
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 76 (2002)URL: http://www.elsevier.nl/lo
ate/ent
s/volume76.html 16 pagesProbabilisti
 Constraint Handling RulesThom Fr�uhwirthInstitut f�ur Informatik, University of Ulm, GermanyAlessandra Di PierroDipartimento di Informati
a, Universit�a di Pisa, ItalyHerbert Wikli
kyDepartment of Computing, Imperial College London, UKAbstra
tClassi
al Constraint Handling Rules (CHR) provide a powerful tool for spe
ify-ing and implementing
onstraint solvers and programs. The rules of CHR rewrite
onstraints (non-deterministi
ally) into simpler ones until they are solved.In this paper we introdu
e an extension of Constraint Handling Rules (CHR),namely Probabilisti
 CHRs (PCHR). These allow the probabilisti
 \weighting" ofrules, spe
ifying the probability of their appli
ation. In this way we are able toformalise various randomised algorithms su
h as for example Simulated Annealing.The implementation is based on sour
e-to-sour
e transformation (STS). Using are
ently developed prototype for STS for CHR, we
ould implement probabilisti
CHR in a
on
ise way with a few lines of
ode in less than one hour.1 Introdu
tionConstraint Handling Rules (CHR) [7℄ are a
ommitted-
hoi
e
on
urrent
on-straint logi
 programming language with ask and tell
onsisting of guardedrules that rewrite
onjun
tions of atomi
 formulas. CHR go beyond the CCPframework [24,25℄ in the sense that they allow for multiple atoms on the lefthand side (lhs) of a rule and for propagation rules.CHR are traditionally used to spe
ify and implement
onstraint solversand programs. The rules of CHR rewrite
onstraints (
onjun
tions of atomi
formulas) into simpler ones until they are solved. Simpli�
ation rules repla
e
onstraints by simpler
onstraints. Propagation rules add new
onstraintswhi
h may
ause further simpli�
ation. Over time, CHR have been founduseful for implementing other
lasses of algorithms, espe
ially in
omputa-tional logi
:

2002 Published by Elsevier S
ien
e B. V.

Fr�uhwirth, Di Pierro, Wikli
ky� theorem proving with
onstraints�
ombining dedu
tion, abdu
tion and
onstraints�
ombining forward and ba
kward
haining� bottom-up evaluation with integrity
onstraints� top-down evaluation with tabulation� parsing with exe
utable grammars� manipulating attributed variables� in general, produ
tion rule systemsOur probabilisti
 extension of CHR [9℄ is modelled after the Probabilisti
Con
urrent Constraint Programming (PCCP) framework [4℄. The motivationbehind PCCP was the formalisation of randomised algorithms within the CCPframework [24,25℄. These algorithms are
hara
terised by a \
oin
ipping" de-vi
e (random
hoi
e) whi
h determines the
ow of information. In the lastde
ade randomised algorithms have found widespread appli
ation in many dif-ferent areas of
omputer s
ien
e, for example as a tool in
omputational geom-etry and number theory. The bene�ts of randomised algorithms are simpli
ityand speed. For this reason the best known algorithms for many problemsare nowaday randomised ones [15℄, e.g. simulated annealing in
ombinatorialoptimisation [1℄, geneti
 algorithms [11℄, probabilisti
 primality tests in par-ti
ular for use in
rypto-systems [21℄, and randomised proof pro
edures (e.g.for linear logi
 [18℄).In PCCP randomness is expressed in the form of a probabilisti

hoi
e,whi
h repla
es the non-deterministi

ommitted
hoi
e of CCP and CHR andallows a program to make sto
hasti
 moves during its exe
ution. For prob-abilisti
 CHR (PCHR), this translates to probabilisti
 rule
hoi
e. Amongthe rules that are appli
able, the
ommitted
hoi
e of the rule is performedrandomly by taking into a

ount the relative probability asso
iated with ea
hrule.Example 1.1 The following PCHR program implements tossing a
oin. Weuse
on
rete Prolog-style CHR syntax in the program examples. Synta
ti
ally,the probabilities (weights) are the argument of the pragma annotation that isused in normal CHR to give hints to the
ompiler. Here it will initiate sour
eto sour
e transformation.toss(Coin) <=> Coin=head pragma 0.5.toss(Coin) <=> Coin=tail pragma 0.5.Ea
h side of the
oin has the same probability. This behaviour is modelledby two rules that have the same probability to apply to a query toss(Coin),either resulting in Coin=head or Coin=tail.Besides our
onstraint-based approa
h towards the integration of probabil-ities into a de
larative setting there is a further, ri
h literature on probabilisti
logi
 programs, sto
hasti
 logi
 programs and Bayesian logi
 programs that2

Fr�uhwirth, Di Pierro, Wikli
kyhas to be mentioned in this
ontext, for example: [23℄, [22℄, [14℄, and [17℄.The paper is organised as follows. In Se
tion 2 we brie
y dis
uss the syntaxand semanti
s of
lassi
al, non-deterministi
 CHRs. In Se
tion 3 probabilisti
CHRs are introdu
ed formally and dis
ussed via some examples. In Se
tion 4we des
ribe an implementation of PCHR whi
h is based on sour
e-to-sour
etransformation of CHR following [10℄. Finally we
on
lude by dis
ussing sev-eral further possible developments and ongoing work.2 Syntax and Semanti
s of CHRWe �rst introdu
e syntax and semanti
s for CHR before extending it with aprobabilisti

onstru
t. We assume some familiarity with (
on
urrent)
on-straint (logi
) programming [16,8,19℄. A
onstraint is an atomi
 formula in�rst-order logi
. We distinguish between built-in (prede�ned)
onstraints andCHR (user-de�ned)
onstraints. Built-in
onstraints are those handled by aprede�ned, given
onstraint solver. CHR
onstraints are those de�ned by aCHR program.2.1 Abstra
t SyntaxIn the following, upper
ase letters stand for
onjun
tions of
onstraints.De�nition 2.1 A CHR program is a �nite set of CHR. There are two kindsof CHR. A simpli�
ation CHR is of the formH , G j Band a propagation CHR is of the formH) G j Bwhere the left hand side (lhs) H is a
onjun
tion of CHR
onstraints. Theguard G followed by the symbol j is a
onjun
tion of built-in
onstraints. Atrivial guard of the form true j may be dropped. true is a built-in
onstraintthat is always satis�ed. The right hand side (rhs) of the rule
onsists of a
onjun
tion of built-in and CHR
onstraints B.2.2 Operational Semanti
sThe operational semanti
s of CHR programs is given by a state transition sys-tem. The semanti
s uses interleaving for the parallel
onstru
t of
onjun
tion.With derivation steps (transitions, redu
tions) one
an pro
eed from one stateto the next. A derivation is a sequen
e of derivation steps.De�nition 2.2 A state (or goal) is a
onjun
tion of built-in and CHR
on-straints. An initial state (or query) is an arbitrary state. In a �nal state (oranswer) either the built-in
onstraints are in
onsistent or no new derivationstep is possible anymore. 3

Fr�uhwirth, Di Pierro, Wikli
kyDe�nition 2.3 Let P be a CHR program for the CHR
onstraints and CTbe a
onstraint theory for the built-in
onstraints. The transition relation 7�!for CHR is as follows:SimplifyH 0 ^D 7�! (H = H 0) ^G ^ B ^Dif (H , G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))PropagateH 0 ^D 7�! (H = H 0) ^G ^ B ^H 0 ^Dif (H) G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))When we use a rule from the program, we will rename its variables usingnew symbols, and these variables form the sequen
e �x. A rule with lhs H andguard G is appli
able to CHR
onstraints H 0 in the
ontext of
onstraints D,when the
ondition holds that CT j= D ! 9�x(H = H 0 ^ G). Any of theappli
able rules
an be applied, but it is a
ommitted
hoi
e, it
annot beundone.If a simpli�
ation rule (H , G | B) is applied to the CHR
onstraintsH 0, the Simplify transition removes H 0 from the state, adds the rhs B to thestate and also adds the equation H = H 0 and the guard G. If a propagationrule (H) G | B) is applied to H 0, the Propagate transition adds B,H = H 0 and G, but does not remove H 0. Trivial non-termination is avoidedby applying a propagation rule at most on
e to the same
onstraints [2℄.We now dis
uss in more detail the rule appli
ability
ondition CT j= D !9�x(H = H 0 ^ G). The equation (H = H 0) is a notational shorthand forequating the arguments of the CHR
onstraints that o

ur in H and H 0.Operationally, the rule appli
ability
ondition
an be
he
ked as follows: Giventhe built-in
onstraints of D, try to solve the built-in
onstraints (H = H 0^G)without further
onstraining (tou
hing) any variable inH 0 and D. This meansthat we �rst
he
k that H 0 mat
hes H and then
he
k the guard G under thismat
hing.The operational semanti
s of CHR is
on
retised in the following way:States are split into two parts - one for the built-in
onstraints and one for theCHR
onstraints. Built-in
onstraints are handled immediately by the built-in
onstraint solver. The
onjun
tion of CHR
onstraints is implemented as aFIFO queue. The left-most (�rst)
onstraint must be involved (mat
h onelhs atom) when a rule is applied. We
all this
onstraint the
urrently a
tive
onstraint. The other
onstraints that mat
h the remaining rule lhs atomsmay be taken from anywhere in the queue. If the rule is applied, the a
tive
onstraint may be removed depending on the rule type, the built-in
onstraintsof the rhs of the rule are added to the built-in
onstraints in the state andthe new CHR
onstraints from the rhs of the rule are added to the queue. Ifno rule was appli
able to the
urrently a
tive
onstraint, it is moved to theend of the queue, and the next
onstraint be
omes a
tive. If all
onstraints4

Fr�uhwirth, Di Pierro, Wikli
kyof the queue have been passed without new rule appli
ation or if the built-in
onstraints be
ame in
onsistent, the
omputation stops. The �nal result(answer) is the
ontents of the queue together with the built-in
onstraints.3 Probabilisti
 CHRProbabilisti
 CHR (PCHR) is
hara
terised by a probabilisti
 rule
hoi
e:Among the rules that are appli
able, the
ommitted
hoi
e of the rule is per-formed randomly by taking into a

ount the relative probability asso
iatedwith ea
h rule.3.1 Syntax and Operational Semanti
s of PCHRSynta
ti
ally, PCHR rules are the same as CHR rules but for the addition ofa weighting representing the relative probability of ea
h rule:De�nition 3.1 A probabilisti
 simpli�
ation CHR is of the formH ,p G j Band a probabilisti
 propagation CHR is of the formH)p G j Bwhere p is a nonnegative number.The probability asso
iated with ea
h alternative rule expresses how likely itis that, by repeating the same
omputation suÆ
iently often, the
omputationwill
ontinue by a
tually performing that rule
hoi
e. This
an be seen asrestri
ting the original non-determinism in the
hoi
e of the rule by spe
ifyingthe frequen
y of
hoi
es.The operational meaning of the probabilisti
 rule
hoi
e
onstru
t is asfollows: Given the
urrent
onstraint, �nd all the rules that are appli
able.Ea
h rule is asso
iated with a probability. We have to normalise the proba-bility distribution by
onsidering only the appli
able rules. This means thatwe have to re-de�ne the probability distribution so the sum of these proba-bilities is one. Finally, one of the appli
able rules is
hosen a

ording to thenormalised probability distribution.As a
onsequen
e, in the de�nition of the transition system, ea
h transition(resulting from a rule appli
ation) will have a probability asso
iated to it.De�nition 3.2 The transition relation 7�!~p for PCHR is indexed by thenormalised probability ~p and is de�ned as follows:SimplifyH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^Dif (H ,pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))5

Fr�uhwirth, Di Pierro, Wikli
kyPropagateH 0 ^D 7�! ~pi (H = H 0) ^G ^ B ^H 0 ^Dif (H)pi G j B) in P and CT j= 8(D! 9�x(H = H 0 ^G))where ~pi = 8><>: piPrj pj if Prj pj > 01n otherwisewhere the sumPrj pj is over the probabilities of all rules rj whi
h are appli
a-ble to the
urrent
onstraint in the
urrent state and the number of appli
ablerules is n.This de�nition spe
i�es the probabilities asso
iated to a single rewritestep. If we look at a whole sequen
e of rewrites we have to
ombine theseprobabilities: The probability of a derivation is the produ
t of the probabilitiesasso
iated with ea
h of its derivation steps. We will use the symbol 7�!�p toindi
ate a derivation with probability p. Finally, we may end up with the sameresult along di�erent derivations, i.e. di�erent sequen
es of rewrites may endup with the same �nal state: In this
ase we have to sum the probabilitiesasso
iated to ea
h of these derivations leading to the same result.Consider for example the following PCHR program:
(X) <=>1: X>=0 | a(X).
(X) <=>2: X=<0 | b(X).The query
onstraint
(X) will be repla
ed by a(X) if X is greater than zero,by b(X) if X is less than zero. In those two
ases, only one rule is appli
ableand its normalised appli
ation probability is therefore always one. If X iszero, both rules are appli
able, and their normalised probabilities are 13 and 23 ,respe
tively. That means that in the long run, the se
ond rule will be appliedtwo times as often as the �rst rule.3.2 ExamplesIn order to give an overview of the type of programs and algorithms we
aneasily spe
ify using PCHR we present in the following a number of examples.These examples will also be used to illustrate a number of interesting fea-tures of PCHRs su
h as probabilisti
 termination whi
h was introdu
ed in [6℄(
f. Example 3.4 and Example 3.5), and probabilisti

on
uen
e whi
h willbe introdu
ed in Se
tion 3.3. We re
all here the de�nition of probabilisti
termination.De�nition 3.3 A program is probabilisti
ally terminating if the probabilityof an in�nite path is zero.We use
on
rete Prolog-style syntax in the examples. The following twoexamples are taken from PCCP [6℄ and have been adapted to PCHR.6

Fr�uhwirth, Di Pierro, Wikli
kyExample 3.4 [Randomised Counting℄ Consider the following PCHR programto
ompute natural numbers:nat(X) <=>0.5: X=0.nat(X) <=>0.5: X=s(Y), nat(Y).In a non-probabilisti
 implementation, a �xed rule order among the appli
ablerules is likely to be used, and then the result to the query nat(X) is eitheralways X=0 or the in�nite
omputation resulting from the in�nite appli
ationof the se
ond rule.On the other hand, the probabilisti
 PCHR program will
ompute all nat-ural numbers, ea
h with a
ertain likelihood that de
reases as the numbersget larger. For example, X=0 has probability 0:5, X=s(0) has probability 0:25,et
. More pre
isely, the probability of generating the number sn(0) is 1=2n+1.Note that although this program does not terminate in CHR, it is proba-bilisti
ally terminating in PCHR as the probability of a derivation with in�nitelength is zero.Example 3.5 [Gambler's Ruin℄ Consider the following PCHR program whi
himplements a so
alled \Random Walk in one Dimension" illustrating what isalso known as \Gambler's Ruin" [12℄:walk(X,Y) <=>1: X\=Y | walk(X+1,Y).walk(X,Y) <=>1: X\=Y | walk(X,Y+1).walk(X,Y) <=>1: X=Y | true.Let X be the number of won games (or number of pounds won) and let Y bethe number of lost games (or number of pounds lost). Then we
an interpretwalk(1,0) as meaning that the game starts with a one pound stake and isover when all money is lost.Elementary results from probability theory show that the game will ter-minate with a ruined gambler with probability 1, despite the fa
t that thereexists the possibility of (in�nitely many) in�nite derivations, i.e. enormouslyri
h gamblers.Although there are these in�nite
omputations (
orresponding to in�niterandom walks), the sum of the probabilities asso
iated to all �nite derivations(i.e. random walks whi
h terminate in X=Y) is one [12,13℄. Thus, the probabil-ity of (all) in�nite derivations must be zero. As a
onsequen
e, this program,whi
h
lassi
ally does not terminate, does terminate in a probabilisti
 sense:If one
ontinues playing, almost
ertainly he will ultimately loose everything.In the following example we make use of the probability zero in order toexpress absolute rule preferen
e and negation of a guard (if-then-else).Example 3.6 The following PCHR program is an implementation of merge/3,i.e. merging two lists into one list while the elements of the input lists arrive.Thus the order of elements in the �nal list
an di�er from
omputation to
omputation. 7

Fr�uhwirth, Di Pierro, Wikli
kymerge([℄,L2,L3) <=>1: L2 = L3.merge(L1,[℄,L3) <=>1: L1 = L3.merge([X|L1℄,L2,L3) <=>0: L3 = [X|L℄, merge(L1,L2,L).merge(L1,[Y|L2℄,L3) <=>0: L3 = [Y|L℄, merge(L1,L2,L).The e�e
t of the probabilities asso
iated with the rules is as follows: If anempty input list is involved in the query, one of the �rst two rules will alwaysbe
hosen, even though one of the re
ursive two rules may apply as well. Aquery merge([a℄,[b℄,L3) may either result in L3=[a,b℄ or L3=[b,a℄. Sin
ein that
ase, the �rst two rules do not apply and both re
ursive rules have thesame probability as a
onsequen
e, both out
omes are equally likely. In thatsense the PCHR implementation of merge is eÆ
ient and fair.The next example shows the use of parametrised probabilities.Example 3.7 [Simulated Annealing℄ Simulated Annealing (SA) is one of themost general and most popular randomised optimisation algorithms. It wasinspired by the physi
al pro
ess of annealing in thermodynami
s [20℄: If aslow
ooling is applied to a liquid, it freezes naturally to a state of minimumenergy. The SA algorithm applies annealing to the minimisation of a
ostfun
tion for solving problems in the area of
ombinatorial optimisation.The SA algorithm tries to �nd a global optimum by iteratively progressingtowards better solutions while avoiding to get trapped in lo
al optima.The algorithm pro
eeds by random walks from one solution to anotherone, i.e. from the
urrent solution a new solution is
omputed randomly. Ea
hsolution is asso
iated with a
ost, and we are looking for the best solution, onewith the least
ost. To avoid being trapped in a lo
al optimum, sometimes theworse of two subsequent solutions is
hosen. The likelihood to do so dependson a
ontrol parameters
alled the temperature. With ea
h iteration, thetemperature de
reases and thus makes the
hoi
e of the worse solution moreand more unlikely. The a
tual probability to
hoose a worse solution wastaken from thermodynami
s. It is exponential in the
ost di�eren
e of the twosolution divided by the temperature multiplied with a
onstant.The following PCHR program s
heme implements the generi
 SA algo-rithm: % solution(Temperature, Solution)solution(T,S) <=>1:stop_
riterion(T,S) |good_solution(S).solution(T,S) <=>0:
ool_down(T,T1),gen_next_sol(S,S1),anneal((T,S),(T1,S1)).8

Fr�uhwirth, Di Pierro, Wikli
kyanneal((T,S),(T1,S1)) <=>1:solution(T1,S1).anneal((T,S),(T1,S1)) <=>C=
ost(S), C1=Cost(S1),e^((C1-C)/(k*T))-1: C1>C |solution(T1,S).3.3 Con
uen
e of PCHR programsCon
uen
e is an important property of (non-probabilisti
) CHR programs [2℄.In a
on
uent program, the result of a
omputation is always the same nomatter whi
h of the appli
able rules is a
tually applied.We re
all the basi
 de�nitions as given in [2℄.De�nition 3.8 Two states S1 and S2 of a CHR program are joinable if thereexist states T1 and T2 su
h that S1 7�!� T1 and S2 7�!� T2 and T1 and T2 arevariants of ea
h other, i.e. they
an be obtained from ea
h other by a variablerenaming.De�nition 3.9 A CHR program is
on
uent if for all states S; S1; S2 thefollowing holds: If S 7�!� S1 and S 7�!� S2 then S1 and S2 are joinable.Given a PCHR program its CHR support (or CHR version) is given bythe CHR program obtained by removing the probability information from therules. For example the CHR support of the PCHR program
(X) <=>1: X>=0 | a(X).
(X) <=>2: X=<0 | b(X).is given by:
(X) <=> X>=0 | a(X).
(X) <=> X=<0 | b(X).The notion of
on
uen
e generalises in the obvious way to PCHR pro-grams: In a
on
uent PCHR program we always rea
h the same result, pos-sibly through di�erent paths and with di�erent probabilities.De�nition 3.10 Two states S1 and S2 of a PCHR program are joinable ifthere exist states T1 and T2 su
h that S1 7�!�p1 T1 and S2 7�!�p2 T2 and T1 andT2 are variants of ea
h other, i.e. they
an be obtained from ea
h other by avariable renaming.De�nition 3.11 A PCHR program is
on
uent if for all states S; S1; S2 thefollowing holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 are joinable.For example, the above PCHR program is not
on
uent, sin
e X=0,
(X)may lead to either X=0, a(X) (with probability 1=3) or X=0, b(X) (with prob-ability 2=3).It is easy to see that any PCHR program with a
on
uent CHR support is9

Fr�uhwirth, Di Pierro, Wikli
kyitself
on
uent. The
onverse does not hold in general, as the following simplePCHR program demonstrates:
(X) <=>1: X>=0 | a(X).
(X) <=>0: X>=0 | b(X).This program (as a PCHR program) is
on
uent: both rules have the sameguard, but sin
e the se
ond has a zero probability asso
iated only the �rst rulewill always be exe
uted. Its CHR support however is not
on
uent: withoutprobabilities both rules are possible rewrites and we might therefore end upwith di�erent results.If we
onsider the results of all possible derivations of a CHR program| i.e. if we look at fair exe
utions where all possible rewrites are eventuallyexe
uted | then this
orresponds to
onsidering stri
tly positive probabilitiesfor all rules in a
orresponding PCHR program. In other words, if for theCHR support we have S 7�!� Si then there exists a probabilisti
 derivationfor the original PCHR S 7�!�pi Si for some pi > 0 and vi
e versa. For PCHRprograms with non-zero probabilities we therefore have:Proposition 3.12 If all probabilities in a PCHR program P are stri
tly pos-itive then P is
on
uent i� its CHR support is
on
uent.This means that the introdu
tion of probabilities does not worsen thesituation with respe
t to
on
uen
e: CHR programs whi
h are
on
uent arealso
on
uent in their probabilisti
 version.For PCHR programs we
an de�ne a notion of probabilisti

on
uen
ewhi
h is more \realisti
" than the notion of
on
uen
e in the sense that itallows us to ignore those
omputations whi
h although possible are almostnever performed (their probability is zero). Note that su
h
omputations mustbe in�nite; in fa
t, as the (�nite) produ
t of non-zero numbers is always non-zero, we
an only get probability zero as the limit of an in�nite produ
t. Asa
onsequen
e, non-terminating programs whi
h are
lassi
ally non-
on
uentmight result
on
uent a

ording to the new notion.De�nition 3.13 A PCHR program is probabilisti
ally
on
uent if for all statesS; S1; S2 the following holds: If S 7�!�p1 S1 and S 7�!�p2 S2 then S1 and S2 areprobabilisti
ally joinable.Two states S1 and S2 of a PCHR program are probabilisti
ally joinable ifthere exist states T1 and T2 su
h that S1 7�!�1 T1 and S2 7�!�1 T2 and T1 andT2 are variants of ea
h other.That means we require that from an initial state S all derivations willmeet again at the same (or equivalent under varian
e) state with probabilityone. Note that this does not ex
lude the existen
e of derivations whi
h donot rea
h that unique (up to varian
e) state, provided that their probabilityis zero, that is they are in�nite. 10

Fr�uhwirth, Di Pierro, Wikli
kyIt is easy to see that any
on
uent PCHR program is also probabilisti
ally
on
uent. If a PCHR program is
on
uent then all derivations from an initialstate S will meet at some unique (up to varian
e) state T . In parti
ular,
on
uen
e requires that there are no (in�nite or �nite) derivations whi
h donot rea
h T . That implies that indipendently of the probability of ea
h ofthe derivations whi
h lead to T they must all sum up to one. However, theopposite is not true in general as the program in Example 3.5 implementing aone-dimensional random walk shows: It is probabilisti
ally
on
uent (it alwaysterminates in the state where X=Y) but not
on
uent (from the state X=Y=0we
an rea
h X=1, Y=0 and X=0, Y=1 whi
h are not joinable).4 ImplementationWe implement PCHR by sour
e-to-sour
e program transformation (STS) inCHR [10℄. In STS, users will write STS programs to manipulate other pro-grams during their
ompilation. The key idea of STS for CHR is that CHRrules will be translated into relational normal form by introdu
ing spe
ialCHR
onstraints for the
omponents of a rule, whi
h are head, guard, bodyand
ompiler pragmas. The STS program is a spe
ial purpose
onstraint solverthat a
ts on this representation. When a �xpoint is rea
hed, the relationalform is translated ba
k into CHR rules and normal
ompilation
ontinues.The result of this approa
h are strikingly simple STS programs. They are
on
ise,
ompa
t and thus easy to inspe
t and analyse. Indeed, the
ompleteSTS program to implement probabilisti
 CHR
onsists of a few rules thateasily �t one page. The STS system for CHR was implemented by ChristianHolzbaur from the University of Vienna while visiting Thom Fr�uhwirth at theLudwig-Maximilians-University Muni
h.Before we look at the STS, we show by means of an example, how the obje
tprogram is represented and transformed. The example shows that PCHR
anbe used to generate an n bit random number. More examples of PCHR
anbe found in [9℄.Example 4.1 [n Bit Random Number℄ The random number is representedas a list of N bits that are generated re
ursively and randomly one by one.r1 � rand(N,L) <=> N=:=0 | L=[℄.r2 � rand(N,L) <=>0.5: N>0 | L=[0|L1℄, rand(N-1,L1).r3 � rand(N,L) <=>0.5: N>0 | L=[1|L1℄, rand(N-1,L1).As long as there are bits to generate, the next bit will either get value 0or 1, both with same probability. When the remaining list length N is zero, anon-probabilisti
 simpli�
ation rule
loses the list.The three rules above will be represented as the following
onjun
tion of
onstraints to whi
h the STS program will be applied:11

Fr�uhwirth, Di Pierro, Wikli
ky
onstraint(rand/2),head(r1,rand(N,L),id1,remove), guard(r1,N=:=0),body(r1,L=[℄),head(r2,rand(N,L),id2,remove), guard(r2,N>0),body(r2,(L=[0|L1℄,rand(N-1,L1))), pragma(r2,0.5),head(r3,rand(N,L),id3,remove), guard(r3,N>0),body(r3,(L=[1|L1℄,rand(N-1,L1))), pragma(r2,0.5).For ea
h CHR
onstraint symbol in the obje
t program, there is a
orre-sponding STS
onstraint
onstraint. Ea
h of the remaining STS
onstraintshead, guard, body and pragma starts with an identi�er for the rule they
ome from. The se
ond argument is the respe
tive
omponent of the rule.For the
onstraint head, the third argument is an identi�er for the
onstraintmat
hing the rule head, and the last argument indi
ates if the
onstraint is tobe kept or removed. This information is ne
essary, be
ause any type of CHRrule is represented in the same normalised, relational way.Now we
onsider the STS program for PCHR whi
h will be applied to theabove example
ode in relational form. It simply states how the
omponentsof the rules should be translated in
ase the rule is probabilisti
. The tworules below basi
ally de�ne a standard transformation that makes the
on
i
tset of the obje
t rules expli
it. The
on
i
t set is the set of all rules that areappli
able at a parti
ular derivation step. While in normal CHR, any rule
an be
hosen and it is a
ommitted
hoi
e, in probabilisti
 CHR we have to
olle
t the unnormalised probabilities from all
andidates in the
on
i
t setand then randomly
hoose one rule a

ording to their probabilities (weights).pragma(R,N), head(R,H,I,remove),body(R,G) <=> number(N) |pragma(R,N), head(R,H,I,keep),body(R,(remove_
onstraint(I),G)).pragma(R,N), body(R,G) <=> number(N) |body(R,
and(N,G)).The �rst transformation rule maps all probabilisti
 rules into propagationrules that expli
itly remove the head
onstraint(s) in the body of the ruleusing the standard CHR built-in remove
onstraint. (The same e�e
t
ouldalso be a
hieved using an auxiliary variable and without this standard CHRbuilt-in, but it would be less eÆ
ient.) The se
ond transformation rule wrapsthe body of a probabilisti
 rule with the run-time CHR
onstraint
and, whose�rst argument is the probability measure (weight) from the pragma. Note thatthe transformation rules are applied in textual order.Last but not least there is a �nal, third rule that adds a last obje
t rule12

Fr�uhwirth, Di Pierro, Wikli
kyfor ea
h de�ned CHR
onstraint:
onstraint(C) ==>head(R1,C,I,keep), guard(R1,true), body(R1,
olle
t(0,_)).The resulting propagation rule is added at the end of the obje
t programand just
alls the CHR
onstraint
olle
t(0,) whi
h triggers the probabilitynormalisation and evaluation of the
andidate set of appli
able probabilisti
rule bodies.For our example of random n-bit numbers, the appli
ation of the STS rulesand the �nal translation ba
k into rule syntax results in the following
ode:r1 � rand(A,B)#C <=> A=:=0 | B=[℄.r2 � rand(A,B)#C ==> A>0 |
and(1,(remove_
onstraint(C),B=[0|D℄,rand(A-1,D))).r3 � rand(A,B)#C ==> A>0 |
and(1,(remove_
onstraint(C),B=[1|D℄,rand(A-1,D))).r4 � rand(A,B)#C ==>
olle
t(0,D).The #C added to the rule heads is CHR syntax for a

essing the identi-�er of the
onstraint that mat
hed the head. Note that the �rst rule is leftuntranslated sin
e it was not probabilisti
.The probability normalisation and evaluation of the
andidate set is a
hievedby the following rules that are de�ned in the STS program for PCHR and thatare added to the transformed obje
t program:
olle
t(M,R),
and(N,G) <=>
and(R,M,M+N,G),
olle
t(M+N,R).
olle
t(M,R) <=> random(0,M,R).
and(R,M,M1,G) <=> R < M | true.
and(R,M,M1,G) <=> R >= M1 | true.
and(R,M,M1,G) <=> M =< R, R < M1 |
all(G).The
onstraint
olle
t(M,R) takes a
andidate rule body
and(N,G) andrepla
es it by
and(R,M,M+N,G) before
ontinuing with
olle
t(M+N,R). Thee�e
t of this rule is that ea
h
andidate
onstraint is extended by the
ommonvariable R and by the interval M to M+N, where N is its unnormalised probabilitymeasure (weight).Instead of expli
itly normalising the probabilities (weights),
olle
t addsthem up and �nally
alls random(0,M,R) to produ
e a random number inthe interval from 0 to M. Note that this random number will be bound to thevariable R.The
onjun
tion of extended
andidate rule bodies a
t like a
on
urrent
olle
tion of agents. As soon as they re
eive the random number throughthe variable (
hannel) R, they
an pro
eed. If the value of R is outside of13

Fr�uhwirth, Di Pierro, Wikli
kytheir range of probabilities M to M1, the
andidate agent simply goes away.Otherwise, it is the randomly
hosen
andidate and it will
all its original rulebody G (that �rst removes its head
onstraint rand).In this way, from the set of appli
able rules, one of the rules is randomlyapplied. The probability distribution follows the weights of the rules.5 Con
lusionsIn this paper we presented Probabilisti
 Constraint Handling Rules (PCHR)whi
h allow for an expli
ite
ontrol of the likelihood that
ertain rewrite rulesare applied. The resulting extension of traditional (non-deterministi
) CHRsis straightforward. It nevertheless does exhibit interesting new aspe
ts whi
himprove the expressivenes and the
apabilities of the original language. Forexample, we
an express fairness dire
tly at the synta
ti
 level by means of anappropriate probability distribution on the rules, and we
an analyse averageproperties.We implemented PCHR in CHR using sour
e-to-sour
e transformation(STS). The
omplete STS program to implement probabilisti
 CHR
onsistsof a few rules that easily �t one page.In the future, we would like to apply PCHRs to the sear
h pro
edures of
onstraint solver written in CHR. Simulated Annealing algorithms are promis-ing
andidates for essentially probabilisti

onstraint solving and/or optimi-sation algorithms.Another resear
h dire
tion |
losely related to the appli
ation of PCHRto
onstraint solving problems | is the study of the relation between \
haoti
iteration" in the
ontext of
lassi
al CHR [3℄ and \ergodi
ity" in a proba-bilisti
 setting [5℄: these two
on
epts seem to exhibit a striking similarity,and we think that a more detailed analysis of their relationship would lead tointeresting results in the semanti
s and reasoning about (P)CHR.Finally, the introdu
tion of probabilities into the CHR framework seemsto be an essential step in allowing for an \average
ase" analysis of
lassi
al aswell as probabilisti
 algorithms. A parti
ular aspe
t in this
ontext
on
ernsthe investigation of the average running time of algorithms and/or the notionof probabilisti
 termination for PCHR, similar in spirit to what has been donefor PCCP [6℄.Referen
es[1℄ Aarts, E. and J. Korst, \Simulated Annealing and Boltzmann Ma
hines," JohnWiley & Sons, Chi
ester, 1989.[2℄ Abdennadher, S., Operational semanti
s and
on
uen
e of
onstraintpropagation rules, in: 3rd Intl Conf on Prin
iples and Pra
ti
e of ConstraintProgramming, LNCS 1330 (1997), pp. 252{266.14

Fr�uhwirth, Di Pierro, Wikli
ky[3℄ Apt, K. R., From
haoti
 iteration to
onstraint propagation, in: P. Degano,R. Gorrieri and A. Mar
hetti-Spa

amela, editors, Automata, Languages andProgramming, 24th International Colloquium, Le
ture Notes in ComputerS
ien
e 1256 (1997), pp. 36{55.[4℄ Di Pierro, A. and H. Wikli
ky, An Operational Semanti
s for Probabilisti
Con
urrent Constraint Programming, in: Y. C. P. Iyer and D. S
hmidt, editors,Pro
eedings of ICCL'98 { International Conferen
e on Computer Languages(1998), pp. 174{183.[5℄ Di Pierro, A. and H. Wikli
ky, Ergodi
 average in
onstraint programming,in: M. Kwiatkowska, editor, Pro
eedings of PROBMIV'99 { 2nd InternationalWorkshop on Probabilisti
 Methods in Veri�
ation, number CSR-99-8 inTe
hni
al Report (1999), pp. 49{56.[6℄ Di Pierro, A. and H. Wikli
ky, Quantitative observables and averages inProbabilisti
 Con
urrent Constraint Programming, in: K. Apt, T. Kakas,E. Monfroy and F. Rossi, editors, New Trends in Constraints, number 1865in Le
ture Notes in Computer S
ien
e (2000), pp. 212{236.[7℄ Fr�uhwirth, T., Theory and pra
ti
e of
onstraint handling rules, Journal ofLogi
 Programming 37 (1998), pp. 95{138, Spe
ial Issue on Constraint Logi
Programming.[8℄ Fr�uhwirth, T. and S. Abdennadher, \Essentials of Constraint Programming,"Springer, Berlin, 2002.[9℄ Fr�uhwirth, T., A. D. Pierro and H. Wikli
ky, Towards probabilisti

onstrainthandling rules, Third Workshop on Rule-Based Constraint Reasoning andProgramming (RCoRP'01) at CP'01 and ICLP'01 (2001).[10℄ Fr�uhwirth, T., A. D. Pierro and H. Wikli
ky, An implementation of probabilisti

onstraint handling rules, 11th International Workshop on Fun
tional and(Constraint) Logi
 Programming (WFLP 2002) (2002).[11℄ Goldberg, D. E., \Geneti
 Algorithms in Sear
h, Optimization, and Ma
hineLearning," Addison{Wesley, Reading, Massa
husetts, 1989.[12℄ Grimmett, G. R. and D. Stirzaker, \Probability and Random Pro
esses,"Clarendon Press, Oxford, 1992, se
ond edition.[13℄ Grinstead, C. M. and J. L. Snell, \Introdu
tion to Probability," Ameri
anMathemati
al So
iety, Providen
e, Rhode Island, 1997, se
ond revised edition.[14℄ Gupta, V., R. Jagadeesan and P. Panangaden, Sto
hasti
 programs as
on
urrent
onstraint programs, in: Pro
eedings of POPL'99 | 26th Symposiumon Prin
iples of Programming Languages (1999), pp. 189{202.[15℄ Ho
hbaum, D. S., editor, \Approximation Algorithms for NP-Hard Problems,"PWS Publishing Company, Boston, Massa
husetts, 1997.[16℄ Ja�ar, J. and M. J. Maher, Constraint logi
 programming: A survey, TheJournal of Logi
 Programming 19 & 20 (1994), pp. 503{581.15

Fr�uhwirth, Di Pierro, Wikli
ky[17℄ Kersting, K. and L. D. Raedt, Bayesian logi
 programs, in: Pro
eedings of theWork-in-Progress Tra
k at the 10th International Conferen
e on Indu
tive Logi
Programming, 2000.[18℄ Lin
oln, P. D., J. C. Mit
hell and A. S
edrov, Sto
hasti
 intera
tion and LinearLogi
, in: J.-Y. Girard, Y. Lafont and L. Regnier, editors, Advan
es in LinearLogi
, London Mathemati
al So
iety Le
ture Note Series 222, CambridgeUniversity Press, Cambridge, 1995 pp. 147{166.[19℄ Marriott, K. and P. J. Stu
key, \Programming with Constraints: AnIntrodu
tion," MIT Press, 1998.[20℄ Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equationof state
al
ulations for fast
omputing ma
hines, Journal of Chemi
al Physi
s21 (1953), pp. 1087{1092.[21℄ Motwani, R. and P. Raghavan, \Randomized Algorithms," CambridgeUniversity Press, Cambridge, England, 1995.[22℄ Muggleton, S., Sto
hasti
 logi
 programs, in: L. De Raedt, editor, Pro
eedings ofthe 5th International Workshop on Indu
tive Logi
 Programming (1995), p. 29.[23℄ Ng, R. T. and V. S. Subrahmanian,Probabilisti
 logi
 programming, Informationand Computation 101 (1992), pp. 150{201.[24℄ Saraswat, V. A. and M. Rinard, Con
urrent
onstraint programming, in:Pro
eedings of POPL'90 { Symposium on Prin
iples of Programming Languages(1990), pp. 232{245.[25℄ Saraswat, V. A., M. Rinard and P. Panangaden, Semanti
s foundations of
on
urrent
onstraint programming, in: Pro
eedings of POPL'91 { Symposiumon Prin
iples of Programming Languages (1991), pp. 333{353.

16

