Electronic Notes in Theoretical Computer Science 76 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume76.html 16 pages

Probabilistic Constraint Handling Rules

Thom Friuhwirth

Institut fir Informatik, University of Ulm, Germany

Alessandra Di Pierro

Dipartimento di Informatica, Universitd di Pisa, Italy

Herbert Wiklicky

Department of Computing, Imperial College London, UK

Abstract

Classical Constraint Handling Rules (CHR) provide a powerful tool for specify-
ing and implementing constraint solvers and programs. The rules of CHR rewrite
constraints (non-deterministically) into simpler ones until they are solved.

In this paper we introduce an extension of Constraint Handling Rules (CHR),
namely Probabilistic CHRs (PCHR). These allow the probabilistic “weighting” of
rules, specifying the probability of their application. In this way we are able to
formalise various randomised algorithms such as for example Simulated Annealing.

The implementation is based on source-to-source transformation (STS). Using a
recently developed prototype for STS for CHR, we could implement probabilistic
CHR in a concise way with a few lines of code in less than one hour.

1 Introduction

Constraint Handling Rules (CHR) [7] are a committed-choice concurrent con-
straint logic programming language with ask and tell consisting of guarded
rules that rewrite conjunctions of atomic formulas. CHR go beyond the CCP
framework [24,25] in the sense that they allow for multiple atoms on the left
hand side (lhs) of a rule and for propagation rules.

CHR are traditionally used to specify and implement constraint solvers
and programs. The rules of CHR rewrite constraints (conjunctions of atomic
formulas) into simpler ones until they are solved. Simplification rules replace
constraints by simpler constraints. Propagation rules add new constraints
which may cause further simplification. Over time, CHR have been found
useful for implementing other classes of algorithms, especially in computa-
tional logic:

(©2002 Published by Elsevier Science B. V.

FRUHWIRTH, DI PIERRO, WIKLICKY

* theorem proving with constraints

» combining deduction, abduction and constraints
* combining forward and backward chaining

* bottom-up evaluation with integrity constraints
* top-down evaluation with tabulation

* parsing with executable grammars

* manipulating attributed variables

* in general, production rule systems

Our probabilistic extension of CHR. [9] is modelled after the Probabilistic
Concurrent Constraint Programming (PCCP) framework [4]. The motivation
behind PCCP was the formalisation of randomised algorithms within the CCP
framework [24,25]. These algorithms are characterised by a “coin flipping” de-
vice (random choice) which determines the flow of information. In the last
decade randomised algorithms have found widespread application in many dif-
ferent areas of computer science, for example as a tool in computational geom-
etry and number theory. The benefits of randomised algorithms are simplicity
and speed. For this reason the best known algorithms for many problems
are nowaday randomised ones [15], e.g. simulated annealing in combinatorial
optimisation [1], genetic algorithms [11], probabilistic primality tests in par-
ticular for use in crypto-systems [21], and randomised proof procedures (e.g.
for linear logic [18]).

In PCCP randomness is expressed in the form of a probabilistic choice,
which replaces the non-deterministic committed choice of CCP and CHR and
allows a program to make stochastic moves during its execution. For prob-
abilistic CHR (PCHR), this translates to probabilistic rule choice. Among
the rules that are applicable, the committed choice of the rule is performed
randomly by taking into account the relative probability associated with each
rule.

Example 1.1 The following PCHR program implements tossing a coin. We
use concrete Prolog-style CHR syntax in the program examples. Syntactically,
the probabilities (weights) are the argument of the pragma annotation that is
used in normal CHR to give hints to the compiler. Here it will initiate source
to source transformation.

toss(Coin) <=> Coin=head pragma 0.5.

toss(Coin) <=> Coin=tail pragma 0.5.
Each side of the coin has the same probability. This behaviour is modelled
by two rules that have the same probability to apply to a query toss(Coin),
either resulting in Coin=head or Coin=tail.

Besides our constraint-based approach towards the integration of probabil-
ities into a declarative setting there is a further, rich literature on probabilistic
logic programs, stochastic logic programs and Bayesian logic programs that

2

FRUHWIRTH, DI PIERRO, WIKLICKY

has to be mentioned in this context, for example: [23], [22], [14], and [17].

The paper is organised as follows. In Section 2 we briefly discuss the syntax
and semantics of classical, non-deterministic CHRs. In Section 3 probabilistic
CHRs are introduced formally and discussed via some examples. In Section 4
we describe an implementation of PCHR which is based on source-to-source
transformation of CHR, following [10]. Finally we conclude by discussing sev-
eral further possible developments and ongoing work.

2 Syntax and Semantics of CHR

We first introduce syntax and semantics for CHR before extending it with a
probabilistic construct. We assume some familiarity with (concurrent) con-
straint (logic) programming [16,8,19]. A constraint is an atomic formula in
first-order logic. We distinguish between built-in (predefined) constraints and
CHR (user-defined) constraints. Built-in constraints are those handled by a
predefined, given constraint solver. CHR constraints are those defined by a
CHR program.

2.1 Abstract Syntax
In the following, upper case letters stand for conjunctions of constraints.

Definition 2.1 A CHR program is a finite set of CHR. There are two kinds
of CHR. A simplification CHR is of the form

H< G| B
and a propagation CHR is of the form
H=G|B

where the left hand side (lhs) H is a conjunction of CHR constraints. The
guard G followed by the symbol | is a conjunction of built-in constraints. A
trivial guard of the form true | may be dropped. true is a built-in constraint
that is always satisfied. The right hand side (rhs) of the rule consists of a
conjunction of built-in and CHR constraints B.

2.2 Operational Semantics

The operational semantics of CHR programs is given by a state transition sys-
tem. The semantics uses interleaving for the parallel construct of conjunction.
With derivation steps (transitions, reductions) one can proceed from one state
to the next. A derivation is a sequence of derivation steps.

Definition 2.2 A state (or goal) is a conjunction of built-in and CHR con-
straints. An initial state (or query) is an arbitrary state. In a final state (or
answer) either the built-in constraints are inconsistent or no new derivation
step is possible anymore.

FRUHWIRTH, DI PIERRO, WIKLICKY

Definition 2.3 Let P be a CHR program for the CHR constraints and C'T’
be a constraint theory for the built-in constraints. The transition relation —
for CHR is as follows:

Simplify
HAND+— (H=H)NGANBAD
if (H< G|B)in P and CT =VY(D — 32(H = H' A Q))

Propagate
HANDw— (H=H)NGANBANH AND
if(H=G|B)inP and CT V(D — 3z(H =H'ANGQ))

When we use a rule from the program, we will rename its variables using
new symbols, and these variables form the sequence . A rule with lhs H and
guard G is applicable to CHR constraints H' in the context of constraints D,
when the condition holds that CT = D — 3z(H = H' A G). Any of the
applicable rules can be applied, but it is a committed choice, it cannot be
undone.

If a simplification rule (H < G | B) is applied to the CHR constraints
H', the Simplify transition removes H' from the state, adds the rhs B to the
state and also adds the equation H = H' and the guard G. If a propagation
rule (H = G | B) is applied to H', the Propagate transition adds B,
H = H' and G, but does not remove H'. Trivial non-termination is avoided
by applying a propagation rule at most once to the same constraints [2].

We now discuss in more detail the rule applicability condition CT = D —
Jz(H = H' A G). The equation (H = H') is a notational shorthand for
equating the arguments of the CHR constraints that occur in H and H'.
Operationally, the rule applicability condition can be checked as follows: Given
the built-in constraints of D, try to solve the built-in constraints (H = H'AG)
without further constraining (touching) any variable in H and D. This means
that we first check that H' matches H and then check the guard G under this
matching.

The operational semantics of CHR is concretised in the following way:
States are split into two parts - one for the built-in constraints and one for the
CHR constraints. Built-in constraints are handled immediately by the built-in
constraint solver. The conjunction of CHR constraints is implemented as a
FIFO queue. The left-most (first) constraint must be involved (match one
lhs atom) when a rule is applied. We call this constraint the currently active
constraint. The other constraints that match the remaining rule lhs atoms
may be taken from anywhere in the queue. If the rule is applied, the active
constraint may be removed depending on the rule type, the built-in constraints
of the rhs of the rule are added to the built-in constraints in the state and
the new CHR constraints from the rhs of the rule are added to the queue. If
no rule was applicable to the currently active constraint, it is moved to the
end of the queue, and the next constraint becomes active. If all constraints

4

FRUHWIRTH, DI PIERRO, WIKLICKY

of the queue have been passed without new rule application or if the built-
in constraints became inconsistent, the computation stops. The final result
(answer) is the contents of the queue together with the built-in constraints.

3 Probabilistic CHR

Probabilistic CHR (PCHR) is characterised by a probabilistic rule choice:
Among the rules that are applicable, the committed choice of the rule is per-
formed randomly by taking into account the relative probability associated
with each rule.

3.1 Syntazr and Operational Semantics of PCHR

Syntactically, PCHR rules are the same as CHR rules but for the addition of
a weighting representing the relative probability of each rule:

Definition 3.1 A probabilistic simplification CHR is of the form
H«+,G|B

and a probabilistic propagation CHR is of the form
H=,G|B

where p is a nonnegative number.

The probability associated with each alternative rule expresses how likely it
is that, by repeating the same computation sufficiently often, the computation
will continue by actually performing that rule choice. This can be seen as
restricting the original non-determinism in the choice of the rule by specifying
the frequency of choices.

The operational meaning of the probabilistic rule choice construct is as
follows: Given the current constraint, find all the rules that are applicable.
Each rule is associated with a probability. We have to normalise the proba-
bility distribution by considering only the applicable rules. This means that
we have to re-define the probability distribution so the sum of these proba-
bilities is one. Finally, one of the applicable rules is chosen according to the
normalised probability distribution.

As a consequence, in the definition of the transition system, each transition
(resulting from a rule application) will have a probability associated to it.

Definition 3.2 The transition relation ——; for PCHR is indexed by the
normalised probability p and is defined as follows:

Simplify

H ANDv+—; (H=H)NGANBAD

if (H<,, G|B)in P and CT V(D — 3z(H = H' A G))

FRUHWIRTH, DI PIERRO, WIKLICKY

Propagate
HAND+—; (H=H)ANGANBANH'AD
if (H=, G|B)in P and CT V(D — 3z(H = H' A G))

where

J
% otherwise
where the sum er p; is over the probabilities of all rules r; which are applica-
ble to the current constraint in the current state and the number of applicable
rules is n.

This definition specifies the probabilities associated to a single rewrite
step. If we look at a whole sequence of rewrites we have to combine these
probabilities: The probability of a derivation is the product of the probabilities
associated with each of its derivation steps. We will use the symbol —7 to
indicate a derivation with probability p. Finally, we may end up with the same
result along different derivations, i.e. different sequences of rewrites may end
up with the same final state: In this case we have to sum the probabilities
associated to each of these derivations leading to the same result.

Consider for example the following PCHR. program:

c(X) <=>1: X>=0 | a(X).

c(X) <=>2: X=<0 | b(X).
The query constraint c(X) will be replaced by a(X) if X is greater than zero,
by b(X) if X is less than zero. In those two cases, only one rule is applicable
and its normalised application probability is therefore always one. If X is
zero, both rules are applicable, and their normalised probabilities are % and %,
respectively. That means that in the long run, the second rule will be applied
two times as often as the first rule.

3.2 Eramples

In order to give an overview of the type of programs and algorithms we can
easily specify using PCHR we present in the following a number of examples.
These examples will also be used to illustrate a number of interesting fea-
tures of PCHRs such as probabilistic termination which was introduced in [6]
(cf. Example 3.4 and Example 3.5), and probabilistic confluence which will
be introduced in Section 3.3. We recall here the definition of probabilistic
termination.

Definition 3.3 A program is probabilistically terminating if the probability
of an infinite path is zero.

We use concrete Prolog-style syntax in the examples. The following two
examples are taken from PCCP [6] and have been adapted to PCHR.

6

FRUHWIRTH, DI PIERRO, WIKLICKY

Example 3.4 [Randomised Counting] Consider the following PCHR program
to compute natural numbers:

nat (X) <=>0.5: X=0.

nat(X) <=>0.5: X=s(Y), nat(Y).
In a non-probabilistic implementation, a fixed rule order among the applicable
rules is likely to be used, and then the result to the query nat (X) is either
always X=0 or the infinite computation resulting from the infinite application
of the second rule.

On the other hand, the probabilistic PCHR program will compute all nat-
ural numbers, each with a certain likelihood that decreases as the numbers
get larger. For example, X=0 has probability 0.5, X=s(0) has probability 0.25,
etc. More precisely, the probability of generating the number s™(0) is 1/2"+1.

Note that although this program does not terminate in CHR, it is proba-
bilistically terminating in PCHR as the probability of a derivation with infinite
length is zero.

Example 3.5 [Gambler’s Ruin] Consider the following PCHR program which
implements a so called “Random Walk in one Dimension” illustrating what is
also known as “Gambler’s Ruin” [12]:

walk (X,Y) <=>1: X\=Y | walk(X+1,Y).
walk(X,Y) <=>1: X\=Y | walk(X,Y+1).
walk(X,Y) <=>1: X=Y | true.

Let X be the number of won games (or number of pounds won) and let Y be
the number of lost games (or number of pounds lost). Then we can interpret
walk(1,0) as meaning that the game starts with a one pound stake and is
over when all money is lost.

Elementary results from probability theory show that the game will ter-
minate with a ruined gambler with probability 1, despite the fact that there
exists the possibility of (infinitely many) infinite derivations, i.e. enormously
rich gamblers.

Although there are these infinite computations (corresponding to infinite
random walks), the sum of the probabilities associated to all finite derivations
(i.e. random walks which terminate in X=Y) is one [12,13]. Thus, the probabil-
ity of (all) infinite derivations must be zero. As a consequence, this program,
which classically does not terminate, does terminate in a probabilistic sense:
If one continues playing, almost certainly he will ultimately loose everything.

In the following example we make use of the probability zero in order to
express absolute rule preference and negation of a guard (if-then-else).

Example 3.6 The following PCHR program is an implementation of merge/3,
i.e. merging two lists into one list while the elements of the input lists arrive.
Thus the order of elements in the final list can differ from computation to
computation.

FRUHWIRTH, DI PIERRO, WIKLICKY

merge([],L2,L3) <=>1: L2 = L3.
merge (L1, [1,L3) <=>1: L1 L3.
merge ([X|L1],L2,L3) <=>0: L3 [XIL], merge(L1,L2,L).
merge (L1, [Y|L2],L3) <=>0: L3 [YIL], merge(L1,L2,L).

The effect of the probabilities associated with the rules is as follows: If an
empty input list is involved in the query, one of the first two rules will always
be chosen, even though one of the recursive two rules may apply as well. A
query merge ([al, [b],L3) may either result in L3=[a,b] or L3=[b,a]. Since
in that case, the first two rules do not apply and both recursive rules have the
same probability as a consequence, both outcomes are equally likely. In that
sense the PCHR implementation of merge is efficient and fair.

The next example shows the use of parametrised probabilities.

Example 3.7 [Simulated Annealing] Simulated Annealing (SA) is one of the
most general and most popular randomised optimisation algorithms. It was
inspired by the physical process of annealing in thermodynamics [20]: If a
slow cooling is applied to a liquid, it freezes naturally to a state of minimum
energy. The SA algorithm applies annealing to the minimisation of a cost
function for solving problems in the area of combinatorial optimisation.

The SA algorithm tries to find a global optimum by iteratively progressing
towards better solutions while avoiding to get trapped in local optima.

The algorithm proceeds by random walks from one solution to another
one, i.e. from the current solution a new solution is computed randomly. Each
solution is associated with a cost, and we are looking for the best solution, one
with the least cost. To avoid being trapped in a local optimum, sometimes the
worse of two subsequent solutions is chosen. The likelihood to do so depends
on a control parameters called the temperature. With each iteration, the
temperature decreases and thus makes the choice of the worse solution more
and more unlikely. The actual probability to choose a worse solution was
taken from thermodynamics. It is exponential in the cost difference of the two
solution divided by the temperature multiplied with a constant.

The following PCHR, program scheme implements the generic SA algo-
rithm:

% solution(Temperature, Solution)

solution(T,S) <=>1:
stop_criterion(T,S) |
good_solution(S).

solution(T,S) <=>0:
cool_down(T,T1),
gen_next_sol(S,S1),
anneal ((T,S),(T1,S1)).

8

FRUHWIRTH, DI PIERRO, WIKLICKY

anneal ((T,S), (T1,S1)) <=>1:
solution(T1,S1).

anneal ((T,S), (T1,S1)) <=>
C=cost(S), C1l=Cost(S1),
e~ ((C1-C)/(k*T))-1: Ci1>C |
solution(T1,S).

3.8 Confluence of PCHR programs

Confluence is an important property of (non-probabilistic) CHR programs [2].
In a confluent program, the result of a computation is always the same no
matter which of the applicable rules is actually applied.

We recall the basic definitions as given in [2].

Definition 3.8 Two states S; and S, of a CHR program are joinable if there
exist states T} and T, such that S; —* T} and S, ——* T5 and T and 715 are
variants of each other, i.e. they can be obtained from each other by a variable
renaming.

Definition 3.9 A CHR program is confluent if for all states S,S;, S, the
following holds: If S ——* S; and S —* S5 then S; and Sy are joinable.

Given a PCHR program its CHR support (or CHR wversion) is given by
the CHR program obtained by removing the probability information from the
rules. For example the CHR, support of the PCHR, program

c(X) <=>1: X>=0 | a(X).

c(X) <=>2: X=<0 | b(X).
is given by:

c(X) <=> X>=0 | a(X).

c(X) <=> X=<0 | b(X).

The notion of confluence generalises in the obvious way to PCHR pro-
grams: In a confluent PCHR program we always reach the same result, pos-
sibly through different paths and with different probabilities.

Definition 3.10 Two states S; and S, of a PCHR program are joinable if
there exist states T} and T5 such that S; —> Ty and So 7, Ty and T} and
T, are variants of each other, i.e. they can be obtained from each other by a
variable renaming.

Definition 3.11 A PCHR program is confluent if for all states S, S, Sy the
following holds: If .S r—>;1 S, and S »—>I";2 Sy then S; and Sy are joinable.

For example, the above PCHR program is not confluent, since X=0, ¢ (X)
may lead to either X=0, a(X) (with probability 1/3) or X=0, b(X) (with prob-
ability 2/3).

It is easy to see that any PCHR program with a confluent CHR support is

9

FRUHWIRTH, DI PIERRO, WIKLICKY

itself confluent. The converse does not hold in general, as the following simple
PCHR program demonstrates:

c(X) <=>1: X»>=0 | a(X).
c(X) <=>0: X»>=0 | b(X).

This program (as a PCHR program) is confluent: both rules have the same
guard, but since the second has a zero probability associated only the first rule
will always be executed. Its CHR support however is not confluent: without
probabilities both rules are possible rewrites and we might therefore end up
with different results.

If we consider the results of all possible derivations of a CHR program
— i.e. if we look at fair erecutions where all possible rewrites are eventually
executed — then this corresponds to considering strictly positive probabilities
for all rules in a corresponding PCHR program. In other words, if for the
CHR support we have S —* S; then there exists a probabilistic derivation
for the original PCHR S —, S; for some p; > 0 and vice versa. For PCHR
programs with non-zero probabilities we therefore have:

Proposition 3.12 If all probabilities in a PCHR program P are strictly pos-
itive then P is confluent iff its CHR support is confluent.

This means that the introduction of probabilities does not worsen the
situation with respect to confluence: CHR programs which are confluent are
also confluent in their probabilistic version.

For PCHR programs we can define a notion of probabilistic confluence
which is more “realistic” than the notion of confluence in the sense that it
allows us to ignore those computations which although possible are almost
never performed (their probability is zero). Note that such computations must
be infinite; in fact, as the (finite) product of non-zero numbers is always non-
zero, we can only get probability zero as the limit of an infinite product. As
a consequence, non-terminating programs which are classically non-confluent
might result confluent according to the new notion.

Definition 3.13 A PCHR program is probabilistically confluent if for all states
S, S1, Sy the following holds: If S — Sy and S —, Sy then S} and Sy are
probabilistically joinable.

Two states Sy and S5 of a PCHR program are probabilistically joinable if
there exist states 7} and 75 such that S; —7 71 and Sy —7 T and 7} and
T5 are variants of each other.

That means we require that from an initial state S all derivations will
meet again at the same (or equivalent under variance) state with probability
one. Note that this does not exclude the existence of derivations which do
not reach that unique (up to variance) state, provided that their probability
is zero, that is they are infinite.

10

FRUHWIRTH, DI PIERRO, WIKLICKY

It is easy to see that any confluent PCHR program is also probabilistically
confluent. If a PCHR program is confluent then all derivations from an initial
state S will meet at some unique (up to variance) state 7. In particular,
confluence requires that there are no (infinite or finite) derivations which do
not reach 7. That implies that indipendently of the probability of each of
the derivations which lead to 7' they must all sum up to one. However, the
opposite is not true in general as the program in Example 3.5 implementing a
one-dimensional random walk shows: It is probabilistically confluent (it always
terminates in the state where X=Y) but not confluent (from the state X=Y=0
we can reach X=co, Y=0 and X=0, Y=co which are not joinable).

4 Implementation

We implement PCHR by source-to-source program transformation (STS) in
CHR [10]. In STS, users will write STS programs to manipulate other pro-
grams during their compilation. The key idea of STS for CHR is that CHR
rules will be translated into relational normal form by introducing special
CHR constraints for the components of a rule, which are head, guard, body
and compiler pragmas. The STS program is a special purpose constraint solver
that acts on this representation. When a fixpoint is reached, the relational
form is translated back into CHR rules and normal compilation continues.

The result of this approach are strikingly simple STS programs. They are
concise, compact and thus easy to inspect and analyse. Indeed, the complete
STS program to implement probabilistic CHR consists of a few rules that
easily fit one page. The STS system for CHR was implemented by Christian
Holzbaur from the University of Vienna while visiting Thom Friihwirth at the
Ludwig-Maximilians-University Munich.

Before we look at the STS, we show by means of an example, how the object
program is represented and transformed. The example shows that PCHR can
be used to generate an n bit random number. More examples of PCHR can
be found in [9].

Example 4.1 [n Bit Random Number| The random number is represented
as a list of N bits that are generated recursively and randomly one by one.

rl @ rand(N,L) <=> N=:=0 | L
r2 @ rand(N,L) <=>0.5: N>0 | L
r3 @ rand(N,L) <=>0.5: N>0 | L

o

.
[0|L1], rand(N-1,L1).
[11L1], rand(N-1,L1).

As long as there are bits to generate, the next bit will either get value 0
or 1, both with same probability. When the remaining list length N is zero, a
non-probabilistic simplification rule closes the list.

The three rules above will be represented as the following conjunction of
constraints to which the STS program will be applied:

11

FRUHWIRTH, DI PIERRO, WIKLICKY
constraint (rand/2),

head(rl,rand(N,L),id1,remove), guard(rl,N=:=0),
body(r1,L=[]),
head(r2,rand(N,L),id2,remove), guard(r2,N>0),
body(r2, (L=[0|L1] ,rand(N-1,L1))), pragma(r2,0.5),
head(r3,rand(N,L),id3,remove), guard(r3,N>0),
body(r3, (L=[1|L1] ,rand(N-1,L1))), pragma(r2,0.5).

For each CHR constraint symbol in the object program, there is a corre-
sponding STS constraint constraint. Each of the remaining STS constraints
head, guard, body and pragma starts with an identifier for the rule they
come from. The second argument is the respective component of the rule.
For the constraint head, the third argument is an identifier for the constraint
matching the rule head, and the last argument indicates if the constraint is to
be kept or removed. This information is necessary, because any type of CHR
rule is represented in the same normalised, relational way.

Now we consider the STS program for PCHR which will be applied to the
above example code in relational form. It simply states how the components
of the rules should be translated in case the rule is probabilistic. The two
rules below basically define a standard transformation that makes the conflict
set of the object rules explicit. The conflict set is the set of all rules that are
applicable at a particular derivation step. While in normal CHR, any rule
can be chosen and it is a committed choice, in probabilistic CHR we have to
collect the unnormalised probabilities from all candidates in the conflict set
and then randomly choose one rule according to their probabilities (weights).

pragma(R,N), head(R,H,I,remove),
body (R,G) <=> number (N) |
pragma(R,N), head(R,H,I,keep),
body (R, (remove_constraint (I),G)) .

pragma(R,N), body(R,G) <=> number(N) |
body (R, cand(N,G)) .

The first transformation rule maps all probabilistic rules into propagation
rules that explicitly remove the head constraint(s) in the body of the rule
using the standard CHR. built-in remove_constraint. (The same effect could
also be achieved using an auxiliary variable and without this standard CHR
built-in, but it would be less efficient.) The second transformation rule wraps
the body of a probabilistic rule with the run-time CHR constraint cand, whose
first argument is the probability measure (weight) from the pragma. Note that
the transformation rules are applied in textual order.

Last but not least there is a final, third rule that adds a last object rule

12

FRUHWIRTH, DI PIERRO, WIKLICKY

for each defined CHR constraint:

constraint(C) ==
head(R1,C,I,keep), guard(Rl,true), body(R1l,collect(0,_)).

The resulting propagation rule is added at the end of the object program
and just calls the CHR constraint collect (0,_) which triggers the probability
normalisation and evaluation of the candidate set of applicable probabilistic
rule bodies.

For our example of random n-bit numbers, the application of the STS rules
and the final translation back into rule syntax results in the following code:

rl @ rand(A,B)#C <=> A=:=0 | B=[].
r2 @ rand(A,B)#C ==> A>0 |

cand (1, (remove_constraint(C) ,B=[0|D],rand(A-1,D))).
r3 @ rand(A,B)#C ==> A>0 |

cand (1, (remove_constraint(C) ,B=[1|D],rand(A-1,D))).
r4 @ rand(A,B)#C ==> collect(0,D).

The #C added to the rule heads is CHR syntax for accessing the identi-
fier of the constraint that matched the head. Note that the first rule is left
untranslated since it was not probabilistic.

The probability normalisation and evaluation of the candidate set is achieved
by the following rules that are defined in the STS program for PCHR and that
are added to the transformed object program:

collect(M,R), cand(N,G) <=> cand(R,M,M+N,G), collect(M+N,R).
collect (M,R) <=> random(0O,M,R).

cand(R,M,M1,G) <=> R < M | true.
cand(R,M,M1,G) <=> R >= M1 | true.
cand(R,M,M1,G) <=> M =< R, R < M1 | call(G).

The constraint collect (M,R) takes a candidate rule body cand (N,G) and
replaces it by cand (R,M,M+N,G) before continuing with collect (M+N,R). The
effect of this rule is that each candidate constraint is extended by the common
variable R and by the interval M to M+N, where N is its unnormalised probability
measure (weight).

Instead of explicitly normalising the probabilities (weights), collect adds
them up and finally calls random(0,M,R) to produce a random number in
the interval from 0 to M. Note that this random number will be bound to the
variable R.

The conjunction of extended candidate rule bodies act like a concurrent
collection of agents. As soon as they receive the random number through
the variable (channel) R, they can proceed. If the value of R is outside of

13

FRUHWIRTH, DI PIERRO, WIKLICKY

their range of probabilities M to M1, the candidate agent simply goes away.
Otherwise, it is the randomly chosen candidate and it will call its original rule
body G (that first removes its head constraint rand).

In this way, from the set of applicable rules, one of the rules is randomly
applied. The probability distribution follows the weights of the rules.

5 Conclusions

In this paper we presented Probabilistic Constraint Handling Rules (PCHR)
which allow for an explicite control of the likelihood that certain rewrite rules
are applied. The resulting extension of traditional (non-deterministic) CHRs
is straightforward. It nevertheless does exhibit interesting new aspects which
improve the expressivenes and the capabilities of the original language. For
example, we can express fairness directly at the syntactic level by means of an
appropriate probability distribution on the rules, and we can analyse average
properties.

We implemented PCHR in CHR using source-to-source transformation
(STS). The complete STS program to implement probabilistic CHR consists
of a few rules that easily fit one page.

In the future, we would like to apply PCHRs to the search procedures of
constraint solver written in CHR.. Simulated Annealing algorithms are promis-
ing candidates for essentially probabilistic constraint solving and/or optimi-
sation algorithms.

Another research direction — closely related to the application of PCHR
to constraint solving problems — is the study of the relation between “chaotic
iteration” in the context of classical CHR [3] and “ergodicity” in a proba-
bilistic setting [5]: these two concepts seem to exhibit a striking similarity,
and we think that a more detailed analysis of their relationship would lead to
interesting results in the semantics and reasoning about (P)CHR.

Finally, the introduction of probabilities into the CHR framework seems
to be an essential step in allowing for an “average case” analysis of classical as
well as probabilistic algorithms. A particular aspect in this context concerns
the investigation of the average running time of algorithms and/or the notion

of probabilistic termination for PCHR, similar in spirit to what has been done
for PCCP [6].

References

[1] Aarts, E. and J. Korst, “Simulated Annealing and Boltzmann Machines,” John
Wiley & Sons, Chicester, 1989.

[2] Abdennadher, S., Operational semantics and confluence of constraint
propagation rules, in: 3rd Intl Conf on Principles and Practice of Constraint
Programming, LNCS 1330 (1997), pp. 252-266.

14

FRUHWIRTH, DI PIERRO, WIKLICKY

[3] Apt, K. R., From chaotic iteration to constraint propagation, in: P. Degano,
R. Gorrieri and A. Marchetti-Spaccamela, editors, Automata, Languages and
Programming, 24th International Colloguium, Lecture Notes in Computer
Science 1256 (1997), pp. 36-55.

[4] Di Pierro, A. and H. Wiklicky, An Operational Semantics for Probabilistic
Concurrent Constraint Programming, in: Y. C. P. Iyer and D. Schmidt, editors,
Proceedings of ICCL’98 — International Conference on Computer Languages

(1998), pp. 174-183.

[5] Di Pierro, A. and H. Wiklicky, Ergodic average in constraint programming,
in: M. Kwiatkowska, editor, Proceedings of PROBMIV’99 — 2nd International
Workshop on Probabilistic Methods in Verification, number CSR-99-8 in
Technical Report (1999), pp. 49-56.

[6] Di Pierro, A. and H. Wiklicky, Quantitative observables and averages in
Probabilistic Concurrent Constraint Programming, in: K. Apt, T. Kakas,
E. Monfroy and F. Rossi, editors, New Trends in Constraints, number 1865
in Lecture Notes in Computer Science (2000), pp. 212-236.

[7] Frithwirth, T., Theory and practice of constraint handling rules, Journal of
Logic Programming 37 (1998), pp. 95-138, Special Issue on Constraint Logic
Programming.

[8] Frithwirth, T. and S. Abdennadher, “Essentials of Constraint Programming,”
Springer, Berlin, 2002.

[9] Frithwirth, T., A. D. Pierro and H. Wiklicky, Towards probabilistic constraint
handling rules, Third Workshop on Rule-Based Constraint Reasoning and
Programming (RCoRP’01) at CP’01 and ICLP’01 (2001).

[10] Frithwirth, T., A. D. Pierro and H. Wiklicky, An implementation of probabilistic
constraint handling rules, 11th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2002) (2002).

[11] Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and Machine
Learning,” Addison—Wesley, Reading, Massachusetts, 1989.

[12] Grimmett, G. R. and D. Stirzaker, “Probability and Random Processes,”
Clarendon Press, Oxford, 1992, second edition.

[13] Grinstead, C. M. and J. L. Snell, “Introduction to Probability,” American
Mathematical Society, Providence, Rhode Island, 1997, second revised edition.

[14] Gupta, V., R. Jagadeesan and P. Panangaden, Stochastic programs as
concurrent constraint programs, in: Proceedings of POPL’99 — 26th Symposium
on Principles of Programming Languages (1999), pp. 189-202.

[15] Hochbaum, D. S., editor, “Approximation Algorithms for NP-Hard Problems,”
PWS Publishing Company, Boston, Massachusetts, 1997.

[16] Jaffar, J. and M. J. Maher, Constraint logic programming: A survey, The
Journal of Logic Programming 19 & 20 (1994), pp. 503-581.

15

FRUHWIRTH, DI PIERRO, WIKLICKY

[17] Kersting, K. and L. D. Raedt, Bayesian logic programs, in: Proceedings of the
Work-in-Progress Track at the 10th International Conference on Inductive Logic
Programming, 2000.

[18] Lincoln, P. D., J. C. Mitchell and A. Scedrov, Stochastic interaction and Linear
Logic, in: J.-Y. Girard, Y. Lafont and L. Regnier, editors, Advances in Linear
Logic, London Mathematical Society Lecture Note Series 222, Cambridge
University Press, Cambridge, 1995 pp. 147-166.

[19] Marriott, K. and P. J. Stuckey, “Programming with Constraints: An
Introduction,” MIT Press, 1998.

[20] Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation
of state calculations for fast computing machines, Journal of Chemical Physics

21 (1953), pp. 1087-1092.

[21] Motwani, R. and P. Raghavan, “Randomized Algorithms,” Cambridge
University Press, Cambridge, England, 1995.

[22] Muggleton, S., Stochastic logic programs, in: L. De Raedt, editor, Proceedings of
the 5th International Workshop on Inductive Logic Programming (1995), p. 29.

[23] Ng, R. T. and V. S. Subrahmanian, Probabilistic logic programming, Information
and Computation 101 (1992), pp. 150-201.

[24] Saraswat, V. A. and M. Rinard, Concurrent constraint programming, in:
Proceedings of POPL’90 — Symposium on Principles of Programming Languages
(1990), pp. 232-245.

[25] Saraswat, V. A., M. Rinard and P. Panangaden, Semantics foundations of
concurrent constraint programming, in: Proceedings of POPL’91 — Symposium
on Principles of Programming Languages (1991), pp. 333-353.

16

