right hand side (rhs) of the rule 
onsists of a
onjun
tion of built-in and CHR 
onstraints B.2.2 Operational Semanti
sThe operational semanti
s of CHR programs is given by a state transition sys-tem. The semanti
s uses interleaving for the parallel 
onstru
t of 
onjun
tion.With derivation steps (transitions, redu
tions) one 
an pro
eed from one stateto the next. A derivation is a sequen
e of derivation steps.De�nition 2.2 A state (or goal) is a 
onjun
tion of built-in and CHR 
on-straints. An initial state (or query) is an arbitrary state. In a �nal state (oranswer) either the built-in 
onstraints are in
onsistent or no new derivationstep is possible anymore. 3



Fr�uhwirth, Di Pierro, Wikli
kyDe�nition 2.3 Let P be a CHR program for the CHR 
onstraints and CTbe a 
onstraint theory for the built-in 
onstraints. The transition relation 7�!for CHR is as follows:SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H ) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables usingnew symbols, and these variables form the sequen
e �x. A rule with lhs H andguard G is appli
able to CHR 
onstraints H 0 in the 
ontext of 
onstraints D,when the 
ondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of theappli
able rules 
an be applied, but it is a 
ommitted 
hoi
e, it 
annot beundone.If a simpli�
ation rule (H , G | B) is applied to the CHR 
onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagationrule (H ) G | B) is applied to H 0, the Propagate transition adds B,H = H 0 and G, but does not remove H 0. Trivial non-termination is avoidedby applying a propagation rule at most on
e to the same 
onstraints [2℄.We now dis
uss in more detail the rule appli
ability 
ondition CT j= D !9�x(H = H 0 ^ G). The equation (H = H 0) is a notational shorthand forequating the arguments of the CHR 
onstraints that o

ur in H and H 0.Operationally, the rule appli
ability 
ondition 
an be 
he
ked as follows: Giventhe built-in 
onstraints of D, try to solve the built-in 
onstraints (H = H 0^G)without further 
onstraining (tou
hing) any variable inH 0 and D. This meansthat we �rst 
he
k that H 0 mat
hes H and then 
he
k the guard G under thismat
hing.The operational semanti
s of CHR is 
on
retised in the following way:States are split into two parts - one for the built-in 
onstraints and one for theCHR 
onstraints. Built-in 
onstraints are handled immediately by the built-in
onstraint solver. The 
onjun
tion of CHR 
onstraints is implemented as aFIFO queue. The left-most (�rst) 
onstraint must be involved (mat
h onelhs atom) when a rule is applied. We 
all this 
onstraint the 
urrently a
tive
onstraint. The other 
onstraints that mat
h the remaining rule lhs atomsmay be taken from anywhere in the queue. If the rule is applied, the a
tive
onstraint may be removed depending on the rule type, the built-in 
onstraintsof the rhs of the rule are added to the built-in 
onstraints in the state andthe new CHR 
onstraints from the rhs of the rule are added to the queue. Ifno rule was appli
able to the 
urrently a
tive 
onstraint, it is moved to theend of the queue, and the next 
onstraint be
omes a
tive. If all 
onstraints4
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kyof the queue have been passed without new rule appli
ation or if the built-in 
onstraints be
ame in
onsistent, the 
omputation stops. The �nal result(answer) is the 
ontents of the queue together with the built-in 
onstraints.3 Probabilisti
 CHRProbabilisti
 CHR (PCHR) is 
hara
terised by a probabilisti
 rule 
hoi
e:Among the rules that are appli
able, the 
ommitted 
hoi
e of the rule is per-formed randomly by taking into a

ount the relative probability asso
iatedwith ea
h rule.3.1 Syntax and Operational Semanti
s of PCHRSynta
ti
ally, PCHR rules are the same as CHR rules but for the addition ofa weighting representing the relative probability of ea
h rule:De�nition 3.1 A probabilisti
 simpli�
ation CHR is of the formH ,p G j Band a probabilisti
 propagation CHR is of the formH )p G j Bwhere p is a nonnegative number.The probability asso
iated with ea
h alternative rule expresses how likely itis that, by repeating the same 
omputation suÆ
iently often, the 
omputationwill 
ontinue by a
tually performing that rule 
hoi
e. This 
an be seen asrestri
ting the original non-determinism in the 
hoi
e of the rule by spe
ifyingthe frequen
y of 
hoi
es.The operational meaning of the probabilisti
 rule 
hoi
e 
onstru
t is asfollows: Given the 
urrent 
onstraint, �nd all the rules that are appli
able.Ea
h rule is asso
iated with a probability. We have to normalise the proba-bility distribution by 
onsidering only the appli
able rules. This means thatwe have to re-de�ne the probability distribution so the sum of these proba-bilities is one. Finally, one of the appli
able rules is 
hosen a

ording to thenormalised probability distribution.As a 
onsequen
e, in the de�nition of the transition system, ea
h transition(resulting from a rule appli
ation) will have a probability asso
iated to it.De�nition 3.2 The transition relation 7�!~p for PCHR is indexed by thenormalised probability ~p and is de�ned as follows:SimplifyH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^Dif (H ,pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))5
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kyPropagateH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^H 0 ^Dif (H )pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))where ~pi = 8><>: piPrj pj if Prj pj > 01n otherwisewhere the sumPrj pj is over the probabilities of all rules rj whi
h are appli
a-ble to the 
urrent 
onstraint in the 
urrent state and the number of appli
ablerules is n.This de�nition spe
i�es the probabilities asso
iated to a single rewritestep. If we look at a whole sequen
e of rewrites we have to 
ombine theseprobabilities: The probability of a derivation is the produ
t of the probabilitiesasso
iated with ea
h of its derivation steps. We will use the symbol 7�!�p toindi
ate a derivation with probability p. Finally, we may end up with the sameresult along di�erent derivations, i.e. di�erent sequen
es of rewrites may endup with the same �nal state: In this 
ase we have to sum the probabilitiesasso
iated to ea
h of these derivations leading to the same result.Consider for example the following PCHR program:
(X) <=>1: X>=0 | a(X).
(X) <=>2: X=<0 | b(X).The query 
onstraint 
(X) will be repla
ed by a(X) if X is greater than zero,by b(X) if X is less than zero. In those two 
ases, only one rule is appli
ableand its normalised appli
ation probability is therefore always one. If X iszero, both rules are appli
able, and their normalised probabilities are 13 and 23 ,respe
tively. That means that in the long run, the se
ond rule will be appliedtwo times as often as the �rst rule.3.2 ExamplesIn order to give an overview of the type of programs and algorithms we 
aneasily spe
ify using PCHR we present in the following a number of examples.These examples will also be used to illustrate a number of interesting fea-tures of PCHRs su
h as probabilisti
 termination whi
h was introdu
ed in [6℄(
f. Example 3.4 and Example 3.5), and probabilisti
 
on
uen
e whi
h willbe introdu
ed in Se
tion 3.3. We re
all here the de�nition of probabilisti
termination.De�nition 3.3 A program is probabilisti
ally terminating if the probabilityof an in�nite path is zero.We use 
on
rete Prolog-style syntax in the examples. The following twoexamples are taken from PCCP [6℄ and have been adapted to PCHR.6
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kyExample 3.4 [Randomised Counting℄ Consider the following PCHR programto 
ompute natural numbers:nat(X) <=>0.5: X=0.nat(X) <=>0.5: X=s(Y), nat(Y).In a non-probabilisti
 implementation, a �xed rule order among the appli
ablerules is likely to be used, and then the result to the query nat(X) is eitheralways X=0 or the in�nite 
omputation resulting from the in�nite appli
ationof the se
ond rule.On the other hand, the probabilisti
 PCHR program will 
ompute all nat-ural numbers, ea
h with a 
ertain likelihood that de
reases as the numbersget larger. For example, X=0 has probability 0:5, X=s(0) has probability 0:25,et
. More pre
isely, the probability of generating the number sn(0) is 1=2n+1.Note that although this program does not terminate in CHR, it is proba-bilisti
ally terminating in PCHR as the probability of a derivation with in�nitelength is zero.Example 3.5 [Gambler's Ruin℄ Consider the following PCHR program whi
himplements a so 
alled \Random Walk in one Dimension" illustrating what isalso known as \Gambler's Ruin" [12℄:walk(X,Y) <=>1: X\=Y | walk(X+1,Y).walk(X,Y) <=>1: X\=Y | walk(X,Y+1).walk(X,Y) <=>1: X=Y | true.Let X be the number of won games (or number of pounds won) and let Y bethe number of lost games (or number of pounds lost). Then we 
an interpretwalk(1,0) as meaning that the game starts with a one pound stake and isover when all money is lost.Elementary results from probability theory show that the game will ter-minate with a ruined gambler with probability 1, despite the fa
t that thereexists the possibility of (in�nitely many) in�nite derivations, i.e. enormouslyri
h gamblers.Although there are these in�nite 
omputations (
orresponding to in�niterandom walks), the sum of the probabilities asso
iated to all �nite derivations(i.e. random walks whi
h terminate in X=Y ) is one [12,13℄. Thus, the probabil-ity of (all) in�nite derivations must be zero. As a 
onsequen
e, this program,whi
h 
lassi
ally does not terminate, does terminate in a probabilisti
 sense:If one 
ontinues playing, almost 
ertainly he will ultimately loose everything.In the following example we make use of the probability zero in order toexpress absolute rule preferen
e and negation of a guard (if-then-else).Example 3.6 The following PCHR program is an implementation of merge/3,i.e. merging two lists into one list while the elements of the input lists arrive.Thus the order of elements in the �nal list 
an di�er from 
omputation to
omputation. 7



Fr�uhwirth, Di Pierro, Wikli
kymerge([℄,L2,L3) <=>1: L2 = L3.merge(L1,[℄,L3) <=>1: L1 = L3.merge([X|L1℄,L2,L3) <=>0: L3 = [X|L℄, merge(L1,L2,L).merge(L1,[Y|L2℄,L3) <=>0: L3 = [Y|L℄, merge(L1,L2,L).The e�e
t of the probabilities asso
iated with the rules is as follows: If anempty input list is involved in the query, one of the �rst two rules will alwaysbe 
hosen, even though one of the re
ursive two rules may apply as well. Aquery merge([a℄,[b℄,L3) may either result in L3=[a,b℄ or L3=[b,a℄. Sin
ein that 
ase, the �rst two rules do not apply and both re
ursive rules have thesame probability as a 
onsequen
e, both out
omes are equally likely. In thatsense the PCHR implementation of merge is eÆ
ient and fair.The next example shows the use of parametrised probabilities.Example 3.7 [Simulated Annealing℄ Simulated Annealing (SA) is one of themost general and most popular randomised optimisation algorithms. It wasinspired by the physi
al pro
ess of annealing in thermodynami
s [20℄: If aslow 
ooling is applied to a liquid, it freezes naturally to a state of minimumenergy. The SA algorithm applies annealing to the minimisation of a 
ostfun
tion for solving problems in the area of 
ombinatorial optimisation.The SA algorithm tries to �nd a global optimum by iteratively progressingtowards better solutions while avoiding to get trapped in lo
al optima.The algorithm pro
eeds by random walks from one solution to anotherone, i.e. from the 
urrent solution a new solution is 
omputed randomly. Ea
hsolution is asso
iated with a 
ost, and we are looking for the best solution, onewith the least 
ost. To avoid being trapped in a lo
al optimum, sometimes theworse of two subsequent solutions is 
hosen. The likelihood to do so dependson a 
ontrol parameters 
alled the temperature. With ea
h iteration, thetemperature de
reases and thus makes the 
hoi
e of the worse solution moreand more unlikely. The a
tual probability to 
hoose a worse solution wastaken from thermodynami
s. It is exponential in the 
ost di�eren
e of the twosolution divided by the temperature multiplied with a 
onstant.The following PCHR program s
heme implements the generi
 SA algo-rithm: % solution(Temperature, Solution)solution(T,S) <=>1:stop_
riterion(T,S) |good_solution(S).solution(T,S) <=>0:
ool_down(T,T1),gen_next_sol(S,S1),anneal((T,S),(T1,S1)).8



Fr�uhwirth, Di Pierro, Wikli
kyanneal((T,S),(T1,S1)) <=>1:solution(T1,S1).anneal((T,S),(T1,S1)) <=>C=
ost(S), C1=Cost(S1),e^((C1-C)/(k*T))-1: C1>C |solution(T1,S).3.3 Con
uen
e of PCHR programsCon
uen
e is an important property of (non-probabilisti
) CHR programs [2℄.In a 
on
uent program, the result of a 
omputation is always the same nomatter whi
h of the appli
able rules is a
tually applied.We re
all the basi
 de�nitions as given in [2℄.De�nition 3.8 Two states S1 and S2 of a CHR program are joinable if thereexist states T1 and T2 su
h that S1 7�!� T1 and S2 7�!� T2 and T1 and T2 arevariants of ea
h other, i.e. they 
an be obtained from ea
h other by a variablerenaming.De�nition 3.9 A CHR program is 
on
uent if for all states S; S1; S2 thefollowing holds: If S 7�!� S1 and S 7�!� S2 then S1 and S2 are joinable.Given a PCHR program its CHR support (or CHR version) is given bythe CHR program obtained by removing the probability information from therules. For example the CHR support of the PCHR program
(X) <=>1: X>=0 | a(X).
(X) <=>2: X=<0 | b(X).is given by: 
(X) <=> X>=0 | a(X).
(X) <=> X=<0 | b(X).The notion of 
on
uen
e generalises in the obvious way to PCHR pro-grams: In a 
on
uent PCHR program we always rea
h the same result, pos-sibly through di�erent paths and with di�erent probabilities.De�nition 3.10 Two states S1 and S2 of a PCHR program are joinable ifthere exist states T1 and T2 su
h that S1 7�!�p1 T1 and S2 7�!�p2 T2 and T1 andT2 are variants of ea
h other, i.e. they 
an be obtained from ea
h other by avariable renaming.De�nition 3.11 A PCHR program is 
on
uent if for all states S; S1; S2 thefollowing holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 are joinable.For example, the above PCHR program is not 
on
uent, sin
e X=0, 
(X)may lead to either X=0, a(X) (with probability 1=3) or X=0, b(X) (with prob-ability 2=3).It is easy to see that any PCHR program with a 
on
uent CHR support is9
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kyitself 
on
uent. The 
onverse does not hold in general, as the following simplePCHR program demonstrates:
(X) <=>1: X>=0 | a(X).
(X) <=>0: X>=0 | b(X).This program (as a PCHR program) is 
on
uent: both rules have the sameguard, but sin
e the se
ond has a zero probability asso
iated only the �rst rulewill always be exe
uted. Its CHR support however is not 
on
uent: withoutprobabilities both rules are possible rewrites and we might therefore end upwith di�erent results.If we 
onsider the results of all possible derivations of a CHR program| i.e. if we look at fair exe
utions where all possible rewrites are eventuallyexe
uted | then this 
orresponds to 
onsidering stri
tly positive probabilitiesfor all rules in a 
orresponding PCHR program. In other words, if for theCHR support we have S 7�!� Si then there exists a probabilisti
 derivationfor the original PCHR S 7�!�pi Si for some pi > 0 and vi
e versa. For PCHRprograms with non-zero probabilities we therefore have:Proposition 3.12 If all probabilities in a PCHR program P are stri
tly pos-itive then P is 
on
uent i� its CHR support is 
on
uent.This means that the introdu
tion of probabilities does not worsen thesituation with respe
t to 
on
uen
e: CHR programs whi
h are 
on
uent arealso 
on
uent in their probabilisti
 version.For PCHR programs we 
an de�ne a notion of probabilisti
 
on
uen
ewhi
h is more \realisti
" than the notion of 
on
uen
e in the sense that itallows us to ignore those 
omputations whi
h although possible are almostnever performed (their probability is zero). Note that su
h 
omputations mustbe in�nite; in fa
t, as the (�nite) produ
t of non-zero numbers is always non-zero, we 
an only get probability zero as the limit of an in�nite produ
t. Asa 
onsequen
e, non-terminating programs whi
h are 
lassi
ally non-
on
uentmight result 
on
uent a

ording to the new notion.De�nition 3.13 A PCHR program is probabilisti
ally 
on
uent if for all statesS; S1; S2 the following holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 areprobabilisti
ally joinable.Two states S1 and S2 of a PCHR program are probabilisti
ally joinable ifthere exist states T1 and T2 su
h that S1 7�!�1 T1 and S2 7�!�1 T2 and T1 andT2 are variants of ea
h other.That means we require that from an initial state S all derivations willmeet again at the same (or equivalent under varian
e) state with probabilityone. Note that this does not ex
lude the existen
e of derivations whi
h donot rea
h that unique (up to varian
e) state, provided that their probabilityis zero, that is they are in�nite. 10
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kyIt is easy to see that any 
on
uent PCHR program is also probabilisti
ally
on
uent. If a PCHR program is 
on
uent then all derivations from an initialstate S will meet at some unique (up to varian
e) state T . In parti
ular,
on
uen
e requires that there are no (in�nite or �nite) derivations whi
h donot rea
h T . That implies that indipendently of the probability of ea
h ofthe derivations whi
h lead to T they must all sum up to one. However, theopposite is not true in general as the program in Example 3.5 implementing aone-dimensional random walk shows: It is probabilisti
ally 
on
uent (it alwaysterminates in the state where X=Y) but not 
on
uent (from the state X=Y=0we 
an rea
h X=1, Y=0 and X=0, Y=1 whi
h are not joinable).4 ImplementationWe implement PCHR by sour
e-to-sour
e program transformation (STS) inCHR [10℄. In STS, users will write STS programs to manipulate other pro-grams during their 
ompilation. The key idea of STS for CHR is that CHRrules will be translated into relational normal form by introdu
ing spe
ialCHR 
onstraints for the 
omponents of a rule, whi
h are head, guard, bodyand 
ompiler pragmas. The STS program is a spe
ial purpose 
onstraint solverthat a
ts on this representation. When a �xpoint is rea
hed, the relationalform is translated ba
k into CHR rules and normal 
ompilation 
ontinues.The result of this approa
h are strikingly simple STS programs. They are
on
ise, 
ompa
t and thus easy to inspe
t and analyse. Indeed, the 
ompleteSTS program to implement probabilisti
 CHR 
onsists of a few rules thateasily �t one page. The STS system for CHR was implemented by ChristianHolzbaur from the University of Vienna while visiting Thom Fr�uhwirth at theLudwig-Maximilians-University Muni
h.Before we look at the STS, we show by means of an example, how the obje
tprogram is represented and transformed. The example shows that PCHR 
anbe used to generate an n bit random number. More examples of PCHR 
anbe found in [9℄.Example 4.1 [n Bit Random Number℄ The random number is representedas a list of N bits that are generated re
ursively and randomly one by one.r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=>0.5: N>0 | L=[0|L1℄, rand(N-1,L1).r3 � rand(N,L) <=>0.5: N>0 | L=[1|L1℄, rand(N-1,L1).As long as there are bits to generate, the next bit will either get value 0or 1, both with same probability. When the remaining list length N is zero, anon-probabilisti
 simpli�
ation rule 
loses the list.The three rules above will be represented as the following 
onjun
tion of
onstraints to whi
h the STS program will be applied:11
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onstraint(rand/2),head(r1,rand(N,L),id1,remove), guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove), guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))), pragma(r2,0.5),head(r3,rand(N,L),id3,remove), guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))), pragma(r2,0.5).For ea
h CHR 
onstraint symbol in the obje
t program, there is a 
orre-sponding STS 
onstraint 
onstraint. Ea
h of the remaining STS 
onstraintshead, guard, body and pragma starts with an identi�er for the rule they
ome from. The se
ond argument is the respe
tive 
omponent of the rule.For the 
onstraint head, the third argument is an identi�er for the 
onstraintmat
hing the rule head, and the last argument indi
ates if the 
onstraint is tobe kept or removed. This information is ne
essary, be
ause any type of CHRrule is represented in the same normalised, relational way.Now we 
onsider the STS program for PCHR whi
h will be applied to theabove example 
ode in relational form. It simply states how the 
omponentsof the rules should be translated in 
ase the rule is probabilisti
. The tworules below basi
ally de�ne a standard transformation that makes the 
on
i
tset of the obje
t rules expli
it. The 
on
i
t set is the set of all rules that areappli
able at a parti
ular derivation step. While in normal CHR, any rule
an be 
hosen and it is a 
ommitted 
hoi
e, in probabilisti
 CHR we have to
olle
t the unnormalised probabilities from all 
andidates in the 
on
i
t setand then randomly 
hoose one rule a

ording to their probabilities (weights).pragma(R,N), head(R,H,I,remove),body(R,G) <=> number(N) |pragma(R,N), head(R,H,I,keep),body(R,(remove_
onstraint(I),G)).pragma(R,N), body(R,G) <=> number(N) |body(R,
and(N,G)).The �rst transformation rule maps all probabilisti
 rules into propagationrules that expli
itly remove the head 
onstraint(s) in the body of the ruleusing the standard CHR built-in remove 
onstraint. (The same e�e
t 
ouldalso be a
hieved using an auxiliary variable and without this standard CHRbuilt-in, but it would be less eÆ
ient.) The se
ond transformation rule wrapsthe body of a probabilisti
 rule with the run-time CHR 
onstraint 
and, whose�rst argument is the probability measure (weight) from the pragma. Note thatthe transformation rules are applied in textual order.Last but not least there is a �nal, third rule that adds a last obje
t rule12
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h de�ned CHR 
onstraint:
onstraint(C) ==>head(R1,C,I,keep), guard(R1,true), body(R1,
olle
t(0,_)).The resulting propagation rule is added at the end of the obje
t programand just 
alls the CHR 
onstraint 
olle
t(0, ) whi
h triggers the probabilitynormalisation and evaluation of the 
andidate set of appli
able probabilisti
rule bodies.For our example of random n-bit numbers, the appli
ation of the STS rulesand the �nal translation ba
k into rule syntax results in the following 
ode:r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |
and(1,(remove_
onstraint(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |
and(1,(remove_
onstraint(C),B=[1|D℄,rand(A-1,D))).r4 � rand(A,B)#C ==> 
olle
t(0,D).The #C added to the rule heads is CHR syntax for a

essing the identi-�er of the 
onstraint that mat
hed the head. Note that the �rst rule is leftuntranslated sin
e it was not probabilisti
.The probability normalisation and evaluation of the 
andidate set is a
hievedby the following rules that are de�ned in the STS program for PCHR and thatare added to the transformed obje
t program:
olle
t(M,R), 
and(N,G) <=> 
and(R,M,M+N,G), 
olle
t(M+N,R).
olle
t(M,R) <=> random(0,M,R).
and(R,M,M1,G) <=> R < M | true.
and(R,M,M1,G) <=> R >= M1 | true.
and(R,M,M1,G) <=> M =< R, R < M1 | 
all(G).The 
onstraint 
olle
t(M,R) takes a 
andidate rule body 
and(N,G) andrepla
es it by 
and(R,M,M+N,G) before 
ontinuing with 
olle
t(M+N,R). Thee�e
t of this rule is that ea
h 
andidate 
onstraint is extended by the 
ommonvariable R and by the interval M to M+N, where N is its unnormalised probabilitymeasure (weight).Instead of expli
itly normalising the probabilities (weights), 
olle
t addsthem up and �nally 
alls random(0,M,R) to produ
e a random number inthe interval from 0 to M. Note that this random number will be bound to thevariable R.The 
onjun
tion of extended 
andidate rule bodies a
t like a 
on
urrent
olle
tion of agents. As soon as they re
eive the random number throughthe variable (
hannel) R, they 
an pro
eed. If the value of R is outside of13



Fr�uhwirth, Di Pierro, Wikli
kytheir range of probabilities M to M1, the 
andidate agent simply goes away.Otherwise, it is the randomly 
hosen 
andidate and it will 
all its original rulebody G (that �rst removes its head 
onstraint rand).In this way, from the set of appli
able rules, one of the rules is randomlyapplied. The probability distribution follows the weights of the rules.5 Con
lusionsIn this paper we presented Probabilisti
 Constraint Handling Rules (PCHR)whi
h allow for an expli
ite 
ontrol of the likelihood that 
ertain rewrite rulesare applied. The resulting extension of traditional (non-deterministi
) CHRsis straightforward. It nevertheless does exhibit interesting new aspe
ts whi
himprove the expressivenes and the 
apabilities of the original language. Forexample, we 
an express fairness dire
tly at the synta
ti
 level by means of anappropriate probability distribution on the rules, and we 
an analyse averageproperties.We implemented PCHR in CHR using sour
e-to-sour
e transformation(STS). The 
omplete STS program to implement probabilisti
 CHR 
onsistsof a few rules that easily �t one page.In the future, we would like to apply PCHRs to the sear
h pro
edures of
onstraint solver written in CHR. Simulated Annealing algorithms are promis-ing 
andidates for essentially probabilisti
 
onstraint solving and/or optimi-sation algorithms.Another resear
h dire
tion | 
losely related to the appli
ation of PCHRto 
onstraint solving problems | is the study of the relation between \
haoti
iteration" in the 
ontext of 
lassi
al CHR [3℄ and \ergodi
ity" in a proba-bilisti
 setting [5℄: these two 
on
epts seem to exhibit a striking similarity,and we think that a more detailed analysis of their relationship would lead tointeresting results in the semanti
s and reasoning about (P)CHR.Finally, the introdu
tion of probabilities into the CHR framework seemsto be an essential step in allowing for an \average 
ase" analysis of 
lassi
al aswell as probabilisti
 algorithms. A parti
ular aspe
t in this 
ontext 
on
ernsthe investigation of the average running time of algorithms and/or the notionof probabilisti
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