Gaussian Processes for Classification

Amir Atiya
Dept Computer Engineering, Cairo University
amir@alumni.caltech.edu
www.alumni.caltech.edu/~amir

April 2010
Gaussian Process Classification

- Nonparametric classification method.

- Based on a Bayesian methodology. It assumes some prior distribution on the underlying probability densities that guarantees some smoothness properties.

- The final classification is then determined as the one that provides a good fit for the observed data, while at the same time guaranteeing smoothness.

- This is achieved by taking the smoothness prior into account, while factoring in the observed classification of the training data.

- It is a very effective classifier. We have recently performed a large scale comparison study of 12 major classifiers, on 22 benchmark classification problems. The Gaussian process classifier was the best classifier among all.

- It was developed in the geostatistics field in the seventies (O’Hagan and others).

- Was popularized in the machine learning community by MacKay, Williams and Rasmussen.
Overview of Bayesian Parameter Estimation

- Consider a model whose function depends on certain parameters.
- Assume a prior distribution for these parameters.
- Factor in the observed data, to obtain a posterior distribution of the parameters.
- Obtain a prediction for a new point, by estimating its distribution given that we know the posterior of the parameters.

Example: A linear regression problem:

\[
\text{Regression line: } w_1 x + w_0
\]
Bayesian Parameter Estimation (Contd)

• The regression model is given by \(z = w^T x \).

• Assume a prior for the parameters \(p(w) \), e.g. zero mean Gaussian.

• Observe a number of points: \((x_i, z_i), \ i = 1, \ldots, N\) (let the data points be \(D \)).

• The posterior distribution of the parameters is given by:

\[
p(w|D) = \frac{p(D|w)p(w)}{p(D)}
\]

where

\[
p(D|w) = \prod_i \frac{e^{-\left(\frac{(z_i - w^T x_i)^2}{2\sigma^2}\right)}}{\sqrt{2\pi\sigma}}
\]

• Consider a new points \(x^* \), at which we would like to predict the function \(z^* \).

• Then

\[
p(z^*|D) = \int p(z^*, w|D)dw
\]

\[
= \int p(z^*|w)p(w|D)dw
\]
On the Bayes Classifier

- **Class-conditional densities** $p(x|C_k)$, where x is the feature vector, C_k represents class k. This gives the probability density of feature vector x that is coming from class C_k.

- **Posterior probabilities** $P(C_k|x)$. It represents the probability that the pattern x comes from class C_k.

- By Bayes rule:

 $$P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)}$$

- Classify x on the basis of the value of $P(C_k|x)$. Select the class C_k giving maximum $P(C_k|x)$.

![Diagram showing classification between two classes C1 and C2 with P(C1|x) and P(C2|x) distributions.](image-url)
The Gaussian Process Classifier

• It focuses on modeling the **posterior probabilities**, by defining certain latent variables: f_i is the **latent variable** for pattern i.

• Consider a two-class case: f_i is a measure of the degree of membership of class C_1, meaning:

 - If f_i is positive and large \rightarrow pattern i belongs to class C_1 with large probability.
 - If f_i is negative and large in magnitude \rightarrow pattern i belongs to class C_2 with large probability.
 - If f_i is close to zero, class membership is less certain.

\[\begin{array}{c}
 f_i < 0: \rightarrow \text{Class } C_2 \\
 f_i > 0: \rightarrow \text{Class } C_1
\end{array} \]
The Gaussian Process Classifier (Contd)

• Let \(y_i = 1 \) (\(y_i = -1 \)) denote that pattern \(i \) belongs to class \(C_1 \) \((C_2) \).

• The posterior probability (for class \(C_1 \)) is:

\[
P(C_1 | x_i) \equiv P(y_i = 1 | f_i) = \sigma(f_i) = \int_{-\infty}^{\infty} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx
\]

\textbf{Sigma}(x)
More Definitions

• Arrange the f_i's of the training set in a vector $f \equiv (f_1, \ldots, f_N)^T$.

• Arrange the class memberships y_i of the training set in a vector $y \equiv (y_1, \ldots, y_N)^T$.

• Let x_i be the feature vector of training pattern i.

• Define the training matrix X as that containing all training vectors x_i.

• Let x_* be a testing vector to be classified, with latent variable f_* and class membership y_*.
Smoothness Prior
We enforce smoothness by defining a prior on the latent variables f_i.

Patterns with close by feature vectors x_i will have highly correlated latent variables f_i.

$$p(f|X) = \mathcal{N}(f, 0, \Sigma)$$

where $\mathcal{N}(f, \mu, \Sigma)$ denotes a Gaussian density of variable f having mean vector μ and covariance matrix Σ.

$$\text{Corr}(f_1, f_2) = \text{fn}(||x_1 - x_2||)$$

e.g. $\exp(-\alpha ||x_1 - x_2||^2)$
Classification

Consider a test pattern. Using standard probability manipulations, we get the probability that the test pattern belongs to class C_1:

$$J_* \equiv p(y_* = +1|X, y, x_*) = \int \sigma(f_*) p(f_*|X, y, x_*) df_*$$

(Recall that $\sigma(f_*) \equiv P(y_* = 1|f_*)$.)

$$p(f_*|X, y, x_*) = \int p(f_*|X, x_*, f) p(f|X, y) df$$

where

$$p(f|X, y) = \frac{p(y|f)p(f|X)}{p(y|X)}$$
Classification (Contd)

- As we can see, to classify a point we have to evaluate an N-dimensional integral, where N is the size of the training set.

- This integral is intractable.

- There are some approximations, such as:
 - Laplace approximation,
 - Expectation propagation.

- Or, one can evaluate it using the Markov-Chain-Monte-Carlo (MCMC) procedure. This is numerically a very slow procedure.
The Proposed Method

- We use several variable transformations.

- We also implement several matrix manipulations and simplifications.

- These result in the following formula for the classification of a test pattern:

\[
J_* = p(y = 1|X, y, x_*) = \frac{\int_{\text{orth}} \mathcal{N}(v, 0, A^{-1}) \, dv}{\int_{\text{orth+}} \mathcal{N}(v, 0, A^{-1}) \, dv} \equiv \frac{I_1}{I_2}
\]

where \(v = (v_1, \ldots, v_{N+1})^T \), \(\text{orth} \) means the orthant \(v \geq 0 \), \(\text{orth+} \) means \(-\infty < v_1 < \infty, \ v_2 \geq 0, \ldots, v_{N+1} \geq 0 \), \(\mathcal{N} \) is the multivariate Gaussian density with covariance matrix \(A^{-1} \), given by:

\[
A = I - A_{12}A_{22}^{-1}A_{12}
\]

\[
A_{12} = \begin{bmatrix} -1 & 0 \\ 0 & C' \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 1 + \frac{1}{\sigma_*^2} & -\frac{a^T}{\sigma_*^2} \\ -\frac{a}{\sigma_*} & I + \Sigma^{-1} + \frac{aa^T}{\sigma_*^2} \end{bmatrix}
\]

where \(a = \Sigma^{-1}\Sigma_{x_*X} \), \(\sigma_*^2 = \Sigma_{x_*x_*} - \Sigma_{x_*X}\Sigma^{-1}\Sigma_{X_*X} \), and \(C' = \text{diag}(y_1, \ldots, y_N) \).
The Proposed Method (Contd)

\[J_* = \frac{\int_{orth} N(v, 0, A^{-1}) \, dv}{\int_{orth+} N(v, 0, A^{-1}) \, dv} \equiv \frac{I_1}{I_2} \]
Multivariate Gaussian Integrals

• For high dimensionality it is a very hard problem.

• Generating points from the Gaussian distribution and counting the fraction that falls in integration area is not feasible.

• For example, consider an identity covariance matrix and a number N_{gen} of generated points.

\[
\text{Fraction of points } \approx N_{gen} 2^{-N}
\]

For $N = 100$, $N_{gen} = 100,000$, we get $7.9e-26$ points that fall in the integration area.
Proposed Integration Method

- The proposed new Monte Carlo method combines aspects of rejection sampling and bootstrap sampling.

- It can apply to any integration problem. As such, it is a new contribution for the general integration problem.

- Algorithm INTEG
 - We first generate samples for the first variable v_1.
 - Subsequently, we reject the points that fall outside the integral limits (for v_1).
 - We replenish in place of the discarded points by sampling with replacement from the existing points.
 - We move on to the second variable, v_2, and generate points using the conditional distribution $p(v_2|v_1)$ (conditioned on the v_1 points already generated).
 - Again, we reject the points of v_2 that fall outside the integration limit, and replenish by sampling with replacement.
 - We continue this manner until we reach the final variable v_N. The integral value is then estimated as the product of the acceptance ratios of the N variables.
Proposed Integration Method (Contd)

Two points each

Orthant prob. = product of point acceptance ratios

Generate according to \(p(x_3|x_1, x_2) \) and continue in this manner

Discard and replace

Generate according to \(p(x_2|x_1) \)

Discard and replace

Generate \(x_1 \) Discard and replace

\(x_1 > 0 \)

\(x_1 < 0 \)
Properties of the Proposed Estimator

- We proved that it is a consistent estimator of the multivariate Gaussian integral (hence also of the posterior probability).

- This means that we can approach the true value by using enough generated points.

- The reason is as follows:
 - Assume the generated points v_i obey the distribution $p(v_i|v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - When we discard the points $v_i < 0$ and sample by replacement from the existing points, the points will be distributed as $p(v_i|v_i \geq 0, v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - When we generate the points v_{i+1} they will be distributed as $p(v_{i+1}|v_i \geq 0, \ldots, v_1 \geq 0)$.
 - Fraction accepted every step is about $P(v_i \geq 0|v_{i-1} \geq 0, \ldots, v_1 \geq 0)$.
 - Products of fractions accepted is about:

\[
P(v_N \geq 0|v_{N-1} \geq 0, \ldots, v_1 \geq 0) \cdot \nonumber \\
P(v_{N-1} \geq 0|v_{N-2} \geq 0, \ldots, v_1 \geq 0) \ldots \\
P(v_1 \geq 0)
\]

which equals

\[
P(v_N \geq 0, v_{N-1} \geq 0, \ldots, v_1 \geq 0)
\]
Mean Square Error of the Estimators (in Log Space)

- Let N be the dimension, N_G be the number of generated points, P_{orth} be the integral value, and $P_i \equiv P(x_i \geq 0|x_{i-1} \geq 0, \ldots, x_1 \geq 0)$

- For the standard Monte Carlo:

$$MSE = \frac{1 - P_{orth}}{P_{orth}N_G}$$

- For the new estimator:

$$MSE = \frac{N}{N_G} \text{Avg} \left(\frac{1 - P_i}{P_i} \right)$$
Numerical Example:

- Consider a 20-dimensional multivariate Gaussian distribution, with some specific covariance matrix.

- We applied both the new algorithm and the standard Monte Carlo method to evaluate the orthant integral $v \geq 0$.

- For both we used 100,000 generated values.

- For the standard Monte Carlo, no point fell in the area of integration.

- The true log integral equals -16.8587

- For the proposed algorithm, we obtained log(integral) = -16.8902 (0.19% error).
Other Approaches: Approximations to the Gaussian Integral

- In cases when we have a very large training set, e.g. in the thousands, we might opt for fast approximations for the sake of computation speed.

- We developed an approximation based on H. Joe (1995)'s Gaussian integral approximation.

- It is based on approximating the binary events $v_i \geq 0$ as Gaussian, and writing the joint Gaussian in terms of its conditional constituents.

\[
J^* = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{4} - P_{N1} \right) \cdots \left(\frac{1}{4} - P_{NN} \right) \cdot \\
\begin{pmatrix}
\frac{1}{4} & P_{12} - \frac{1}{4} & \cdots & P_{1N} - \frac{1}{4} \\
P_{12} - \frac{1}{4} & \frac{1}{4} & \cdots & P_{2N} - \frac{1}{4} \\
\vdots & \vdots & \ddots & \vdots \\
P_{1N} - \frac{1}{4} & P_{2N} - \frac{1}{4} & \cdots & \frac{1}{4}
\end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}
\]

where P_{ij} is the bivariate centered Gaussian orthant integral for variables i and j. It can be analytically obtained using a simple formula.
Other Approximations: Linear Regression

- The multivariate Gaussian orthant integral is one of the very old problems that have defied any adequate solution (whether analytical or algorithmic).

- There exist a series expansion, but it is computationally intractable (exponential in N).

- Taking cue, we propose a series expansion. Instead of computing the coefficients analytically, we use a linear regression fit.

- We regress the orthant probability against the following possible homogeneous polynomials:

\[\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}, \quad \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}^2, \quad \sum_{i=1}^{N} \left[\sum_{j=1}^{N} a_{ij} \right]^2, \ldots \]

where a_{ij} is the $(i,j)^{th}$ element of the inverse covariance matrix.

- How would we know the real orthant probabilities to obtain the regression coefficients:

- In the literature there are several special cases where a closed-form solution of the orthant probability exists. We use these to train the regression model.
Parameters that control smoothness

• In the prior distribution, the covariance for the latent variables is given by:

\[\text{cov}(f_i, f_j) = \beta e^{-\alpha \|x_i - x_j\|^2} \]

• \(\alpha \) controls the degree of correlation among \(f_i \) and \(f_j \).

• As such, it controls the degree of smoothness of the \(f \)-surface.

• \(\beta \) controls the variance of the \(f_i \)'s.

• It therefore controls how loose the connection is between the conditional mean of \(f_i \) and its resulting classification.
Marginal Likelihood

- A very potent way for the selection of these two parameters is to maximize the marginal likelihood function:

\[L = p(y|X) \equiv \int p(y|f)p(f|X)df \]

- It is a measure of how likely are the class memberships of the training data given the parameter values \(\alpha\) and \(\beta\).

- Find \(\alpha\) and \(\beta\) that maximize \(L\).

- We also proved that \(L\) is equivalent to a multivariate Gaussian orthant probability, that can be evaluated using the proposed methods.
Preliminary Simulation Experiments

- We have performed some preliminary simulations.

- The proposed Monte Carlo method and the linear regression approximation obtain somewhat better performance than the best existing approximation (the expectation propagation (EP) method).

- The approximation based on Joe’s method is comparable to EP.

- The Monte Carlo method is considerably faster than the MCMC method (the only other method that provides exact estimates).