Reconstructing Signaling Pathways from RNAi Data using Bayesian Networks and Markov Chains

Lars Kaderali
ViroQuant Research Group „Modeling“
University of Heidelberg
• Viruses rely on many host factors for cell entry, replication within the host cell, and spread

• RNAi knock-downs of host genes can help identify these factors:
 – RNAi knockdown of genes in infected cells
 – Observe whether virus can still replicate
A Pipeline for the Analysis of RNAi Screens

- siRNA Spotting
- Experiment
- Microscopy
- Image Recognition
- Quality Control
- Statistical Analysis
- Bioinformatics
- Modeling

Jc1GFP-K1402Q

- seeding Huh7.5 cells
- HCV infection
- 36 h fixation and IF

Equations

\[
\begin{align*}
\frac{dT_c}{dt} &= k_1 R_{shu} R_p^{opt} - k_3 T_c - \mu T_c \\
\frac{dP}{dt} &= k_3 T_c - k_1 P \\
\frac{dE^{opt}}{dt} &= k_1 P - k_{Ein} E^{opt} - \mu_{E^{opt}} E^{opt}
\end{align*}
\]
A Pipeline for the Analysis of RNAi Screens

neg. control

HCV

nuclei

CD81
A Pipeline for the Analysis of RNAi Screens

- Developed and implemented software for data analysis
- Available as Open Source package RNAither within Bioconductor (www.bioconductor.org)
- Integrated into workflow and now routinely used for analysis of RNAi screens at Bioquant
- Successful application to several Hepatitis C Virus, HIV, Dengue Virus and Secretory Membrane Trafficking Screens, in close collaboration with Biological and Technology Partners.

Example: HIV Drugable Genome Screen

- Screen carried out by K. Börner (AG Kräusslich)
- 9102 Genes expressing proteins able to bind drug-like molecules, 78 plates
- 706 Genes (potential „downregulators“) identified, validation ongoing
RNAi knockdowns are well suited to identify genes, that are important for specific phenotypic traits of interest.

The temporal and spatial placement of these genes in signal transduction pathways remains a huge challenge.

Network Inference is the process of reconstructing such pathways from the experimental data.

<table>
<thead>
<tr>
<th>Gene Knockdown</th>
<th>Observed Phenotypic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>Strong Effect</td>
</tr>
<tr>
<td>Gene 2</td>
<td>No Effect</td>
</tr>
<tr>
<td>Gene 3</td>
<td>Weak Effect</td>
</tr>
<tr>
<td>Gene 4</td>
<td>Strong Effect</td>
</tr>
</tbody>
</table>
For \(n \) genes, there are \(n^2 \) different possible edges between two genes.

In a given network, each of these \(n^2 \) edges is present or absent.

This yields a total of \(2^{n^2} \) possible, different network topologies.

How much data is required to decide which is the true topology?

<table>
<thead>
<tr>
<th>(n)</th>
<th># Topologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>65,536</td>
</tr>
<tr>
<td>5</td>
<td>33,554,432</td>
</tr>
<tr>
<td>10</td>
<td>1,267,650,600.228.229.401.496.703.205.376</td>
</tr>
</tbody>
</table>
Identifiability

• If only downstream readouts at steady state are available, some topological features cannot be reconstructed!
Identifiability

![Graph showing the relationship between network size (number of nodes) and the average number of acyclic networks per dataset. The graph indicates a significant increase in the number of networks as the network size increases.](image-url)
Iterative Network Reconstruction

Experiment Planning

Experiment

Regularization!

Candidate Models

p=0.6

p=0.1

p=0.3

Experiment Planning
• **Bayesian Network Model**

 » Each node is either „active“ (1) or „inactive“ (0)

 » State of node at time t depends stochastically on states of „parents“ at time t-1

 \[
 p \{x_i(t) = 1 | x(t - 1)\} = \frac{1}{1 + \exp\left(-\sum_{j=1}^{n} w_{j,i} x_j + w_{i}^0\right)}
 \]
For a system with n nodes, there are 2^n possible states.

If in state i at time t, we can compute the probability of being in state j at time $t+1$.

Hence, we can calculate the state transition matrix $M \in \mathbb{R}^{2^n \times 2^n}$ as

$$M_{i,j} = p \left\{ x(t) = \eta^{(i)} | x(t - 1) = \eta^{(j)} \right\}$$

$$= \prod_{k=1}^{n} p \left\{ x_k(t) = \text{active}(k, \eta^{(i)}) | x(t - 1) = \eta^{(j)} \right\}$$
• If \(p \) is a \(2^n \) Row-Vector giving the probability distribution over the initial states, then

\[
p M
\]

is the column Vector giving the distribution after 1 timestep.

• Similarly,

\[
p M^\tau
\]

gives the distribution after \(\tau \) timesteps.
Knockouts can be taken into account simply by „taking out“ the corresponding gene from the model.

In terms of M, this amounts to removing rows where the knockout gene is active, and summing up the corresponding columns.
• Assume we have an initial state distribution p_0.
• Given model Parameters $\theta = (w, w_0, T)$, the likelihood of seeing a particular set of experimental outcomes D after knockdown experiments is

$$p\{D|w, w^0, T\} = \prod_{k=1}^{n} p\left(\eta^{(k)}(T)|M^{-k}, p_0\right)$$

<table>
<thead>
<tr>
<th>Gene Knockdown</th>
<th>Observed Phenotypic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>Strong Effect</td>
</tr>
<tr>
<td>Gene 2</td>
<td>No Effect</td>
</tr>
<tr>
<td>Gene 3</td>
<td>Weak Effect</td>
</tr>
<tr>
<td>Gene 4</td>
<td>Strong Effect</td>
</tr>
</tbody>
</table>
• We cannot compute an exact likelihood \(p(D|\theta) \) for „larger“ networks, because \(M \) is growing exponentially.
• BUT we can use the stochastic model to simulate data, and compare the simulated data with the measured data!
• We then approximate the likelihood by the percentage of trials where we are getting the observed data back:

\[
p \{D|\theta\} \approx \frac{1}{N} \sum_{m=1}^{N} I (S_m = D)
\]

• This is of particular usefulness since it automatically takes into account the marginalization over unobserved nodes.
Parameters \(w \) in model correspond to strength of interaction between two genes / proteins.

\[
p \{ x_i(t) = 1 | x(t-1) \} = \frac{1}{1 + \exp \left(- \sum_{j=1}^{n} w_{j,i} x_j + w_i^0 \right)}
\]

Expect network to be *sparse*, i.e. most pathway components should have NO interaction between them.

\[
p(w) = N \exp \left[- \frac{|w|^q}{qs^q} \right]
\]

Ritter et al., submitted
Sampling from the Posterior

B1. Initialize $\theta(0) = (w(0), w^0(0), T(0)), t = 0$
B2. Sample $\bar{\theta}$ from a proposal distribution $q(\cdot|\theta(t))$
B3. Simulate a dataset S using the stochastic model described by equations (1) and (2), with parameters $\bar{\theta}$.
B4. If $S \neq D'$ (based only on the observed nodes in D'), let $\theta(t + 1) = \theta(t)$, increase t and go to B2.
B5. Compute $\gamma = \min \left(1, \frac{\pi(\bar{\theta})q(\theta(t)|\bar{\theta})}{\pi(\theta(t))q(\theta(t)|\theta(t))} \right)$
B6. Accept $\theta(t + 1) = \bar{\theta}$ with probability γ, otherwise stay at the old point $\theta(t + 1) = \theta(t)$.
B7. Increase t and go to B2, until enough points sampled.

Combines Metropolis Hasting algorithm with simulation approximation of the likelihood.

We furthermore integrated Mode Hopping steps

Senderowitz (1995)
Simulation Example

<table>
<thead>
<tr>
<th>Knockout</th>
<th>Gene 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 2</td>
<td>Activated</td>
</tr>
<tr>
<td>Gene 3</td>
<td>Activated</td>
</tr>
<tr>
<td>Gene 4</td>
<td>Not Activated</td>
</tr>
<tr>
<td>Gene 2 and Gene 3</td>
<td>Not Activated</td>
</tr>
</tbody>
</table>

- Sampling over 10^8 steps
- Runtime 126 min (exact likelihood) or 38 min (simulation approximation)
- Results robust w.r.t. variations of prior parameter changes of up to 50%

True topology

\[p=0.39 \quad \text{and} \quad p=0.61 \]
Application: Jak-Stat Signaling

- Experimental Data: Eva Dazert (Dept. of Virology)
- Huh-7 cell lines
- Knockdown of all genes in the pathway, stimulation with IFN\(\alpha\) and IFN\(\gamma\)
- Signal: HCV Replication
Jak / Stat Signaling

Kaderali et al., Bioinformatics, 2009
Summary

- Method to **reconstruct signal transduction networks** from RNAi phenotypes based on Bayesian networks
- **Approximation of likelihood** using stochastic simulation
- Regularization to **Sparse Networks** using Prior Distribution
- **Sampling from posterior** allows computation of distributions over alternative topologies and parameters.
 - Important application in experiment design
 - Cost efficient method to reconstruct networks from data
- Application to Jak/Stat data shows core topology can be reconstructed even from single downstream readouts.
- Multiple readouts, time series data, ... easily integrated
- Ongoing work: **Experiment Design** from inferred Distributions
Acknowledgements

Molecular Virology:
Eva Dazert
Ulf Zeuge
Michael Frese
Ilka Wörz
Anil Kumar
Andreas Merz
Marion Pönisch
Marco Binder
Alessia Rugieri
Wolfgang Fischl
Oliver Wicht
Ralf Bartenschlager

EMBL / Bioquant:
Nigel Brown
Reinhard Schneider

Viroquant Modeling:
Bettina Knapp
Matthias Boeck
Nora Rieber
Johanna Mazur
Daniel Ritter
Nurgazy Sulaimanov
Gajendra Suryavanshi
Samta Malhotra
Sandeep Amberkar
Cindy Nürnberg
Natalia Drost
Thorsten Stumpf

Dept. of Virology:
Johannes Hermle
Kathleen Boerner
Maik Lehmann
Oliver Keppler
Silvia Geuenich
Hans-Georg Kräusslich

Viroquant NWG „Screening“:
Vytaute Starkuvienė

TBI Bioinformatics, DKFZ:
Petr Matula
Karl Rohr
Roland Eils

Viroquant Screening Unit:
Holger Erfle

Inst. f. Scientific Computing:
Christoph Sommer
Fred Hamprecht
Julian Kunkel
Gerhard Reinelt

Tokyo Medical University:
Soichi Ogishima

Bundesministerium für Bildung und Forschung
Thank you for your attention!

Lars Kaderali
Viroquant Research Group Modeling
Bioquant, University of Heidelberg

lars.kaderali@bioquant.uni-heidelberg.de